Impalement of fakir drops

Size: px
Start display at page:

Download "Impalement of fakir drops"

Transcription

1 January 2008 EPL, 81 (2008) doi: / /81/ Impalement of fakir drops M. Reyssat 1,J.M.Yeomans 2 and D. Quéré 1 1 Physique et Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI Paris, France 2 The Rudolf Peierls Centre for Theoretical Physics, University of Oxford - 1 Keble Road, Oxford OX1 3NP, UK received 7 September 2007; accepted in final form 19 November 2007 published online 20 December 2007 PACS PACS p Liquid-solid interfaces Bc Wetting Abstract Water drops deposited on hydrophobic materials decorated with dilute micro-posts generally form pearls. Owing to the hydrophobicity of the material, the drop sits on the top of the posts. However, this fakir state is often metastable: if the drop impales inside the texture, its surface energy is lowered. Here we discuss the transition between these two states, considering the drop size as a parameter for inducing this transition: remarkably, it is found that a drop impales when it becomes small, which is interpreted by considering its curvature. This interpretation allows us to propose different recipes for avoiding this detrimental effect. Copyright c EPLA, 2008 As shown by Young two hundred years ago, the contact angle of a drop on an ideal solid is fixed by the nature of the three coexisting phases [1]. On real surfaces (that is, chemically heterogeneous and rough), the contact line can be pinned on the solid defects, leading to multiple contact angles (contact angle hysteresis). On such solids, if the drop size becomes comparable to the size of the solid defects (often micrometric), rearrangements occur, which explain why the contact angle is generally observed to vary as the drop gets smaller than typically one micrometer [2]. Here we consider hydrophobic solids decorated with regular arrays of micropillars. This design was shown to promote both super-hydrophobicity and structural colors, for post density below 10% [3 6]. Two states are possible for a drop on such a solid: either the drop sits on the tops of the pillars (fakir state, first described by Cassie), or it sinks inside the texture (impaled state, known since Wenzel) [6 8]. In the fakir state, the contact angle is high (there is mainly air below the drop), and the contact angle hysteresis is low (owing to a the reduced solid/liquid contact). In the impaled state, the contact angle is close to the one on a flat hydrophobic surface (the pillars are dilute), and the hysteresis may be very large, owing to the strong pinning of the contact line on the pillars. In the limit of dilute microstructures, the fakir state should generally be metastable [6,7]. Irreversible transitions towards the more stable impaled state can be provoked by applying a pressure on the drop [8], or by making it impact the structured material [9,10]. It was also shown that the drop size may also influence its state: on a given substrate, water deposited as a spray was found to be pinned in the texture, while millimetric water drops were found to float [8]. This was made more precise by monitoring the evaporation of a drop: on sufficiently dilute pillars, it is indeed observed that the wetting state changes as the drop becomes smaller than a critical value, and this was interpreted as a transition between the fakir and impaled states [11,12]. Here we discuss this transition, and focus in particular on its origin. Our scenario allows us to propose solutions for avoiding this effect, which is generally detrimental: then drops are sticky, contrasting with what is expected for water-repellent materials. Our samples are made of silicon, and decorated with cylindrical micropillars of micrometric diameter d, height h and mutual distance l. The pillars are obtained by photolithography and deep reactive ion etching, allowing us to vary independently the different geometric parameters of the pattern [13]. The surface is coated with a fluoropolymer which is responsible for the chemical hydrophobicity of the samples: deposited on a flat surface, it provides a contact angle θ for water between 100 and 110, while adding a dilute texture makes the angle jump to a value of about 160. As a signature of the fakir state, the receding contact angle (observed as a millimetric drop evaporates) remains high, around about 140. Figure 1 shows the successive states of a water drop evaporating on a substrate whose posts characteristics are d =3µm, h =4.8 µm andl =17µm, which defines a surface concentration φ S = πd 2 /4(l + d) 2 of 2%. During a first stage (five first snapshots), the contact angle remains constant as the drop evaporates, at a value of 138 ± 3. Such a high receding angle (the advancing one p1

2 M. Reyssat et al. Fig. 1: Evaporation of a water drop sitting on a hydrophobic surface decorated with pillars (visible in the photos) of diameter d =3µm, height h =4.8 µm and distance l =17µm. The initial radius is 120 µm, and the time interval between two successive photos is 5 s. As the drop radius reaches 75 µm (fifth snapshot), the state of the drop abruptly changes, from a super-hydrophobic state to a hydrophilic-like one. for this system is 165 ± 2 ) indicates that the drop is in a fakir state, as noted above. However, this state changes when the drop becomes smaller than a critical radius R of 75 µm in the experiment reported in fig. 1. High-speed imaging of the transition (shot at 8000 frames per second) proved that it is very sudden, taking place in about 1 ms. Then, the angle gets much smaller, by about 80 (which implies a sharp increase of the solid/liquid contact), and it keeps on decreasing: the liquid is very efficiently pinned, and the receding angle gradually vanishes, from an initial value of 60 down to zero, despite the hydrophobicity of the material. This behavior can be interpreted as resulting from an impalement of the drop in the texture, this state being characterized by a giant hysteresis of the angle [8]. This interpretation can be confirmed by examining the trace left on the material after evaporation (fig. 2). A circular stain [14] is observed at the bottom stage of the solid, where it follows the pillars on which pinning took place, proving that the drop indeed sank inside the texture. Each drop in fig. 1 is a spherical cap with a liquid/vapor interface whose surface area can be easily determined as a function of time. Similarly, it develops an apparent solid/liquid contact, which can also be measured. The impalement transition is also evidenced by following the evolution of both these surface areas, as shown in fig. 3. It is observed that both surface areas first decrease linearly with time, before being subjected to a discontinuity at the transition: there the (apparent) solid/liquid surface area (squares) abruptly increases, owing to a spreading in the texture; later, it becomes constant, indicating a pinning of the contact line. Simultaneously, the surface area of the spherical cap (circles) decreases sharply at the transition, and then more slowly till it joins the value for the solid/liquid area: in the final stage of evaporation, the drop is flat (zero receding angle). Fig. 2: Trace left after drop evaporation in the experiment of fig. 1. A stain resulting from the evaporation-driven flow of dust present in water is clearly visible at the bottom stage of the textured material. The stain follows the pillars, showing that the drop sank inside the texture, and then got pinned on the microstructures. The bar indicates 50 µm. Fig. 3: Surface areas of the drop evaporating in fig. 1, as a function of time. The circles show the evolution of the surface area of the liquid/vapor spherical cap, while the squares hold for the apparent solid/liquid surface (base of the drop). At the transition, both surface areas vary discontinuously. Error bars are of the order of the symbol sizes. It is sometimes suggested that gravity might play a role in drop impalement. This looks surprising considering the scale of the phenomena (such that surface effects largely dominate gravitational ones), and we checked that gravity is indeed not responsible for the transition. We redid again the experiment described in fig. 1, yet upside down. The drop is first deposited on the sample, which then is flipped (along an horizontal axis), so that the drop eventually hangs from the solid. The flip is made when the drop is small enough, in order to avoid its detachment as it gets hung. However, its radius at this moment still is significantly larger than R, showing that the transition, which occurs much later, is not provoked by the flip itself p2

