Simulation of Evaporating Droplets on AFM-Cantilevers

Size: px
Start display at page:

Download "Simulation of Evaporating Droplets on AFM-Cantilevers"

Transcription

1 Simulation of Evaporating Droplets on AFM-Cantilevers Thomas Haschke 1, Daniel Lautenschlager 1, Wolfgang Wiechert 1, Elmar Bonaccurso 2, Hans- Jürgen Butt 2 1 University of Siegen, Faculty 11, Department of Simulation, Siegen, Germany, {haschke, lautenschlager, wiechert}@simtec.mb.uni-siegen.de, 2 Max-Planck-Institute for Polymer Research, Polymer Physics Group, Ackermannweg 10, Mainz, Germany, {bonaccur, butt}@mpip-mainz.mpg.de 1 Introduction The design of micro and nanoscale systems is a great challenge for modelling and simulation. In particular Lab-on-a-Chip-technology offers a wide spectrum of possible applications. Because micro and nano scale systems behave very differently from macro scale systems, the behaviour of physico-chemical processes on this scale is still subject to research. Hence several research projects for Lab-on-a-Chip-applications are run to understand the behaviour of these systems and get familiar with the different effects on that scale (e. g. Cµ 2002, Nano 2002). At least since Deegan s publication about drying drops of coffee in Nature (Deegan et al. 1997), evaporating micro droplets are a frequently investigated topic. Other authors dealt with special effects like the behaviour of evaporating droplets on solid surfaces (Erbil et al. 2002), fluid flow inside the drop (Hu & Larson 2002), Marangoni-Benard-instability (Nguyen & Stebe 2002) or surface morphology (Shmuylovich et al. 2002), only to mention some of them. Stupperich et al. (2005) and Cordeiro & Pakula (2005) presented simulation models for the production of microwells which takes into account some of the phenomena mentioned before from other authors. A general problem for many systems of drying droplets is the relatively short evaporation time from milliseconds up to a few seconds. So it is very difficult to study the evaporation process and related effects. Recently Bonaccurso and Butt (Bonaccurso & Butt 2005) presented a new approach to investigate droplet evaporation: They placed water droplets on rectangular, silicon atomic force microscope (AFM) cantilevers so that the resonance frequency and the inclination of the cantilever versus time could be measured (Fig. 1). With the help of these values the evaporation process can be described and conclusions about the acting forces and interactions between solid, fluid and gas can be drawn. This contribution deals with a simulation model for these experiments, the resonance frequency analysis as well as the simulation of the evaporating droplet on the cantilever. In the following chapters the experimental setup and analytical basics, the simulation model and the simulation results are presented. 2 Experimental Setup and Analytical 2D Model As shown in Fig. 1 the water drops are placed on the cantilever with a dispenser. The liquid drop exerts forces on the cantilever, which finally result in an upward bending free end of the beam. The upward bending is due to the fact that on this scale mass and gravitation can be neglected and surface forces are dominating.

2 Excerpt from the Proceedings of the COMSOL Multiphysics User's Conference 2005 Frankfurt Fig. 1: Evaporation sequence of a water drop on an AFM-cantilever: Images taken from an experiment (left) and experimental data contact radius and inclination, respectively, versus evaporation time (right) taken from cantilever deflection. Forces responsible for the deflection (Fig. 2) are, according to Bonaccurso and Butt (2005), 2J / R - Laplace pressure of the fluid: P - Normal component of the liquid surface tension: - Change in surface stress of the cantilever: Lateral component of the liquid surface tension: Line tension at the rim of the drop: J normal J sin 4 'V J lateral J cos 4 N 2J sin 4 / a Here, R is the radius of curvature, a the contact radius and 4 the contact angle between solid and liquid. With the Young s modulus E of the cantilever and the moment of inertia I of a rectangular cantilever (I = WH³/12; W and H are the cantilever s width and height, respectively), the differential equation for the cantilever inclination in a simplified 2D approximation is given by (Bonaccurso & Butt 2005) dz dx S a3 ª 2d N º J sin 4 J cos 4 'V» «4 EI a a ¹¼ (1) The first term in (1) is caused by the normal component of the liquid surface tension and the Laplace pressure and leads to an upward bending of the cantilever towards the drop. J cos4, 'V and N act on the three-phase contact line. They hamper the bending in the length direction of the cantilever and simultaneously lead to a bending in the cantilever s width direction. If Young s equation is valid, the term J cos4 - 'V disappears because the difference in the solid surface tensions J is equal to the change in surface stress 'V. The last term (line tension N) and the gravity are negligible so that (1), in a first approximation, is reduced to the first term. The analytical model (1) predicts inclinations that are about 20% higher than the inclinations measured in the experiments. The reason for this discrepancy may be the fact that the analytical 2D model does not take the deflection of the cantilever in its width direction into account. This deflection in width direction leads to a stiffer cantilever and so to a smaller inclination. Hence a 3D simulation model with FEMLAB which considers this effect is set up. The resonance frequency of the cantilever with (fi) and without (f0) a drop is calculated from the analytical model by (Bonaccurso & Butt 2005) as

