Appendix B: Multivariable Calculus

Size: px
Start display at page:

Download "Appendix B: Multivariable Calculus"

Transcription

1 Chapter 9 Appendix B: Multivariable Calculus 9.1 Basic Theorems of Multivariable Calculus The Euclidean spacer n is the set of n-tuples x=(x 1,..., x n )=(x i ), i= 1,...,n. The standard basis inr n is the set of vectors e i = (0,...,1,...,0) Let f : U Rbe a real valued function. The partial derivative of f at a point x with respect to x i is defined by f 1 = lim x i t 0 t [ f (x+te i) f (x)] It will be denoted by i f= f x i A function f is smooth if it has continuous partial derivatives of any order. The set of smooth functions is denoted by C (R n ). The composition of smooth functions is smooth. 227

2 228 CHAPTER 9. APPENDIX B: MULTIVARIABLE CALCULUS Let F :R n R m be a map (vector-valued function), whereµ=(1,...,m). x y=f(x)=(f 1 (x),..., F m (x))=(f µ (x)), The map F is smooth if every component F µ is smooth. The derivative DF of F at x is the m n matrix of partial derivatives called the Jacobian matrix ( ) F µ DF=. x i Chain Rule. Let F :R n R m and G :R m R k be two smooth maps. The Jacobian matrix of the composition H= G F is equal to the product of the Jacobian matrices D(G F)=DGDF. Let us denoted the coordinates ofr n,r m,r k by x i, y µ, z a respectively with i=1,...,n;µ=1,...,m; a=1,...,k, so that y=f(x), z=h(y)=g(f(x)) Then z a x i = m µ=1 z a y µ y µ x i If n=m, the determinant of the Jacobian matrix ( ) F j det DF= det x i is called the Jacobian. Let U, V R n be two open sets and F : U V be a homeomorphism. The map F is called a diffeomorphism if both F and F 1 are smooth. Inverse Function Theorem. Let F : R n R n be a smooth map. Let a R n be a point such that the Jacobian matrix DF(a) is non-degenerate at a. Then: diffgeom.tex; January 18, 2018; 9:43; p. 224

3 9.1. BASIC THEOREMS OF MULTIVARIABLE CALCULUS there exists a neighborhood U of the point a such that the set V= F(U) is open and the map F : U V has a smooth inverse F 1 : V U (that is, F is a diffeomorphism), 2. for any point x U where x=f 1 (y). (DF 1 )(y)=(df(x)) 1, Implicit Function Theorem. Let F :R r R m R m be a smooth map. Let D y F and D x F be matrices defined by ( ) ( ) F µ (x, y) F µ (x, y) D y F=, D y ν x F=, x i whereµ,ν=1,...m; i=1,...,r. Let c R m be a point inr m and W be the set of points inr r R m defined by W= F 1 (c)={(x, y) R r R m F(x, y)=c} Suppose that the set W is non-empty. Let (a, b) be a point in W, that is, F(a, b)=c, such that the matrix D y F(a, b) is not degenerate at (a, b). Then: 1. there is a neighborhood U R r of the point a and a neighborhood V R m of the point b and a unique smoth map G : U V, such that V= G(U) and for any x U, (x, G(x)) W. 2. For any point x U, D x G= (D y F) 1 D x F. Proof. By the inverse function theorem one can invert (locally) the map (with fixed x) z=f(x, y) to express the coordinates y µ in terms of the coordinates z µ, By fixing z=cwe get the map y= G(x, z). x y=g(x)= G(x, c). diffgeom.tex; January 18, 2018; 9:43; p. 225

4 230 CHAPTER 9. APPENDIX B: MULTIVARIABLE CALCULUS 9.2 Coordinates The Euclidean spacer n is the set of points x represented by n-tuples (x i )= (x 1,..., x n ), with the numbers x i called coordinates of the point x. We may introduce the coordinate functions ϕ i (x)= x i that assign the coordinates to the points. They provide a coordinate system onr n. Example. Unit sphere S 2. 3 S 2 = x R3 (x i ) 2 = 1 Problem: how to describe points on S 2? There is no single coordinate system that adequately describes S 2. i=1 One needs at least two coordinate systems. Coordinates on S 2 are described by the coordinate map ϕ :R 3 R 2 Let the sphere S 2 be centered at the origin with the north pole (0, 0, 1). Spherical coordinates are described by the coordinate map ϕ 1 (x)=θ, ϕ 2 (x)=ϕ. These coordinates are bad at both poles. Need to rotate them. Stereographic coordinates (with respect to the North (South) pole) are described by the coordinate map or where u 1 = x1 1 r, u2 = x2 1 r, v 1 = x1 1+r, v2 = x2 1+r, r= 1 (x 1 ) 2 (x 2 ) 2. diffgeom.tex; January 18, 2018; 9:43; p. 226