3 Impalement of fakir drops Fig. 4: Sketch of the liquid/vapor interface below a fakir drop. We denote δ as the distance between the bottom of the interface and the top of the posts, andα as the angle between the vertical and the tangent to the interface at the post edge. The drop keeps on evaporating, and the transition is observed for the very same critical radius as in fig. 1. We now examine why such a transition should take place, and what can be the conditions for provoking it. Let us first stress that on materials with a high dilution of micropillars, the fakir state is generally metastable, owing to the presence of liquid/vapor interfaces (of large surface energy) below the drop. Comparing the surface energies of the fakir and the impaled states suggests that a stable fakir state is only possible if the chemical hydrophobicity is large enough: the fakir state has a lower energy than the impaled one if the cosine of the contact angle θ on the bare surface is smaller than (φ S 1)/(r φ S ), denoting r as the roughness of the substrate [6]. In our case (where we generally have d<h and d<l), this condition can be rewritten, as a function of the pillar density φ S and aspect ratio Λ = h/d: cosθ< 1+4Λφ S. For high dilutions (φ S =0.01), this condition cannot be fulfilled, even for large aspect ratio (Λ = 10), owing to the limitations in chemical hydrophobicity (cos θ cannot be smaller than 0.5). Hence if the bottom interface of a floating drop contacts the ground level of the material, we expect the propagation of a solid/liquid contact, of smaller surface energy. Since the curvature of the drop must be constant everywhere, the liquid/vapor interface below the drop must be bent (fig. 4). Denoting δ as the maximum deformation of the interface below the drop, the curvature of this interface will scale as δ/l 2 (considering δ<l). Equating this curvature with the one of the drop (of radius R) yields: δ l 2 /R. A solid/liquid contact will be nucleated on the bottom of the solid provided that δ>h, which gives: R<R l 2 /h. (1) For small pillars (h l), the radius R can become quite large, as observed for example in fig. 1. For l =17µm and h =4.8 µm, eq. (1) predicts R =60µm, a value indeed comparable to the one determined in fig. 1 (R =75µm). More interestingly, this interpretation suggests routes to build super-hydrophobic materials able to resist a pinning transition, even for small droplets. A first way consists of reducing the size of the microstructures. Having microstructures of the order of 100 nm leads to critical radii of the same order, for which evaporation should be quasi-instantaneous: such drops would never get pinned. This might be an explanation for the existence in nature Fig. 5: Evaporation of a water drop (initial radius of 90 µm) sitting on a hydrophobic surface decorated with pillars of diameter d = 3 µm, height h = 36.5 µm and mutual distance l =17µm. The time interval between two successive photos is 9 s. In the second snapshot, the drop radius is about 75 µm, value at which impalement took place in fig. 1: owing to the use of long pillars, the drop can here reach a much smaller radius without sinking in the texture. of sub-structures at this scale, in particular on plant surfaces or at the surface of some mosquito s eyes, which seem to remain dry even if exposed to sprays or fogs [15]. Equation (1) suggests another way for avoiding drop impalement, which consists of making the structures higher, keeping the distance l between posts large enough to maintain a strong hydrophobicity. We show in fig. 5 the successive states of an evaporating drop deposited on a substrate of same pillar density as in figs. 1 and 2, yet consisting of much higher pillars (36.5 µm instead of 4.8 µm). This can be achieved by alternating in the microfabrication process phases of etching and passivation of the surface (Bosch process), allowing us to reach aspect ratios Λ for the pillars as high as 15 [13]. It is observed that the drop remains at the top of the pillars, even if its size is much smaller than in fig. 1. Note that the fakir state is here directly imaged in fig. 5, since the distance between the bottom of the drop and the top of its reflection is seen to be twice the pillar height h, which is here much larger (by a factor 8) than in fig. 1. However, the end of the sequence in fig. 5 (seventh snapshot) is difficult to interpret directly (even if we clearly see that some distance remains between the drop and its reflection). It is possible to go slightly further by investigating the dust figure left after evaporation. The pattern, shown in fig. 6, is very different from the one in fig. 2. The dust now only concentrates on very few pillars, showing that the drop does not pin (i.e. remains in the fakir state) till the end (or very close to the end) of the process. In addition, the dust cluster is found to be located close to the top of the structures, which emphasizes the ability of the drop to resist impalement. Even if it sank at the very end, the (tiny) drop was volatilized before touching the bottom. This effect might contribute to avoid a pollution inside the microtextures, which are difficult to clean. More generally, we measured the critical radius of impalement R for water drops deposited on substrates of various designs (either changing the pillar height p3

4 M. Reyssat et al. Fig. 6: Electron microscope picture of the dust trace left after drop evaporation (corresponding to the experiment of fig. 5). This surface has the same density as in fig. 2, yet much higher pillars (h =36.5 µm instead of 4.8 µm). It is observed that the dust accumulates around a few pillars, on a size of about the inter-pillar distance l (here, 17 µm), showing that the drop did not impale till the end of evaporation. keeping the mutual distance constant, or vice versa). Our results are displayed in fig. 7. The critical radius of impalement is found to be in good agreement with our expectations (eq. (1)): it increases linearly with the geometric parameter l 2 /h, and it is of the order of this parameter. However, deviations are observed at small l 2 /h, and we now discuss possible origins for them. Up to now, we implicitly assumed that the contact lines below the drop remain pinned on the edges of the posts, until the liquid/vapor interface reaches the bottom. As known since Gibbs, edges allow for such a pinning, provided that the angle α (defined in fig. 4) remains between π/2 θ and θ, where θ is the contact angle on the bare surface (typically between 100 and 110 on hydrophobic surfaces). Reasoning, for simplicity, in two dimensions, we notice that α is fixed by the geometry (see fig. 4): we have cos α = l/2r, R being the radius of curvature of the drop and thus of the liquid/vapor interface. Hence, we get that the pinning condition α<θ is satisfied provided that R is larger than l/2 cos θ. Hence small drops will sink because they cannot pin. Conversely, if the threshold radius R l 2 /h is larger than the radius of depinning l/2 cos θ, eq. (1) should hold; the latter condition yields l>h/ cos θ, which is generally satisfied in our experiment. However, the regime at small values l 2 /h (in fig. 7) corresponds to samples with tall pillars (h comparable to l, or even larger). Then, our scaling for the curvature is not valid anymore. In addition, as emphasized above, the drop cannot pin on the pillar edges: for h>l cos θ, we expect an impalement driven by the inability of pinning, with a corresponding critical radius R of the order of l/ cos θ. In the limit of moderate hydrophobicity (θ tends towards 90 ), this distance diverges, which (logically) means that the drop should always sink. In our experiments, we made Fig. 7: Critical radius of impalement for water drops evaporating on hydrophobic substrates covered with micropillars of diameter d, height h and distance l, as a function of the geometric factor l 2 /h ( : l =7µm (h =3.9 µm); : l =11µm (h = 9.2, 9.9 µm); : l =17µm (h =2.3, 2.6, 3.4, 3.6, 4.4, 4.8, 5.5, 8, 11, 18 µm); : l =25µm (h =4.4, 19.6 µm)). The inclined dotted line indicates eq. (1). The thin plateau at small l 2 /h gives the value of l/ cos θ (for which impalement induced by depinning should occur), for l =17µmandθ = 110. Error bars indicate dispersion, corresponding to at least five experiments per substrate. series of data by varying h, keeping l constant: then, the depinning regime should be characterized by a plateau at small l 2 /h (i.e. large h), at a value R l/ cos θ. We draw in fig. 7 such a plateau for the data with l =17µm and for θ = 110 (which yields R =45µm). In this regime where the critical radius of impalement is very small, data are quite scattered and imprecise. However, we indeed observe a tendency for the data to intercept the ordinate axis at a non-zero value, as the abscissa vanishes. We can finally note that there again, a reduction in the size of the microtextures implies a smaller R (the interesting practical limit), in qualitative agreement with the experiments performed by Jiang et al. with spray on mosquito eyes decorated by nanometric posts for which impalement is not observed, in spite of the small height of the textures [15]. Other factors might contribute to induce impalement. For two months, we found impalement radii significantly larger (by a factor sometimes as high as 2) than reported in fig. 7. At that time, work was done in a building close to ours: air was extremely dusty, carrying mineral particles resulting from the destruction of this building. If deposited on our substrates, these hydrophilic particles of size comparable to the microstructures should act as nucleation sites for the transition: menisci forming between water and these particles obviously favor the formation of contacts between the bottom stage of the p4