3 Excerpt from the Proceedings of the COMSOL Multiphysics User's Conference 2005 Frankfurt f0 1 2S K 0.243M H L2 E U fi 1 2S K mi 0.243M (2) Here, K is the spring constant calculated with K = EWH³/4L², L the cantilever s length, U its density and M its mass. The two equations are basically alike, but for the mass mi of the drop, which is added to the mass of the cantilever. Again this has to be considered in the 3D simulation in FEMLAB. 3 Simulation Models The experiments are divided into three parts and therewith three different simulation models. The main focus is of course on the simulation of the cantilever bending. On the other hand the determination of the resonance frequency with and without a drop on the cantilever, respectively, plays a role, too. For the simulation, 3D-FEMLAB models (structural mechanics module) were set up which take into account the cantilever geometry, the drop properties and the above mentioned forces. Fig. 2: Forces causing the deflection (left) and simulation for a cantilever with fixed left side (right). The cantilever, with given dimensions (L, W, H) and material properties (E, U and Poisson s ratio Q) is modelled as a rectangular solid in Cartesian coordinates in all three models. The left side of the cantilever is fixed (Rx, Ry, Rz = 0) and the contact area of the drop is placed as a circle on an embedded workplane at the solid (Fig. 2). Because of the critical ratio of length and width to height, the mesh in all models is scaled in z-direction with the factor Simulation of the Cantilever Bending The bending of the cantilever is simulated at discrete times, at which also the contact radius, the contact angle and the inclination were measured (compare Fig. 1). The model takes only the Laplace pressure and the normal component of the liquid surface tension into account (see (1)). The contact area is defined by the contact radius a and the middle of the drop in xdirection. In y-direction the drop s center is placed on the middle line. The Laplace pressure is defined as force per area on the contact area in negative z-direction. The three-phase contact line is represented by the border of the contact area. Here the normal component of the liquid surface tension is set as force per length in positive z-direction. For the solution process two steps of grid adaptation with a maximum of 106 cells are allowed. To evaluate the simulation, the simulated inclination of the cantilever has to be compared with the measured one. For this purpose a MATLAB routine is used which calculates the inclination between adjacent points in cantilever s length direction. Therefore a fine meshgrid of points is laid on the cantilever s top and the displacements in z-direction at these points are computed with the postinterp-command. In a last step the difference between the calculated inclinations from the free to the fixed end of the beam are summarized. If the sum of differences exceeds a defined tolerance H, the summation is stopped and the mean of the

4 inclinations from the fixed end up to this point is calculated. This way, several mean inclinations in cantilever s length direction are calculated. The simulated inclination is finally set to the mean of all determined inclinations in x-direction. 3.2 Simulation of the Resonance Frequencies The simulation of the resonance frequency of the unstressed cantilever gives above all the proof that the experiment can be simulated with satisfying results in FEMLAB. In particular the scaling of the mesh with factor 7 due to the dimension s ratio is critical and has to be revised. For this purpose the cantilever s resonance frequency with the described setup is computed without grid adaptation in the resonance frequency mode. For the validation of the model also the stressed cantilever is simulated. In this experiment the impact of the drop and the resulting initial resonance frequency is measured. Hence only the drop s mass just before the impact and the location of the impact, i.e. the x-location, are important. Instead of a spherical cap we used a cylinder with the same volume as the falling drop before the impact on the cantilever and the contact radius measured in the experiments. The Poisson s Ratio of the water drop was set to 0.25, the density to 1000 kg/m³ and the Youngs s Modulus to GPa, i.e. the Young s Modulus of rubber, so that the cantilever s stiffness is not increased through the additional mass. Again no grid adaptation is allowed. 3.3 Parameter Studies and Sensitivity Analysis For the purpose of parameter studies and sensitivity analysis the FEMLAB-models are parameterized so that the simulations can be controlled with MATLAB. Hence the cantilever s dimensions and properties, the experimental data and the forces are set as variables. In the first place the material properties of the cantilever (E,, ), but also the cantilever s height H are varied to investigate their influence on the cantilever s inclination. The aim of these studies is a verification of the underlying models for the cantilever bending due to droplet evaporation on micro and nano scales. 4 Results The simulations described in sections 3.1 and 3.2 were made for three different experiments each, i.e. there are three different evaporation sequences and three resonance frequencies, each with and without drop. The results of the parameter studies (section 3.3) are presented for one cantilever. 4.1 Simulation of the Cantilever Bending The results of the simulation are in good agreement with the experiment (see section 3). Assuming that the deflection of the cantilever can be described in a first approach by (1) we see a nearly constant error between the measured and simulated inclination for all three cantilevers. The mean error variation from +4% (Cantilever E1, cf. Fig. 3) to -12% (Cantilever E3) can be due to the measurement errors in the experiments, or to wrong material parameters (see section 4.3).

5 Fig. 3: Error between measured and simulated inclination for 2 different cantilevers 4.2 Simulation of the Resonance Frequencies The resonance frequencies for the unstressed cantilevers show very satisfying results (Tab. 1). The error between measured and simulated frequencies is only up to 1.4%. The resonance frequencies for the stressed cantilevers are not as satisfying as for the unstressed ones, but they are in the range of the experimental errors of about 10% (cf. 4.1). Tab. 1: Resonance frequencies for the stressed and unstressed cantilevers Cantilever Properties Results Drop (Cylinder) Properties Results Cantilever F_I Cantilever F_II Cantilever F_III Length [µm] Width [µm] Height [µm] Young s Modulus [GPa] Poisson s Ratio [ - ] Density [kg / m3] Unstressed Cantilevers f0_exp [Hz] f0_sim [Hz] Error [%] Stressed Cantilevers Contact Radius [µm] Height [µm] Center in x-direction [µm] Mass [kg] 1.37e e e-11 f i_exp [Hz] f i_sim [Hz] Error [%] Parameter Studies and Sensitivity Analysis With the help of the parameter studies for one cantilever, the effect of the Young s Modulus, the Poisson s Ratio, the density and the height of the cantilever are investigated. Each parameter was varied around a reference value with one higher and one lower value, respectively. Again, the change of the mean error between the measured and simulated inclination is chosen as degree of the influence of each parameter. Tab. 2 shows quantitative results, where ++ indicates a very significant increase of the mean error, + a significant increase, 0 not noticeable, - a significant decrease and --" a very significant decrease with respect to the reference.

6 Tab. 2: Results of the parameter studies Young s Modulus [GPa] Influence (reference 180) Poisson s Ratio [ - ] (reference 0.26) Density [kg / m³] (reference 2330) Cantilever Height [µm] (reference 0.89) Conclusions and Outlook The results presented in section 4 show first of all that the simulation of the bending of a cantilever due to drop evaporation on AFM-cantilevers with FEMLAB leads to better results than the analytical 2D model. The error between experiment and simulation is in the range of the experimental errors so that the simulations can serve as a basis for further studies. This is an important step towards a better understanding of physico-chemical processes, and in particular with regard to Lab-on-a-Chip-applications. With the help of the parameter studies and sensitivity analysis (see 4.3, Tab. 2) we are not only able to verify the underlying models for the cantilever bending, but we are also able to study the influence of the cantilever parameters. For example, it is very important to know the exact height and Young s Modulus of the cantilevers because they influence the bending very distinctly. Only if all parameters are determined correctly, the simulations can describe the experiments correctly. The next step will be to study the influence of other parameters and of the forces neglected so far, especially the change in surface stress. It is already known that Young s equation is not valid for small drop diameters, but up to now there are no secure statements about its behaviour. We are confident to be able to make statements about the Young s equation with the help of parameter studies combined with optimization. Perhaps we are also able to explain a negative bending of the cantilever at the end of the evaporation process noticed in the experiments with a better understanding of the Young equation. Literature Bonaccurso, E.; Butt, H.-J. (2005) Microdrops on Atomic Force Microscope Cantilevers: Evaporation of Water and Spring Constant Calibration, J. Phys. Chem. B, 2005, 109, Cµ, Center for Micro- and Nanochemistry and Engineering (2002) Integrated Multidisciplinary Research Institute, University of Siegen, Cordeiro, M.; Pakula, T. (2005) Behavior of Evaporating Droplets at Nonsoluble and Soluble Surfaces: Modelling with Molecular Research, J. Phys. Chem. B, 2005, 109, Deegan, R.D.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A. (1997) Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops, Nature 389, 6653 Erbil, H.Y.; McHale, G.; Newton, M.I. (2002) Drop Evaporation on Solid Surfaces: Constant Contact Angle Mode, Langmuir 2002, 18, Hu, H.; Larson, R.G. (2002) Evaporation of a Sessile Drop on a Substrate, J. Phys. Chem. B, 2002, 106, Nano, Nano- and Microfluidics (2002), DFG Priority Programm 1164, Nguyen, V.X.; Stebe, K.J. (2002) Patterning of Small Particles by a Surfactant-Enhanced Marangoni- Bénard Instability, Physical Review Letters, Vol. 88, No. 16, April 2002 Shmuylovich, L.; Shen, A.Q.; Stone, H.A. (2002) Surface Morphology of Drying Latex Films: Multiple Ring Formation, Langmuir 2002, 18, Stupperich-Sequeira, C.; Butt, H.-J.; Graf, K.; Wiechert, W. (2005) Modelling of Microwell Formation, MCMDS, in press

Design and Analysis of Various Microcantilever Shapes for MEMS Based Sensing

Design and Analysis of Various Microcantilever Shapes for MEMS Based Sensing ScieTech 014 Journal of Physics: Conference Series 495 (014) 01045 doi:10.1088/174-6596/495/1/01045 Design and Analysis of Various Microcantilever Shapes for MEMS Based Sensing H. F. Hawari, Y. Wahab,

More information

Leandra Boucheron Shpyrko Research Group July 19, 2012

Leandra Boucheron Shpyrko Research Group July 19, 2012 Leandra Boucheron Shpyrko Research Group July 19, 2012 Outline Introduction How and Why do Coffee Rings Form? Manipulating Coffee Rings Reversing the Effect Particle Shape and Size Other Factors Conclusion

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 16: Energy

More information

Supplementary Information. In colloidal drop drying processes, multi-ring depositions are formed due to the stick-slip

Supplementary Information. In colloidal drop drying processes, multi-ring depositions are formed due to the stick-slip Electronic Supplementary Material (ESI for Soft Matter. This journal is The Royal Society of Chemistry 14 Supplementary Information A1. Contact line receding velocity of an evaporating drop In colloidal

More information

Supplementary Information. for

Supplementary Information. for Supplementary Information for Discrete Element Model for Suppression of Coffee-Ring Effect Ting Xu, 1 Miu Ling Lam, 2,3,4 and Ting-Hsuan Chen 1,2,3,4 1 Department of Mechanical and Biomedical Engineering,

More information

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2016 C. NGUYEN PROBLEM SET #4

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2016 C. NGUYEN PROBLEM SET #4 Issued: Wednesday, March 4, 2016 PROBLEM SET #4 Due: Monday, March 14, 2016, 8:00 a.m. in the EE C247B homework box near 125 Cory. 1. This problem considers bending of a simple cantilever and several methods

More information

PRACTICE 2 PROYECTO Y CONSTRUCCIÓN DE PUENTES. 1º Máster Ingeniería de Caminos. E.T.S.I. Caminos, canales y puertos (Ciudad Real) 01/06/2016

PRACTICE 2 PROYECTO Y CONSTRUCCIÓN DE PUENTES. 1º Máster Ingeniería de Caminos. E.T.S.I. Caminos, canales y puertos (Ciudad Real) 01/06/2016 PRACTICE 2 PROYECTO Y CONSTRUCCIÓN DE PUENTES 1º Máster Ingeniería de Caminos E.T.S.I. Caminos, canales y puertos (Ciudad Real) 01/06/2016 AUTHOR: CONTENT 1. INTRODUCTION... 3 2. BRIDGE GEOMETRY AND MATERIAL...