5 Impalement of fakir drops textured material and liquid. The only way to opposing this detrimental effect would consist of using materials for which the fakir state is of lower energy than the impaled Wenzel state (criterion discussed before fig. 4). The drop itself might be contaminated. We looked at drops containing small quantities of surfactants. Then, as the liquid evaporates, the surfactant concentrates in the drop, inducing a lowering of its surface tension. Then, pinning transitions were observed for radii much larger than discussed here (of the order of 500 µm, and depending on the initial concentration of surfactant), showing that wetting properties are affected by the presence of surfactant, which was both able to decrease the liquid surface tension and to adsorb on the material, making it hydrophilic. As a conclusion, we showed in this letter that a pinning transition may take place for drops deposited on super-hydrophobic surfaces consisting of dilute arrays of micro-pillars. This transition is driven by the drop size, but surprisingly it is found that the drops impaling inside the texture are the small ones! This was interpreted geometrically, by considering the curvature of the liquid/vapor pockets below the drop: if the impaled state is of lower energy than the fakir one, once a contact is generated on the bottom surface, it should propagate, and this contact can be initiated by the bending of these interfaces as the drop gets smaller. This transition can thus be avoided provided that the pillars are long enough: such designs can be made by deep etching techniques (as used here), but other examples have been recently proposed in the literature, which realize this condition: forests of nanotubes [16,17], or hairy materials [18]. It would be worth checking if indeed drops keep floating as they evaporate on these materials. The question of the behavior of an evaporating drop on a disordered (or more complex) substrate remains open: we can imagine multiple possible states for the drop as it vanishes, so that the simple transition described here should be replaced by multiple transitions. Our findings might be also useful to understand quantitatively why a pinning transition can be induced by applying a pressure, as observed experimentally [8] and in simulations [19]. Similarly, the condition of a constant pressure in the drop implies deformations of the bottom surface, which is likely to reach the base of the substrate. It would be interesting to understand how the system behaves if the impaled state has a larger energy than the floating one: then, the liquid should resist pinning, even for pressures large enough to induce a contact between the interface and the ground. These questions are probably important to design slippery materials: as recently shown, super-hydrophobic materials may allow liquids to slide on them, provided that the fakir state is preserved [20 23]. Hence, it is crucial to determine the conditions favoring this state, in particular as a function of the applied pressure, necessary to drive a flow. We thank D. Bartolo, A. Dupuis, H. Haidara, C. Ishino, H. Kusumaatmaja, S. Moulinet and K. Okumura for many useful discussions, Y. Chen, F. Marty and A. Pépin for their help in making the samples, and Essilor for financial support. REFERENCES [1] Young T., Philos. Trans. R. Soc. London, 95 (1805) 65. [2] Checco A., Guenoun P. and Daillant J., Phys. Rev. Lett., 91 (2003) [3] Bico J., Marzolin C. and Quéré D., Europhys. Lett., 47 (1999) 220. [4] Öner T. and McCarthy T. J., Langmuir, 16 (2000) [5] Yoshimitsu Z., Nakajima A., Watanabe T. and Hashimoto K., Langmuir, 18 (2002) [6] Bico J., Thiele U. and Quéré D., Colloids Surf. A, 206 (2002) 41. [7] He B., Patankar N. A. and Lee J., Langmuir, 19 (2003) [8] Lafuma A. and Quéré D., Nat. Mater., 2 (2003) 457. [9] Bartolo D., Bouamrirene F., Verneuil E., Buguin A., Silberzan P. and Moulinet S., Europhys. Lett., 74 (2006) 299. [10] Reyssat M., Pépin A., Marty F., Chen Y. and Quéré D., Europhys. Lett., 74 (2006) 306. [11] McHale G., Aqil S., Shirtcliffe N. J., Newton M. I. and Erbil H. Y., Langmuir, 21 (2005) [12] Bouamrirene F. and Bonn D., communication at the workshop Pattern Formation through Instabilities in Thin Liquid Films: From Fundamental Aspects to Applications, MPI, Dresden, [13] Callies M., Chen Y., Marty F., Pépin A. and Quéré D., Microelectron. Eng., (2005) 100. [14] Deegan R., Bakajin O., Dupont T. F., Huber G., Nagel S. R. and Witten T. A., Nature, 389 (1997) 827. [15] Gao X. F., Yan X., Yao X., Xu L., Zhang K., Zhang J. H., Yang B. and Jiang L., Adv. Mater., 19 (2007) [16] Li H., Wang X., Song Y., Liu Y., Li Q., Jiang L. and Zhu D., Angew. Chem., Int. Ed., 40 (2001) [17] Lau K. K. S., Bico J., Teo K. B. K., Chhowalla M., Amaratunga G. A. J., Milne W. I., McKinley G. H. and Gleason K. K., Nano Lett., 3 (2003) [18] Feng L., Li S., Li H., Zhai J., Song Y., Jiang L. and Zhu D., Angew. Chem., Int. Ed., 41 (2002) [19] Dupuis A. and Yeomans J. M., Langmuir, 21 (2005) [20] Cottin-Bizonne C., Barrat J. L., Bocquet L. and Charlaix E., Nat. Mater., 2 (2003) 237. [21] Ou J., Perot B. and Rothstein J. P., Phys. Fluids, 16 (2004) [22] Joseph P. et al., Phys. Rev. Lett., 97 (2006) [23] Roach P., Mchale G., Evans C. R., Shirtcliffe N. J. and Newton M. I., Langmuir, 23 (2007) p5

Wetting behaviours of a-c:h:si:o film coated nano-scale dual rough surface

Wetting behaviours of a-c:h:si:o film coated nano-scale dual rough surface Chemical Physics Letters 436 (2007) 199 203 www.elsevier.com/locate/cplett Wetting behaviours of a-c:h:si:o film coated nano-scale dual rough surface Tae-Young Kim a,c, Bialuch Ingmar b, Klaus Bewilogua