More information

Supplemental Material for Monolithic Multilayer Microfluidics via Sacrificial Molding of 3D- Printed Isomalt. M. K. Gelber and R.

Supplemental Material for Monolithic Multilayer Microfluidics via Sacrificial Molding of 3D- Printed Isomalt. M. K. Gelber and R. Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2015 Supplemental Material for Monolithic Multilayer Microfluidics via Sacrificial Molding of 3D-

More information

EFFECTIVE SIMULATION APPROACH FOR STUDY OF CARBON NANOTUBE MECHANICAL PROPERTIES

EFFECTIVE SIMULATION APPROACH FOR STUDY OF CARBON NANOTUBE MECHANICAL PROPERTIES Oct 14 th 16 th 015, Brno, Czech Republic, EU EFFECTIVE SIMULATION APPROACH FOR STUDY OF CARBON NANOTUBE MECHANICAL PROPERTIES SVATOŠ Vojtěch *1,, NEUŽIL Pavel 1,, HRSTKA Miroslav 3, HUBÁLEK Jaromír 1,

More information

Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy

Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy Author Watson, Gregory, Watson, Jolanta Published 008 Journal

More information

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 C. Nguyen PROBLEM SET #4

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 C. Nguyen PROBLEM SET #4 Issued: Wednesday, Mar. 5, 2014 PROBLEM SET #4 Due (at 9 a.m.): Tuesday Mar. 18, 2014, in the EE C247B HW box near 125 Cory. 1. Suppose you would like to fabricate the suspended cross beam structure below

More information

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS).

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). Lab Director: Coordinating Staff: Mr. Muhammad Farooq (Lecturer) Mr. Liaquat Qureshi (Lab Supervisor)

More information

Finite Element Analysis of Piezoelectric Cantilever

Finite Element Analysis of Piezoelectric Cantilever Finite Element Analysis of Piezoelectric Cantilever Nitin N More Department of Mechanical Engineering K.L.E S College of Engineering and Technology, Belgaum, Karnataka, India. Abstract- Energy (or power)

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2010

EE C245 ME C218 Introduction to MEMS Design Fall 2010 EE C245 ME C218 Introduction to MEMS Design Fall 2010 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:

More information

Mechanics of Microstructures

Mechanics of Microstructures Mechanics of Microstructures Topics Plane Stress in MEMS Thin film Residual Stress Effects of Residual Stress Reference: Stephen D. Senturia, Microsystem Design, Kluwer Academic Publishers, January 200.

More information

Evaporation of a thin droplet on a thin substrate with a high thermal resistance. Abstract

Evaporation of a thin droplet on a thin substrate with a high thermal resistance. Abstract Evaporation of a thin droplet on a thin substrate with a high thermal resistance G. J. Dunn, S. K. Wilson, B. R. Duffy and K. Sefiane Department of Mathematics, University of Strathclyde, Livingstone Tower,

More information

Revealing bending and force in a soft body through a plant root inspired. approach. Lucia Beccai 1* Piaggio 34, Pontedera (Italy)

Revealing bending and force in a soft body through a plant root inspired. approach. Lucia Beccai 1* Piaggio 34, Pontedera (Italy) Revealing bending and force in a soft body through a plant root inspired approach Chiara Lucarotti 1,2, Massimo Totaro 1, Ali Sadeghi 1, Barbara Mazzolai 1, Lucia Beccai 1* 1 Center for Micro-BioRobotics

More information

nano-ta: Nano Thermal Analysis

nano-ta: Nano Thermal Analysis nano-ta: Nano Thermal Analysis Application Note #1 Failure Analysis - Identification of Particles in a Polymer Film Author: David Grandy Ph.D. Introduction Nano-TA is a local thermal analysis technique

More information

Courtesy: Images on the internet

Courtesy: Images on the internet Courtesy: Images on the internet Focus: Physics of Blowing Bubbles February 19, 2016 Physics 9, 21 Using a bubble-blowing apparatus, researchers developed a model that explains the effects of several factors,

More information

Bending Load & Calibration Module

Bending Load & Calibration Module Bending Load & Calibration Module Objectives After completing this module, students shall be able to: 1) Conduct laboratory work to validate beam bending stress equations. 2) Develop an understanding of

More information

Energy Considerations

Energy Considerations Physics 42200 Waves & Oscillations Lecture 4 French, Chapter 3 Spring 2016 Semester Matthew Jones Energy Considerations The force in Hooke s law is = Potential energy can be used to describe conservative

More information

Physics 8 Wednesday, November 29, 2017

Physics 8 Wednesday, November 29, 2017 Physics 8 Wednesday, November 29, 2017 HW11 due this Friday, Dec 1. After another day or two on beams, our last topic of the semester will be oscillations (a.k.a. vibration, periodic motion). Toward that

More information

On the Effect of an Atmosphere of Nitrogen on the Evaporation of Sessile Droplets of Water

On the Effect of an Atmosphere of Nitrogen on the Evaporation of Sessile Droplets of Water On the Effect of an Atmosphere of Nitrogen on the Evaporation of Sessile Droplets of Water S. K. Wilson 1, K. Sefiane 2, S. David 2, G. J. Dunn 1 and B. R. Duffy 1 1 Department of Mathematics, University

More information

Analysis of contact deformation between a coated flat plate and a sphere and its practical application

Analysis of contact deformation between a coated flat plate and a sphere and its practical application Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics VII 307 Analysis of contact deformation between a coated flat plate and a sphere and its practical application T.

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 ecture 15: Beam

More information

ENGI Multiple Integration Page 8-01

ENGI Multiple Integration Page 8-01 ENGI 345 8. Multiple Integration Page 8-01 8. Multiple Integration This chapter provides only a very brief introduction to the major topic of multiple integration. Uses of multiple integration include

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

Members Subjected to Torsional Loads

Members Subjected to Torsional Loads Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular

More information

9 MECHANICAL PROPERTIES OF SOLIDS

9 MECHANICAL PROPERTIES OF SOLIDS 9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body

More information

Aggregation Kinetics of Colloidal Nanoparticles in a Circulating Microfluidic Cavity

Aggregation Kinetics of Colloidal Nanoparticles in a Circulating Microfluidic Cavity Aggregation Kinetics of Colloidal Nanoparticles in a Circulating Microfluidic Cavity M. R. Barmi 1, B. D. Piorek 1, M. Moskovits 2, C. D. Meinhart 1* 1 Department of Mechanical Engineering, University

More information

Evaporation of Sessile Microdrops studied with Microcantilevers

Evaporation of Sessile Microdrops studied with Microcantilevers Evaporation of Sessile Microdrops studied with Microcantilevers DISSERTATION zur Erlangung des Grades "Doktor der Naturwissenschaften" im Promotionsfach Physikalische Chemie am Fachbereich Chemie, Pharmazie

More information

Phase Separation gives Rise to Nanoparticle Ring Formation

Phase Separation gives Rise to Nanoparticle Ring Formation Phase Separation gives Rise to Nanoparticle Ring Formation L. V. Govor, J. Parisi, and G. H. Bauer Department of Physics, University of Oldenburg, D-26111 Oldenburg, Germany Reprint requests to Dr. L.

More information

EE 5344 Introduction to MEMS CHAPTER 6 Mechanical Sensors. 1. Position Displacement x, θ 2. Velocity, speed Kinematic

EE 5344 Introduction to MEMS CHAPTER 6 Mechanical Sensors. 1. Position Displacement x, θ 2. Velocity, speed Kinematic I. Mechanical Measurands: 1. Classification of main types: EE 5344 Introduction MEMS CHAPTER 6 Mechanical Sensors 1. Position Displacement x, θ. Velocity, speed Kinematic dx dθ v =, = ω 3. Acceleration

More information

Determining the Elastic Modulus and Hardness of an Ultrathin Film on a Substrate Using Nanoindentation

Determining the Elastic Modulus and Hardness of an Ultrathin Film on a Substrate Using Nanoindentation Determining the Elastic Modulus and Hardness of an Ultrathin Film on a Substrate Using Nanoindentation The Harvard community has made this article openly available. Please share how this access benefits

More information

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

More information

Impacts of Electroosmosis Forces on Surface-Tension- Driven Micro-Pumps

Impacts of Electroosmosis Forces on Surface-Tension- Driven Micro-Pumps Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015) Barcelona, Spain July 20-21, 2015 Paper No. 290 Impacts of Electroosmosis Forces on Surface-Tension- Driven

More information

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements

More information

Design And Analysis of Microcantilevers Type Sensor With Different Shape of Piezoresistive Patch

Design And Analysis of Microcantilevers Type Sensor With Different Shape of Piezoresistive Patch Aakash Swami, Pulkit Agarwal 45 Design And Analysis of Microcantilevers Type Sensor With Different Shape of Piezoresistive Patch Aakash Swami and Pulkit Agarwal Student MNNIT Allahabad Email:aakashswami7@gmail.com

More information

Design And Analysis of Microcantilevers With Various Shapes Using COMSOL Multiphysics Software

Design And Analysis of Microcantilevers With Various Shapes Using COMSOL Multiphysics Software Design And Analysis of Microcantilevers With Various Shapes Using COMSOL Multiphysics Software V. Mounika Reddy 1, G.V.Sunil Kumar 2 1,2 Department of Electronics and Instrumentation Engineering, Sree

More information

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

PHY 481/581. Some classical/quantum physics for the nanometer length scale.

PHY 481/581. Some classical/quantum physics for the nanometer length scale. PHY 481/581 Some classical/quantum physics for the nanometer length scale http://creativecommons.org/licenses/by-nc-sa/3.0/ 1 What is nano-science? the science of materials whose properties scale with

More information

PES Institute of Technology

PES Institute of Technology PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

More information

The aims of this experiment were to obtain values for Young s modulus and Poisson s ratio for

The aims of this experiment were to obtain values for Young s modulus and Poisson s ratio for The Cornu Method Nikki Truss 09369481 Abstract: The aims of this experiment were to obtain values for Young s modulus and Poisson s ratio for Perspex using the Cornu Method. A value of was found for Young

More information

Chapter 3 Entropy elasticity (rubbery materials) Review basic thermal physics Chapter 5.1 to 5.5 (Nelson)

Chapter 3 Entropy elasticity (rubbery materials) Review basic thermal physics Chapter 5.1 to 5.5 (Nelson) Chapter 3 Entropy elasticity (rubbery materials) Review basic thermal physics Chapter 5.1 to 5.5 (Nelson) Outline: 3.1 Strain, stress and Young modulus 3. Energy density 3.3 Typical stress-strain curve