More information

J. Bico, C. Tordeux and D. Quéré Laboratoire de Physique de la Matière Condensée, URA 792 du CNRS Collège de France Paris Cedex 05, France

J. Bico, C. Tordeux and D. Quéré Laboratoire de Physique de la Matière Condensée, URA 792 du CNRS Collège de France Paris Cedex 05, France EUROPHYSICS LETTERS 15 July 2001 Europhys. Lett., 55 (2), pp. 214 220 (2001) Rough wetting J. Bico, C. Tordeux and D. Quéré Laboratoire de Physique de la Matière Condensée, URA 792 du CNRS Collège de France

More information

Soft Matter

Soft Matter REVIEW www.rsc.org/softmatter Soft Matter On water repellency Mathilde Callies and David Quéré* Received 1st February 2005, Accepted 5th April 2005 First published as an Advance Article on the web 22nd

More information

Life and death of a fakir droplet: Impalement transitions on superhydrophobic surfaces

Life and death of a fakir droplet: Impalement transitions on superhydrophobic surfaces Eur. Phys. J. E 24, 251 26 (27) DOI 1.114/epje/i27-1235-y THE EUROPEAN PHYSICAL JOURNAL E Life and death of a fakir droplet: Impalement transitions on superhydrophobic surfaces S. Moulinet 1,a and D. Bartolo

More information

Topography driven spreading. School of Biomedical & Natural Sciences, Nottingham Trent University. Clifton Lane, Nottingham NG11 8NS, UK.

Topography driven spreading. School of Biomedical & Natural Sciences, Nottingham Trent University. Clifton Lane, Nottingham NG11 8NS, UK. Postprint Version G. McHale, N. J. Shirtcliffe, S. Aqil, C. C. Perry and M. I. Newton, Topography driven spreading, Phys. Rev. Lett. 93, Art. No. 036102 (2004); DOI: 10.1103/PhysRevLett.93.036102. The

More information

Superhydrophobic surfaces. José Bico PMMH-ESPCI, Paris

Superhydrophobic surfaces. José Bico PMMH-ESPCI, Paris Superhydrophobic surfaces José Bico PMMH-ESPCI, Paris Superhydrophobic surfaces José Bico PMMH-ESPCI, Paris? Rain droplet on a window film pinning tear 180? mercury calefaction Leidenfrost point, T = 150

More information

Colloidal Particles at Liquid Interfaces: An Introduction

Colloidal Particles at Liquid Interfaces: An Introduction 1 Colloidal Particles at Liquid Interfaces: An Introduction Bernard P. Binks and Tommy S. Horozov Surfactant and Colloid Group, Department of Chemistry, University of Hull, Hull, HU6 7RX, UK 1.1 Some Basic

More information

DLVO interaction between the spheres

DLVO interaction between the spheres DLVO interaction between the spheres DL-interaction energy for two spheres: D w ( x) 64c π ktrϕ e λ DL 2 x λ 2 0 0 D DLVO interaction w ( x) 64πkTRϕ e λ DLVO AR /12x 2 x λd 2 0 D Lecture 11 Contact angle

More information

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 5, Supp, Pages 85 92 c 2008 Institute for Scientific Computing and Information PHYSICS OF FLUID SPREADING ON ROUGH SURFACES K. M. HAY AND

More information

Drop friction on liquid-infused materials

Drop friction on liquid-infused materials Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 207 Drop friction on liquid-infused materials Armelle Gas,2, Ludovic Keiser,3, Christophe Clanet,2

More information

Lecture 7 Contact angle phenomena and wetting

Lecture 7 Contact angle phenomena and wetting Lecture 7 Contact angle phenomena and Contact angle phenomena and wetting Young s equation Drop on the surface complete spreading Establishing finite contact angle γ cosθ = γ γ L S SL γ S γ > 0 partial

More information

Dewetting Transitions on Superhydrophobic Surfaces: When Are Wenzel Drops Reversible?

Dewetting Transitions on Superhydrophobic Surfaces: When Are Wenzel Drops Reversible? pubs.acs.org/jpcc Dewetting Transitions on Superhydrophobic Surfaces: When Are Wenzel Drops Reversible? Jonathan B. Boreyko and C. Patrick Collier* Center for Nanophase Materials Sciences, Oak Ridge National

More information

Contact time of a bouncing drop

Contact time of a bouncing drop Contact time of a bouncing drop Denis Richard, Christophe Clanet (*) & David Quéré Laboratoire de Physique de la Matière Condensée, URA 792 du CNRS, Collège de France, 75231 Paris Cedex 05, France (*)

More information

Capillarity and Wetting Phenomena

Capillarity and Wetting Phenomena ? Pierre-Gilles de Gennes Frangoise Brochard-Wyart David Quere Capillarity and Wetting Phenomena Drops, Bubbles, Pearls, Waves Translated by Axel Reisinger With 177 Figures Springer Springer New York Berlin

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NMAT4868 Antifogging abilities of model nanotextures Timothée Mouterde 1,2, Gaëlle Lehoucq 3, Stéphane Xavier 3, Antonio Checco 4, Charles

More information

Supplementary Information on Thermally Enhanced Self-Propelled Droplet Motion on Gradient Surfaces

Supplementary Information on Thermally Enhanced Self-Propelled Droplet Motion on Gradient Surfaces Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supplementary Information on Thermally Enhanced Self-Propelled Droplet Motion on Gradient Surfaces

More information

On the Landau-Levich Transition

On the Landau-Levich Transition 10116 Langmuir 2007, 23, 10116-10122 On the Landau-Levich Transition Maniya Maleki Institute for AdVanced Studies in Basic Sciences (IASBS), Zanjan 45195, P.O. Box 45195-1159, Iran Etienne Reyssat and

More information

Supplementary Information. In colloidal drop drying processes, multi-ring depositions are formed due to the stick-slip

Supplementary Information. In colloidal drop drying processes, multi-ring depositions are formed due to the stick-slip Electronic Supplementary Material (ESI for Soft Matter. This journal is The Royal Society of Chemistry 14 Supplementary Information A1. Contact line receding velocity of an evaporating drop In colloidal

More information

The evaporation of sessile droplets onto solid surfaces : experiments and simulations of the contact line pinning-depinning

The evaporation of sessile droplets onto solid surfaces : experiments and simulations of the contact line pinning-depinning The evaporation of sessile droplets onto solid surfaces : experiments and simulations of the contact line pinning-depinning L.Kabeya-Mukeba, N.Vandewalle and S.Dorbolo GRASP, Institut de Physique B5a,

More information

(Communicated by Benedetto Piccoli)

(Communicated by Benedetto Piccoli) NETWORKS AND HETEROGENEOUS MEDIA Website: http://aimsciences.org c American Institute of Mathematical Sciences Volume 2, Number 2, June 2007 pp. 211 225 A NEW MODEL FOR CONTACT ANGLE HYSTERESIS Antonio

More information

Droplet Coalescence and Freezing on Hydrophilic, Hydrophobic, and Biphilic Surfaces

Droplet Coalescence and Freezing on Hydrophilic, Hydrophobic, and Biphilic Surfaces Droplet Coalescence and Freezing on Hydrophilic, Hydrophobic, and Biphilic Surfaces Abstract Alexander S. Van Dyke 1, Diane Collard 2, Melanie M. Derby 1, Amy Rachel Betz 1 * 1 Mechanical and Nuclear Engineering,

More information

Adhesion of membranes and filaments on patterned surfaces

Adhesion of membranes and filaments on patterned surfaces Adhesion of membranes and filaments on patterned surfaces Olivier Pierre-Louis CNRS / Oxford Theoretical Physics 1 Keble Road, Oxford OX1 3NP, UK olivier.pierre-louis@physics.ox.ac.uk Spring 2008 Nanotube

More information

Microfluidics 2 Surface tension, contact angle, capillary flow

Microfluidics 2 Surface tension, contact angle, capillary flow MT-0.6081 Microfluidics and BioMEMS Microfluidics 2 Surface tension, contact angle, capillary flow 28.1.2017 Ville Jokinen Surface tension & Surface energy Work required to create new surface = surface

More information

Elastic Instability and Contact Angles on Hydrophobic Surfaces with Periodic Textures

Elastic Instability and Contact Angles on Hydrophobic Surfaces with Periodic Textures epl draft Elastic Instability and Contact Angles on Hydrophobic Surfaces with Periodic Textures A. L. Dubov 1,2, J. Teisseire 1 and E. Barthel 1 1 Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,

More information

Generalized Cassie-Baxter equation for wetting of a spherical droplet within a smooth and heterogeneous conical cavity

Generalized Cassie-Baxter equation for wetting of a spherical droplet within a smooth and heterogeneous conical cavity Science Front Publishers Journal for Foundations and pplications of Physics, vol. 4, No. (017) (sciencefront.org) ISSN 394-3688 Generalized Cassie-axter equation for wetting of a spherical droplet within

More information

(Communicated by Aim Sciences)

(Communicated by Aim Sciences) NETWORKS AND HETEROGENEOUS MEDIA c American Institute of Mathematical Sciences Volume X, Number 0X, XX 200X Website: http://aimsciences.org pp. X XX Antonio DeSimone, Natalie Grunewald, Felix Otto SISSA-International

More information

Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets

Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets Qiaolan Zhang, a,b Min He, a Jing Chen, a,b Jianjun Wang,* a Yanlin Song* a and Lei Jiang a a Beijing National

More information

Capillarity induced folding of elastic sheets

Capillarity induced folding of elastic sheets Eur. Phys. J. Special Topics 166, 67 71 (2009) c EDP Sciences, Springer-Verlag 2009 DOI: 10.1140/epjst/e2009-00880-4 Regular Article THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Capillarity induced folding

More information

AN OPTIMAL CURVE FOR FASTEST TRANSPROTATION OF LIQUID DROPS ON A SUPERHYDROPHOBIC SURFACE

AN OPTIMAL CURVE FOR FASTEST TRANSPROTATION OF LIQUID DROPS ON A SUPERHYDROPHOBIC SURFACE AN OPTIMAL CURVE FOR FASTEST TRANSPROTATION OF LIQUID DROPS ON A SUPERHYDROPHOBIC SURFACE ABSTRACT Kwangseok Seo, Minyoung Kim, Do Hyun Kim Department of Chemical and Biomolecular Engineering, Korea Advanced

More information

Modelling drop dynamics on patterned surfaces

Modelling drop dynamics on patterned surfaces BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 55, No. 2, 2007 Modelling drop dynamics on patterned surfaces J.M. YEOMANS and H. KUSUMAATMAJA The Rudolf Peierls Centre for Theoretical

More information

Directional adhesion of superhydrophobic butterfly wings{

Directional adhesion of superhydrophobic butterfly wings{ COMMUNICATION www.rsc.org/softmatter Soft Matter Directional adhesion of superhydrophobic butterfly wings{ Yongmei Zheng, Xuefeng Gao* and Lei Jiang* Received 1st September 2006, Accepted 17th October

More information

Faceted drops on heterogeneous surfaces

Faceted drops on heterogeneous surfaces EUROPHYSICS LETTERS 15 July 2001 Europhys. Lett., 55 (2), pp. 239 245 (2001) Faceted drops on heterogeneous surfaces T. Cubaud and M. Fermigier Laboratoire PMMH, CNRS UMR 7636, ESPCI 10 rue Vauquelin,

More information

Wetting and Adhesion: Manipulating Topography and Surface Free Energy

Wetting and Adhesion: Manipulating Topography and Surface Free Energy Wetting and Adhesion: Manipulating Topography and Surface Free Energy Professor Glen McHale School of Science & Technology Abhesion Meeting, Society for Adhesion and Adhesives, London, UK 23 rd April 2009

More information

THE MODIFIED YOUNG S EQUATION FOR THE CONTACT ANGLE OF A SMALL SESSILE DROP FROM AN INTERFACE DISPLACEMENT MODEL

THE MODIFIED YOUNG S EQUATION FOR THE CONTACT ANGLE OF A SMALL SESSILE DROP FROM AN INTERFACE DISPLACEMENT MODEL International Journal of Modern Physics B, Vol. 13, No. 7 (1999) 355 359 c World Scientific Publishing Company THE MODIFIED YOUNG S EQUATION FOR THE CONTACT ANGLE OF A SMALL SESSILE DROP FROM AN INTERFACE

More information

A study on wettability of the dual scale by plasma etch and nanohonycomb structure

A study on wettability of the dual scale by plasma etch and nanohonycomb structure A study on wettability of the dual scale by plasma etch and nanohonycomb structure Dongseob Kim and W. Hwang* Deptment of Mechanical Engineering, Pohang University of Science and Technology, San 31, Pohang,

More information

Silicone brushes: Omniphobic Surfaces with Low Sliding Angle

Silicone brushes: Omniphobic Surfaces with Low Sliding Angle Sanghyuk Wooh and Doris Vollmer Angew. Chem. Int. Ed. 2016, Vol. 55, 6822 (engl.) Angew. Chem. 2016, Vol. 128, 6934 (german) Silicone brushes: Omniphobic Surfaces with Low Sliding Angle Sanghyuk Wooh and

More information

Supplementary Figures

Supplementary Figures Supplementary Figures 1 Supplementary Figure 1 Micro and nano-textured boiling surfaces. (a) A schematic of the textured boiling surfaces. (b) An isometric view of the square array of square micropillars.