More information

Application of Finite Element Method to Create Animated Simulation of Beam Analysis for the Course of Mechanics of Materials

Application of Finite Element Method to Create Animated Simulation of Beam Analysis for the Course of Mechanics of Materials International Conference on Engineering Education and Research "Progress Through Partnership" 4 VSB-TUO, Ostrava, ISSN 156-35 Application of Finite Element Method to Create Animated Simulation of Beam

More information

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

More information

drops in motion Frieder Mugele the physics of electrowetting and its applications Physics of Complex Fluids University of Twente

drops in motion Frieder Mugele the physics of electrowetting and its applications Physics of Complex Fluids University of Twente drops in motion the physics of electrowetting and its applications Frieder Mugele Physics of Complex Fluids niversity of Twente 1 electrowetting: the switch on the wettability voltage outline q q q q q

More information

MECH 466. Micro Electromechanical Systems. Laboratory Manual Laboratory #3: Stiction of MEMS and Strength of MEMS Materials

MECH 466. Micro Electromechanical Systems. Laboratory Manual Laboratory #3: Stiction of MEMS and Strength of MEMS Materials MECH 466 Micro Electromechanical Systems Laboratory Manual Laboratory #: Stiction of MEMS and Strength of MEMS Materials Department of Mechanical Engineering, University of Victoria N. Dechev, 2011, University

More information

2012 MECHANICS OF SOLIDS

2012 MECHANICS OF SOLIDS R10 SET - 1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~

More information

PHYS 100 (from 221) Newton s Laws Week8. Exploring the Meaning of Equations

PHYS 100 (from 221) Newton s Laws Week8. Exploring the Meaning of Equations Exploring the Meaning of Equations Exploring the meaning of the relevant ideas and equations introduced recently. This week we ll focus mostly on Newton s second and third laws: Kinematics describes the

More information

Pattern Collapse. T h e L i t h o g r a p h y E x p e r t (November 2006) Chris A. Mack, Austin, Texas

Pattern Collapse. T h e L i t h o g r a p h y E x p e r t (November 2006) Chris A. Mack, Austin, Texas Tutor55.doc: Version 8/10/06 T h e L i t h o g r a p h y E x p e r t (November 2006) Pattern Collapse Chris A. Mack, Austin, Texas Not long ago, defining what an acceptable resist profile looked like was

More information

SF016: PAST YEAR PSPM QUESTIONS

SF016: PAST YEAR PSPM QUESTIONS GRAPH QUESTIONS PSPM I 005/006 NO. 9 9. An experiment was carried out to determine the Young s modulus of a metal wire of length 3.0 and diameter 0.8. A vernier scale was used to measure its extension.

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 30-35,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor

More information

Instabilities in the Flow of Thin Liquid Films

Instabilities in the Flow of Thin Liquid Films Instabilities in the Flow of Thin Liquid Films Lou Kondic Department of Mathematical Sciences Center for Applied Mathematics and Statistics New Jersey Institute of Technology Presented at Annual Meeting

More information

3.032 Problem Set 1 Fall 2007 Due: Start of Lecture,

3.032 Problem Set 1 Fall 2007 Due: Start of Lecture, 3.032 Problem Set 1 Fall 2007 Due: Start of Lecture, 09.14.07 1. The I35 bridge in Minneapolis collapsed in Summer 2007. The failure apparently occurred at a pin in the gusset plate of the truss supporting

More information

Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground

Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground To cite this article: Jozef Vlek and Veronika

More information

1 Introduction to shells

1 Introduction to shells 1 Introduction to shells Transparent Shells. Form, Topology, Structure. 1. Edition. Hans Schober. 2016 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG Z = p R 1 Introduction to

More information

Protrusion Force Microscopy

Protrusion Force Microscopy Protrusion Force Microscopy A. Bouissou & R. Poincloux IPBS, Toulouse A. Labernadie, A. Proag, G. Charrière, I. Maridonneau-Parini IPBS, Toulouse P. Delobelle Femto, Besançon T. Mangeat LBCMCP, Toulouse

More information

AERO 214. Lab II. Measurement of elastic moduli using bending of beams and torsion of bars

AERO 214. Lab II. Measurement of elastic moduli using bending of beams and torsion of bars AERO 214 Lab II. Measurement of elastic moduli using bending of beams and torsion of bars BENDING EXPERIMENT Introduction Flexural properties of materials are of interest to engineers in many different

More information

FEM-SIMULATIONS OF VIBRATIONS AND RESONANCES OF STIFF AFM CANTILEVERS

FEM-SIMULATIONS OF VIBRATIONS AND RESONANCES OF STIFF AFM CANTILEVERS FEM-SIMULATIONS OF VIBRATIONS AND RESONANCES OF STIFF AFM CANTILEVERS Kai GENG, Ute RABE, Sigrun HIRSEKORN Fraunhofer Institute for Nondestructive Testing (IZFP); Saarbrücken, Germany Phone: +49 681 9302

More information

Microstructure cantilever beam for current measurement

Microstructure cantilever beam for current measurement 264 South African Journal of Science 105 July/August 2009 Research Articles Microstructure cantilever beam for current measurement HAB Mustafa and MTE Khan* Most microelectromechanical systems (MEMS) sensors

More information

SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO

SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO Half-Yearly Exam 2013 Subject: Physics Level: Advanced Time: 3hrs Name: Course: Year: 1st This paper carries 200 marks which are 80% of

More information

Interface Location of Capillary Driven Flow in Circular Micro Channel Using by COMSOL

Interface Location of Capillary Driven Flow in Circular Micro Channel Using by COMSOL Interface Location of Capillary Driven Flow in Circular Micro Channel Using by COMSOL ARSHYA BAMSHAD 1, MOHAMMAD H. SABOUR 2, ALIREZA NIKFARJAM 3 Faculty of New Sciences & Technologies University of Tehran

More information

Supporting Information

Supporting Information Supporting Information Thickness of suspended epitaxial graphene (SEG) resonators: Graphene thickness was estimated using an atomic force microscope (AFM) by going over the step edge from SiC to graphene.