More information

Lubricant Impregnated Nanotextured Surfaces

Lubricant Impregnated Nanotextured Surfaces Supporting Information: Enhanced Condensation on Lubricant Impregnated Nanotextured Surfaces Sushant Anand, Adam T. Paxson, Rajeev Dhiman, J. David Smith, Kripa K. Varanasi* Department of Mechanical Engineering,

More information

Lock-and-Key Geometry Effect of Patterned Surfaces: Wettability and Switching of Adhesive Force**

Lock-and-Key Geometry Effect of Patterned Surfaces: Wettability and Switching of Adhesive Force** Microlithography Lock-and-Key Geometry Effect of Patterned Surfaces: Wettability and Switching of Adhesive Force** Xing-Jiu Huang,* Dong-Haan Kim, Maesoon Im, Joo-Hyung Lee, Jun-Bo Yoon, and Yang-Kyu Choi*

More information

Droplet Migration during Condensation on Chemically Patterned. Micropillars

Droplet Migration during Condensation on Chemically Patterned. Micropillars Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry Please do 2016 not adjust margins RSC Advances ELECTRONIC SUPPORTING INFORMATION (ESI) Droplet Migration

More information

Wetting and Spreading of Drops on Rough Surfaces

Wetting and Spreading of Drops on Rough Surfaces Proceedings of the 6th International Congress of Chinese Mathematicians ALM 37, pp. 565 584 c Higher Education Press and International Press Beijing Boston Wetting and Spreading of Drops on Rough Surfaces

More information

FLOATING WITH SURFACE TENSION

FLOATING WITH SURFACE TENSION FLOATING WITH SURFACE TENSION FROM ARCHIMEDES TO KELLER Dominic Vella Mathematical Institute, University of Oxford JBK @ WHOI Joe was a regular fixture of the Geophysical Fluid Dynamics programme (run

More information

Simulation of Evaporating Droplets on AFM-Cantilevers

Simulation of Evaporating Droplets on AFM-Cantilevers Simulation of Evaporating Droplets on AFM-Cantilevers Thomas Haschke 1, Daniel Lautenschlager 1, Wolfgang Wiechert 1, Elmar Bonaccurso 2, Hans- Jürgen Butt 2 1 University of Siegen, Faculty 11, Department

More information

Droplet Impact Simulation of Hydrophobic Patterned Surfaces by Computed Fluid Dynamics

Droplet Impact Simulation of Hydrophobic Patterned Surfaces by Computed Fluid Dynamics Droplet Impact Simulation of Hydrophobic Patterned Surfaces by Computed Fluid Dynamics Zhiru Yang *, Chongchong Zhu and Nan Zheng School of Mechanical Engineering,Jiangsu University, Zhenjiang 212013,

More information

ISCST shall not be responsible for statements or opinions contained in papers or printed in its publications.

ISCST shall not be responsible for statements or opinions contained in papers or printed in its publications. Modeling of Drop Motion on Solid Surfaces with Wettability Gradients J. B. McLaughlin, Sp. S. Saravanan, N. Moumen, and R. S. Subramanian Department of Chemical Engineering Clarkson University Potsdam,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Tunable Shape Memory Polymer Mold

More information

On supercooled water drops impacting on superhydrophobic textures

On supercooled water drops impacting on superhydrophobic textures of On supercooled water drops impacting on superhydrophobic textures Tanmoy Maitra, Carlo Antonini, Manish K. Tiwari a, Adrian Mularczyk, Zulkufli Imeri, Philippe Schoch and imos Poulikakos * Laboratory

More information

A lichen protected by a super-hydrophobic and. breathable structure

A lichen protected by a super-hydrophobic and. breathable structure Postprint Version N.J. Shirtcliffe, F.B. Pyatt, M.I. Newton and G. McHale, A lichen protected by a superhydrophobic and breathable structure, J. Plant Physiol. 163 (11) (2006) 1193-1197; DOI:10.1016/j.jplph.2005.11.007.

More information

MICRO GROOVED SURFACE IMPROVE DEW COLLECTION

MICRO GROOVED SURFACE IMPROVE DEW COLLECTION MICRO GROOVED SURFACE IMPROVE DEW COLLECTION Royon L.* Matière et Systèmes Complexes, CNRS UMR 7057, Univ. Paris Diderot, Paris Sorbonne Cité, F-75013, Paris, E-mail : laurent.royon@univ-paris-diderot.fr

More information

Dynamics of wetting: from inertial spreading to viscous imbibition

Dynamics of wetting: from inertial spreading to viscous imbibition IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 21 (2009) 464127 (13pp) doi:10.1088/0953-8984/21/46/464127 Dynamics of wetting: from inertial spreading to viscous imbibition

More information

Unified Model for Contact Angle Hysteresis on Heterogeneous and Superhydrophobic Surfaces

Unified Model for Contact Angle Hysteresis on Heterogeneous and Superhydrophobic Surfaces Unified Model for Contact Angle Hysteresis on Heterogeneous and Superhydrophobic Surfaces The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Slip flow over structured surfaces with entrapped microbubbles Hyväluoma, J.; Harting, J.D.R.

Slip flow over structured surfaces with entrapped microbubbles Hyväluoma, J.; Harting, J.D.R. Slip flow over structured surfaces with entrapped microbubbles Hyväluoma, J.; Harting, J.D.R. Published in: Physical Review Letters DOI: 1.113/PhysRevLett.1.261 Published: 1/1/28 Document Version Publisher

More information

Thickness and Shape of Films Driven by a Marangoni Flow

Thickness and Shape of Films Driven by a Marangoni Flow Langmuir 1996, 12, 5875-5880 5875 Thickness and Shape of Films Driven by a Marangoni Flow X. Fanton, A. M. Cazabat,* and D. Quéré Laboratoire de Physique de la Matière Condensée, Collège de France, 11

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/10/eaao3530/dc1 Supplementary Materials for Topological liquid diode Jiaqian Li, Xiaofeng Zhou, Jing Li, Lufeng Che, Jun Yao, Glen McHale, Manoj K. Chaudhury,

More information

EUROPHYSICS LETTERS OFFPRINT

EUROPHYSICS LETTERS OFFPRINT EUROPHYSICS LETTERS OFFPRINT Vol. 68 Number 3 pp. 49 425 etting transitions on rough surfaces C. Ishino, K. Okumura and D. Quéré Published under the scientific responsibility of the EUROPEAN PHYSICAL SOCIETY

More information

Multifunctionality and control of the crumpling and unfolding of

Multifunctionality and control of the crumpling and unfolding of Addendum notice Nature Mater. 12, 321 325 (2013) Multifunctionality and control of the crumpling and unfolding of large-area graphene Jianfeng Zang, Seunghwa Ryu, Nicola Pugno, QimingWang, Qing Tu, Markus

More information

Generalized Wenzel equation for contact angle of droplets on spherical rough solid substrates

Generalized Wenzel equation for contact angle of droplets on spherical rough solid substrates Science Front Publishers Journal for Foundations and Applications of Physics, 3 (2), (2016) (sciencefront.org) ISSN 2394-3688 Generalized Wenzel equation for contact angle of droplets on spherical rough

More information

Splashing of liquids: Interplay of surface roughness with surrounding gas

Splashing of liquids: Interplay of surface roughness with surrounding gas Splashing of liquids: Interplay of surface roughness with surrounding gas Lei Xu, Loreto Barcos, and Sidney R. agel The James Franck Institute and Department of Physics, The University of Chicago, 929

More information

Droplet mobility on lubricant-impregnated surfaces

Droplet mobility on lubricant-impregnated surfaces Droplet mobility on lubricant-impregnated surfaces J. David Smith, a Rajeev Dhiman, a Sushant Anand, a Ernesto Reza-Garduno, a Robert E. Cohen, b Gareth H. McKinley, a and Kripa K. Varanasi* a Received

More information

Superhydrophobic Surfaces

Superhydrophobic Surfaces Superhydrophobic Surfaces Glen McHale and Mike Newton School of Biomedical & Natural Sciences Nottingham Trent University, UK Email: glen.mchale@ntu.ac.uk The Laboratory Themes & Expertise Wetting of surfaces

More information

Supporting information: Morphing and vectoring impacting droplets

Supporting information: Morphing and vectoring impacting droplets Supporting information: Morphing and vectoring impacting droplets by means of wettability-engineered surfaces Thomas M. Schutzius 1,2 Gustav Graeber 3 Mohamed Elsharkawy 1 James Oreluk 4 Constantine M.