More information

SSNL141 beams multifibre and multimatériaux

SSNL141 beams multifibre and multimatériaux Titre : SSNL141 - poutres multifibres et multimatériaux Date : 04/04/2013 Page : 1/7 SSNL141 beams multifibre and multimatériaux Abstract: The purpose of this test is to validate the use of multimatériaux

More information

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Sensor devices Outline 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Introduction Two Major classes of mechanical

More information

Supplementary Figures

Supplementary Figures Fracture Strength (GPa) Supplementary Figures a b 10 R=0.88 mm 1 0.1 Gordon et al Zhu et al Tang et al im et al 5 7 6 4 This work 5 50 500 Si Nanowire Diameter (nm) Supplementary Figure 1: (a) TEM image

More information

Lecture Note October 1, 2009 Nanostructure characterization techniques

Lecture Note October 1, 2009 Nanostructure characterization techniques Lecture Note October 1, 29 Nanostructure characterization techniques UT-Austin PHYS 392 T, unique # 5977 ME 397 unique # 1979 CHE 384, unique # 151 Instructor: Professor C.K. Shih Subjects: Applications

More information

SENSOR DEVICES MECHANICAL SENSORS

SENSOR DEVICES MECHANICAL SENSORS SENSOR DEVICES MECHANICAL SENSORS OUTLINE 4 Mechanical Sensors Introduction General mechanical properties Piezoresistivity Piezoresistive sensors Capacitive sensors Applications INTRODUCTION MECHANICAL

More information

202 Index. failure, 26 field equation, 122 force, 1

202 Index. failure, 26 field equation, 122 force, 1 Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic

More information

Load Cell Design Using COMSOL Multiphysics

Load Cell Design Using COMSOL Multiphysics Load Cell Design Using COMSOL Multiphysics Andrei Marchidan, Tarah N. Sullivan and Joseph L. Palladino Department of Engineering, Trinity College, Hartford, CT 06106, USA joseph.palladino@trincoll.edu

More information

AN EFFECTIVE SOLUTION OF THE COMPOSITE (FGM S) BEAM STRUCTURES

AN EFFECTIVE SOLUTION OF THE COMPOSITE (FGM S) BEAM STRUCTURES Engineering MECHANICS, Vol. 15, 2008, No. 2, p. 115 132 115 AN EFFECTIVE SOLUTION OF THE COMPOSITE (FGM S) BEAM STRUCTURES Justín Murín, Vladimír Kutiš* The additive mixture rules have been extended for

More information

( m/s) 2 4(4.9 m/s 2 )( 52.7 m)

( m/s) 2 4(4.9 m/s 2 )( 52.7 m) Version 072 idterm 2 OConnor (05141) 1 This print-out should have 18 questions ultiple-choice questions may continue on the next column or page find all choices before answering V1:1, V2:1, V3:3, V4:5,

More information

( m/s) 2 4(4.9 m/s 2 )( 53.2 m)

( m/s) 2 4(4.9 m/s 2 )( 53.2 m) Version 074 idterm 2 OConnor (05141) 1 This print-out should have 18 questions ultiple-choice questions may continue on the next column or page find all choices before answering V1:1, V2:1, V3:3, V4:5,

More information

Physics 201 Midterm Exam 3

Physics 201 Midterm Exam 3 Name: Date: _ Physics 201 Midterm Exam 3 Information and Instructions Student ID Number: Section Number: TA Name: Please fill in all the information above Please write and bubble your Name and Student

More information

Parametric Investigation of the Common Geometry Shapes for Added Mass Calculation

Parametric Investigation of the Common Geometry Shapes for Added Mass Calculation Parametric Investigation of the Common Geometry Shapes for Added Mass Calculation Afsoun Koushesh* and Jin Lee Department of Mechanical Engineering, American University of Sharjah, Sharjah, UAE *Corresponding

More information

How Does a Microcantilever Work?

How Does a Microcantilever Work? How Does a Cantilever Work? Participant Guide Description and Estimated Time to Complete The microcantilever is a widely used component in microsystems devices or microelectromechanical systems (MEMS).

More information

9-11 April 2008 Measurement of Large Forces and Deflections in Microstructures

9-11 April 2008 Measurement of Large Forces and Deflections in Microstructures 9-11 April 28 Measurement of Large Forces and Deflections in Microstructures Kai Axel Hals 1, Einar Halvorsen, and Xuyuan Chen Institute for Microsystem Technology, Vestfold University College, P.O. Box

More information

Bending Stress. Sign convention. Centroid of an area

Bending Stress. Sign convention. Centroid of an area Bending Stress Sign convention The positive shear force and bending moments are as shown in the figure. Centroid of an area Figure 40: Sign convention followed. If the area can be divided into n parts

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

2 marks Questions and Answers

2 marks Questions and Answers 1. Define the term strain energy. A: Strain Energy of the elastic body is defined as the internal work done by the external load in deforming or straining the body. 2. Define the terms: Resilience and

More information

Longitudinal buckling of slender pressurised tubes

Longitudinal buckling of slender pressurised tubes Fluid Structure Interaction VII 133 Longitudinal buckling of slender pressurised tubes S. Syngellakis Wesse Institute of Technology, UK Abstract This paper is concerned with Euler buckling of long slender

More information

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

More information

Application of nanoindentation technique to extract properties of thin films through experimental and numerical analysis

Application of nanoindentation technique to extract properties of thin films through experimental and numerical analysis Materials Science-Poland, Vol. 28, No. 3, 2010 Application of nanoindentation technique to extract properties of thin films through experimental and numerical analysis A. WYMYSŁOWSKI 1*, Ł. DOWHAŃ 1, O.