More information

Driven large contact angle droplets on chemically heterogeneous substrates

Driven large contact angle droplets on chemically heterogeneous substrates October 2012 EPL, 100 (2012) 16002 doi: 10.1209/0295-5075/100/16002 www.epljournal.org Driven large contact angle droplets on chemically heterogeneous substrates D. Herde 1,U.Thiele 2,S.Herminghaus 1 and

More information

Sta$s$cal mechanics of hystere$c capillary phenomena: predic$ons of contact angle on rough surfaces and liquid reten$on in unsaturated porous media

Sta$s$cal mechanics of hystere$c capillary phenomena: predic$ons of contact angle on rough surfaces and liquid reten$on in unsaturated porous media Sta$s$cal mechanics of hystere$c capillary phenomena: predic$ons of contact angle on rough surfaces and liquid reten$on in unsaturated porous media Michel Louge h@p://grainflowresearch.mae.cornell.edu/

More information

contact line dynamics

contact line dynamics contact line dynamics part 2: hydrodynamics dynamic contact angle? lubrication: Cox-Voinov theory maximum speed for instability corner shape? dimensional analysis: speed U position r viscosity η pressure

More information

Numerical Simulation of Drops Impacting on Textured Surfaces

Numerical Simulation of Drops Impacting on Textured Surfaces Numerical Simulation of Drops Impacting on Textured Surfaces Abstract Y.X. Wang, *S. Chen School of Aerospace Engineering and Applied Mechanics, Tongji University, China. *Corresponding author: schen_tju@tongji.edu.cn

More information

Line Tension Effect upon Static Wetting

Line Tension Effect upon Static Wetting Line Tension Effect upon Static Wetting Pierre SEPPECHER Université de Toulon et du Var, BP 132 La Garde Cedex seppecher@univ tln.fr Abstract. Adding simply, in the classical capillary model, a constant

More information

c 2011 by Huan Li. All rights reserved.

c 2011 by Huan Li. All rights reserved. c 2011 by Huan Li. All rights reserved. SOLID-LIQUID INTERACTIONS IN MICROSCALE STRUCTURES AND DEVICES BY HUAN LI DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor

More information

Granular Micro-Structure and Avalanche Precursors

Granular Micro-Structure and Avalanche Precursors Granular Micro-Structure and Avalanche Precursors L. Staron, F. Radjai & J.-P. Vilotte Department of Applied Mathematics and Theoretical Physics, Cambridge CB3 0WA, UK. Laboratoire de Mécanique et Génie

More information

The Wilhelmy balance. How can we measure surface tension? Surface tension, contact angles and wettability. Measuring surface tension.

The Wilhelmy balance. How can we measure surface tension? Surface tension, contact angles and wettability. Measuring surface tension. ow can we measure surface tension? Surface tension, contact angles and wettability www.wikihow.com/measure-surface-tension Measuring surface tension The Wilhelmy balance F Some methods: Wilhelmy plate

More information

arxiv: v1 [physics.flu-dyn] 8 Jun 2010

arxiv: v1 [physics.flu-dyn] 8 Jun 2010 How micropatterns and air pressure affect splashing on surfaces Peichun Tsai, Roeland van der Veen, Matthias van de Raa, and Detlef Lohse Physics of Fluids Group, Faculty of Science and Technology, Impact

More information

Resonant Oscillations of Liquid Marbles

Resonant Oscillations of Liquid Marbles Resonant Oscillations of Liquid Marbles Glen McHale*, Stephen J. Elliott*, Michael I. Newton*, Dale L. Herbertson* and Kadir Esmer $ *School of Science & Technology, Nottingham Trent University, UK $ Department

More information

Self-assembled nanostructures for antireflection optical coatings

Self-assembled nanostructures for antireflection optical coatings Self-assembled nanostructures for antireflection optical coatings Yang Zhao 1, Guangzhao Mao 2, and Jinsong Wang 1 1. Deaprtment of Electrical and Computer Engineering 2. Departmentof Chemical Engineering

More information

A multiscale framework for lubrication analysis of bearings with textured surface

A multiscale framework for lubrication analysis of bearings with textured surface A multiscale framework for lubrication analysis of bearings with textured surface *Leiming Gao 1), Gregory de Boer 2) and Rob Hewson 3) 1), 3) Aeronautics Department, Imperial College London, London, SW7

More information

Supporting Information

Supporting Information Supporting Information Yanshen Li a,b, David Quéré c, Cunjing Lv a,d, Quanshui Zheng a,b,e,1 a Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China. b Center for Nano and Micro

More information

Droplet Evaporation of Pure Water and Protein Solution on Nanostructured Superhydrophobic Surfaces of Varying Heights

Droplet Evaporation of Pure Water and Protein Solution on Nanostructured Superhydrophobic Surfaces of Varying Heights pubs.acs.org/langmuir 2009 American Chemical Society Droplet Evaporation of Pure Water and Protein Solution on Nanostructured Superhydrophobic Surfaces of Varying Heights Chang-Hwan Choi*, and Chang-Jin

More information

Molecular Dynamics Simulation of Fracture of Graphene

Molecular Dynamics Simulation of Fracture of Graphene Molecular Dynamics Simulation of Fracture of Graphene Dewapriya M. A. N. 1, Rajapakse R. K. N. D. 1,*, Srikantha Phani A. 2 1 School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada

More information

MPIKG Public Access Author Manuscript

MPIKG Public Access Author Manuscript MPIKG Public Access Author Manuscript Max Planck Institute of of Colloids and Interfaces Author Manuscript Published in final edited form as: Stocco, A., & Möhwald, H. (2015). The influence of long-range

More information

A Hydrophilic/Hydrophobic Janus Inverse-Opal

A Hydrophilic/Hydrophobic Janus Inverse-Opal Supporting information A Hydrophilic/Hydrophobic Janus Inverse-Opal Actuator via Gradient Infiltration Dajie Zhang #, Jie Liu //#, Bo Chen *, Yong Zhao, Jingxia Wang * //, Tomiki Ikeda, Lei Jiang //. CAS

More information

Quantitative and Qualitative Results from Droplet Impingement Experiments on Superhydrophobic Surfaces with Micro-Ribs for Three Liquid Types

Quantitative and Qualitative Results from Droplet Impingement Experiments on Superhydrophobic Surfaces with Micro-Ribs for Three Liquid Types Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2010-08-09 Quantitative and Qualitative Results from Droplet Impingement Experiments on Superhydrophobic Surfaces with Micro-Ribs

More information

Adhesive Force due to a Thin Liquid Film between Two Smooth Surfaces (Wringing Mechanism of Gage Blocks)

Adhesive Force due to a Thin Liquid Film between Two Smooth Surfaces (Wringing Mechanism of Gage Blocks) Journal of JSEM, Vol.14, Special Issue (014) s36-s41 Copyright C 014 JSEM Adhesive Force due to a Thin Liquid Film between Two Smooth Surfaces (Wringing Mechanism of Gage Blocks) Kenji KATOH 1 and Tatsuro

More information

Maximal deformation of an impacting drop

Maximal deformation of an impacting drop J. Fluid Mech. (24), vol. 57, pp. 99 28. c 24 Cambridge University Press DOI:.7/S222494 Printed in the United Kingdom 99 Maximal deformation of an impacting drop By CHRISTOPHE CLANET, CÉDRIC BÉGUIN, DENIS

More information

Capturing drops with a thin fiber

Capturing drops with a thin fiber Journal of Colloid and Interface Science 279 (2004) 192 197 www.elsevier.com/locate/jcis Capturing drops with a thin fiber Élise Lorenceau a, Christophe Clanet b, David Quéré a, a Laboratoire de Physique

More information

Thermodynamic equilibrium condition and model behaviours of sessile drop

Thermodynamic equilibrium condition and model behaviours of sessile drop Thermodynamic equilibrium condition and model behaviours of sessile drop Pierre Letellier 1,2, Mireille Turmine 1,2 1- CNRS, UPR15, Laboratoire Interfaces et Systèmes Electrochimiques, F- 75005, Paris,

More information

Deposition of Multilayer Fibers and Beads by Near-Field Electrospinning for Texturing and 3D Printing Applications

Deposition of Multilayer Fibers and Beads by Near-Field Electrospinning for Texturing and 3D Printing Applications Deposition of Multilayer Fibers and Beads by Near-Field Electrospinning for Texturing and 3D Printing Applications Nicolas Martinez-Prieto, Jian Cao, and Kornel Ehmann Northwestern University SmartManufacturingSeries.com

More information

Supplementary Information

Supplementary Information SUPPLEMENTARY INFORMATION Breaking the diffusion limit with super hydrophobic delivery of few molecules to plasmonic nanofocusing structures F. De Angelis 1,2, F. Gentile 1,2, F. Mecarini 1, G. Das 1,

More information

Polarity-Dependent Electrochemically Controlled Transport of Water through Carbon Nanotube Membranes

Polarity-Dependent Electrochemically Controlled Transport of Water through Carbon Nanotube Membranes Polarity-Dependent Electrochemically Controlled Transport of Water through Carbon Nanotube Membranes NANO LETTERS 2007 Vol. 7, No. 3 697-702 Zuankai Wang,, Lijie Ci,, Li Chen, Saroj Nayak, Pulickel M.

More information

arxiv: v2 [cond-mat.soft] 9 Oct 2014

arxiv: v2 [cond-mat.soft] 9 Oct 2014 Evaporative Deposition in Receding Drops Julian Freed-Brown Received Xth XXXXXXXXXX 2XX, Accepted Xth XXXXXXXXX 2XX First published on the web Xth XXXXXXXXXX 2X DOI: 1.139/bx arxiv:141.639v2 [cond-mat.soft]

More information

Frieder Mugele. Physics of Complex Fluids. University of Twente. Jacco Snoeier Physics of Fluids / UT

Frieder Mugele. Physics of Complex Fluids. University of Twente. Jacco Snoeier Physics of Fluids / UT coorganizers: Frieder Mugele Physics of Comple Fluids Jacco Snoeier Physics of Fluids / UT University of Twente Anton Darhuber Mesoscopic Transport Phenomena / Tu/e speakers: José Bico (ESPCI Paris) Daniel

More information

Supplementary Information. for

Supplementary Information. for Supplementary Information for Discrete Element Model for Suppression of Coffee-Ring Effect Ting Xu, 1 Miu Ling Lam, 2,3,4 and Ting-Hsuan Chen 1,2,3,4 1 Department of Mechanical and Biomedical Engineering,

More information

Contact Angle Hysteresis on a Heterogeneous Surface: Solution in the Limit of a Weakly Distorted Contact Line.

Contact Angle Hysteresis on a Heterogeneous Surface: Solution in the Limit of a Weakly Distorted Contact Line. EUROPHYSICS LETTERS Europhys. Lett., 28 (6), pp. 415-420 (1994) 20 November 1994 Contact Angle Hysteresis on a Heterogeneous Surface: Solution in the Limit of a Weakly Distorted Contact Line. J. CRASSOUS

More information

Praktikum zur. Materialanalytik

Praktikum zur. Materialanalytik Praktikum zur Materialanalytik Functionalized Surfaces B510 Stand: 20.10.2017 Table of contents Introduction 2 Basics 2 Surface tension 2 From wettability to the contact angle 4 The Young equation 5 Wetting

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supplementary Information Visualization of equilibrium position of colloidal particles at fluid-water

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

Time-resolved, three-dimensional quantitative microscopy of

Time-resolved, three-dimensional quantitative microscopy of Journal of Microscopy, Vol. 208, Pt 2 November 2002, pp. 148 152 Received 10 January 2002; accepted 31 July 2002 Time-resolved, three-dimensional quantitative microscopy of Blackwell Science, Ltd a droplet

More information

Citation for published version (APA): Wal, B. P. V. D. (2006). Static and dynamic wetting of porous Teflon surfaces s.n.

Citation for published version (APA): Wal, B. P. V. D. (2006). Static and dynamic wetting of porous Teflon surfaces s.n. University of Groningen Static and dynamic wetting of porous Teflon surfaces Wal, Bouwe Pieter van der IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to

More information

Superhydrophobicity and contact-line issues

Superhydrophobicity and contact-line issues University of Massachusetts Amherst From the SelectedWorks of Lixin Gao August, 2008 Superhydrophobicity and contact-line issues LC Gao, University of Massachusetts - Amherst AY Fadeev TJ McCarthy, University

More information

Depinning of 2d and 3d droplets blocked by a hydrophobic defect

Depinning of 2d and 3d droplets blocked by a hydrophobic defect Depinning of 2d and 3d droplets blocked by a hydrophobic defect P. Beltrame 1, P. Hänggi 1, E. Knobloch 2, and U. Thiele 3 1 Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany 2 Department

More information

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Department of Chemical and Biomolecular Engineering Clarkson University Outline

More information

MOLECULAR DYNAMICS SIMULATION ON TOTAL THERMAL RESISTANCE OF NANO TRIANGULAR PIPE

MOLECULAR DYNAMICS SIMULATION ON TOTAL THERMAL RESISTANCE OF NANO TRIANGULAR PIPE ISTP-16, 2005, PRAGUE 16 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA MOLECULAR DYNAMICS SIMULATION ON TOTAL THERMAL RESISTANCE OF NANO TRIANGULAR PIPE C.S. Wang* J.S. Chen* and S. Maruyama** * Department

More information

Measurements of contact angles at subzero temperatures and implications for ice formation

Measurements of contact angles at subzero temperatures and implications for ice formation Measurements of contact angles at subzero temperatures and implications for ice formation Golrokh Heydari 1, Mikael Järn 2, Per Claesson 1,2 1 Department of Chemistry, Surface and Corrosion Science, Royal

More information