More information

MODELING OF T-SHAPED MICROCANTILEVER RESONATORS. Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Cané

MODELING OF T-SHAPED MICROCANTILEVER RESONATORS. Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Cané Stresa, Italy, 5-7 April 007 MODELING OF T-SHAPED MICROCANTILEVER RESONATORS Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Centro Nacional de Microelectrónica

More information

A Simple Weak-Field Coupling Benchmark Test of the Electromagnetic-Thermal-Structural Solution Capabilities of LS-DYNA Using Parallel Current Wires

A Simple Weak-Field Coupling Benchmark Test of the Electromagnetic-Thermal-Structural Solution Capabilities of LS-DYNA Using Parallel Current Wires 13 th International LS-DYNA Users Conference Session: Electromagnetic A Simple Weak-Field Coupling Benchmark Test of the Electromagnetic-Thermal-Structural Solution Capabilities of LS-DYNA Using Parallel

More information

ME 323 Examination #2 April 11, 2018

ME 323 Examination #2 April 11, 2018 ME 2 Eamination #2 April, 2 PROBLEM NO. 25 points ma. A thin-walled pressure vessel is fabricated b welding together two, open-ended stainless-steel vessels along a 6 weld line. The welded vessel has an

More information

ME 475 Modal Analysis of a Tapered Beam

ME 475 Modal Analysis of a Tapered Beam ME 475 Modal Analysis of a Tapered Beam Objectives: 1. To find the natural frequencies and mode shapes of a tapered beam using FEA.. To compare the FE solution to analytical solutions of the vibratory

More information

Learning Objectives By the end of this section, the student should be able to:

Learning Objectives By the end of this section, the student should be able to: Mechanics of Materials stress and strain flexural l beam bending analysis under simple loading conditions EECE 300 011 1 Learning Objectives By the end of this section, the student should be able to: describe

More information

arxiv: v2 [cond-mat.soft] 9 Oct 2014

arxiv: v2 [cond-mat.soft] 9 Oct 2014 Evaporative Deposition in Receding Drops Julian Freed-Brown Received Xth XXXXXXXXXX 2XX, Accepted Xth XXXXXXXXX 2XX First published on the web Xth XXXXXXXXXX 2X DOI: 1.139/bx arxiv:141.639v2 [cond-mat.soft]

More information

Design and Simulation of Various Shapes of Cantilever for Piezoelectric Power Generator by Using Comsol

Design and Simulation of Various Shapes of Cantilever for Piezoelectric Power Generator by Using Comsol Design and Simulation of Various Shapes of Cantilever for Piezoelectric Power Generator by Using Comsol P. Graak 1, A. Gupta 1, S. Kaur 1, P. Chhabra *1, D. Kumar **1, A. Shetty 2 1 Electronic Science

More information

Design and Simulation of Micro-cantilever

Design and Simulation of Micro-cantilever Design and Simulation of Micro-cantilever Suresh Rijal 1, C.K.Thadani 2, C.K.Kurve 3,Shrikant Chamlate 4 1 Electronics Engg.Dept.,KITS,Ramtek, 2 Electronics and Comn.Engg.Dept.,KITS,Ramtek, 3 Electronics

More information

3. Overview of MSC/NASTRAN

3. Overview of MSC/NASTRAN 3. Overview of MSC/NASTRAN MSC/NASTRAN is a general purpose finite element analysis program used in the field of static, dynamic, nonlinear, thermal, and optimization and is a FORTRAN program containing

More information

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 5, Supp, Pages 85 92 c 2008 Institute for Scientific Computing and Information PHYSICS OF FLUID SPREADING ON ROUGH SURFACES K. M. HAY AND

More information

MEMS Mechanical Fundamentals

MEMS Mechanical Fundamentals ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MEMS Mechanical Fundamentals Dr. Lynn Fuller webpage: http://people.rit.edu/lffeee Electrical and Microelectronic Engineering Rochester Institute

More information

Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems

Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems Introduction Till now we dealt only with finite elements having straight edges.

More information

Aggregation Patterns of Salt Crystalizing in Drying Colloidal Solvents

Aggregation Patterns of Salt Crystalizing in Drying Colloidal Solvents Aggregation Patterns of Salt Crystalizing in Drying Colloidal Solvents Moutushi Dutta Choudhury a, Sayanee Jana a, Sruti Dutta a and Sujata Tarafdar a* a Condensed Matter Physics Research Centre, Physics

More information

Atomic Force Microscopy imaging and beyond

Atomic Force Microscopy imaging and beyond Atomic Force Microscopy imaging and beyond Arif Mumtaz Magnetism and Magnetic Materials Group Department of Physics, QAU Coworkers: Prof. Dr. S.K.Hasanain M. Tariq Khan Alam Imaging and beyond Scanning

More information