5 9.3. SMOOTH MAPS 231 Coordinate systems are not unique. The change of coordinates is admissible if the corresponding map is a diffeomorphism, that is, has a non-zero Jacobian. Exercises: Compute the Jacobian for the change of coordinates 1. The change from the spherical to the stereographic coordinates is given by the map u 1 = cosϕsinθ 1 cosθ = cotθ 2 cosϕ, u2 = sinϕsinθ 1 cosθ = cotθ 2 sinϕ,. 2. The change from the North pole to the South pole stereographic coordinates is given by where v 1 = u1 R 2, v2 = u2 R 2, R= (u 1 ) 2 + (u 2 ) Smooth Maps Let f : M R be a function. Let p be a point and (U,ϕ) be a chart containing p. This defines a real valued function of several variables f=f ϕ 1 :ϕ(u) R called the local representation of the function f in the cordinate chart (U,ϕ). Usually we just use the same symbol to denote it. A function f is smooth if its local representation is smooth. Let F : M N be smap between two manifolds. Let n = dim M and m = dim N. Let p M be a point in M and (U,ϕ) be a chart in M containing p. diffgeom.tex; January 18, 2018; 9:43; p. 227

6 232 CHAPTER 9. APPENDIX B: MULTIVARIABLE CALCULUS Let (V,ψ) be the chart on N containing the point F(p) as well as the set F(U). The local representation of the map F is given by the m-vector valued function of n variables F=ψ F ϕ 1 :ϕ(u) ψ(v) Let x i, i=1,...,n, be local coordinates in U and y µ,µ=1,...,m, be local coordinates in V. Then y µ = F µ (x). Again, to simplify notation we just denote this local representative by F. The map F is smooth if all its local representatives are smooth. The map F is called an immersion at a point p M if n=dim M m=dim N and the Jacobian matrix DF(p) at p has the maximal rank, rank DF(p)=n. The manifold M is called an immersed submanifold of the manifold N if the map F is an immersion at every point p M. In this case the image F(M) can be equipped by local coordinates by the inverse function theorem. The image F(M) of an immersed submanifold can have self-intersections. The map F is called an submersion at a point p M if n=dim M m=dim N and the Jacobian matrix DF(p) at p has the maximal rank, rank DF(p)=m. diffgeom.tex; January 18, 2018; 9:43; p. 228

7 9.3. SMOOTH MAPS 233 The map F is called an embeding if it is an injective immersion and the map F : M F(M) is a homeomorphism. The manifold M is called an embedded submanifold if the map F is an embedding. The image F(M) of an embedded submanifold does not have any selfintersections. Whitney Embedding Theorem. 1. Any n-dimensional topological manifold can be embedded inr 2n Any n-dimensional smooth manifold can be embedded inr 2n. Example. Klein Bottle K 2 cannot be embedded inr 3. Let M and N be two manifolds with Let F : M Nbe a smooth map. n=dim M m=dim N. A point p M is called a regular point of the map F if the Jacobian DF at p has the maximal rank (that is, F is a submersion at p ) rank DF(p)=m and a critical point if rank DF(p)<m. A point q Nis called a regular value of the map F if the inverse image F 1 (q) is either empty or every point p in the inverse image F 1 (q) is regular. Sard Theorem. The set of all regular values of a smooth map F : M N is dense in N. That is, the set of all critical values has a measure zero. We also says, that almost all values are regular. diffgeom.tex; January 18, 2018; 9:43; p. 229

8 234 CHAPTER 9. APPENDIX B: MULTIVARIABLE CALCULUS Regular Value Theorem. Let M be an n-dimensional manifold and N be a m-dimensional manifold. Suppose n m and let r = n m. Let F : M N be a smooth map. Let q N be a regular value and W M be the set defined by W= F 1 (q)={p M F(p)=q}. Then W is an embedded r-dimensional submanifold of M. Proof. This follows from the implicit function theorem. Let V be a neighborhood of q with local coordinates z µ,µ=1,...,m such that z µ (q)=c µ with some c µ. Let U = F 1 (V) and (x 1,..., x r, y 1,...,y m )=(x i, y µ ),µ=1,...,m, i= 1,...,r, be local coordinates in U. Since q is a regular value, every point p W is regular. So, the rank of the Jacobian DF(p) is maximal rank DF(p)=m Therefore, we can reorder the coordinaes (x, y) so that the m m matrix D y F(x, y) is non-degenerate. By the inverse function theorem this means that locally one can invert the map (with fixed x) z=f(x, y) to express the coordinates y µ in terms of the coordinates z µ, Now, by fixing z=cwe get the map Notice that for any x y= G(x, z). y= G(x, z)=g(x). F(x, G(x))=c, which means that the point (x, G(x)) Wand, therefore, x i provide local coordinates for W. diffgeom.tex; January 18, 2018; 9:43; p. 230

i = f iα : φ i (U i ) ψ α (V α ) which satisfy 1 ) Df iα = Df jβ D(φ j φ 1 i ). (39)

i = f iα : φ i (U i ) ψ α (V α ) which satisfy 1 ) Df iα = Df jβ D(φ j φ 1 i ). (39) 2.3 The derivative A description of the tangent bundle is not complete without defining the derivative of a general smooth map of manifolds f : M N. Such a map may be defined locally in charts (U i, φ

More information

SMSTC (2017/18) Geometry and Topology 2.

SMSTC (2017/18) Geometry and Topology 2. SMSTC (2017/18) Geometry and Topology 2 Lecture 1: Differentiable Functions and Manifolds in R n Lecturer: Diletta Martinelli (Notes by Bernd Schroers) a wwwsmstcacuk 11 General remarks In this lecture

More information

The theory of manifolds Lecture 2

The theory of manifolds Lecture 2 The theory of manifolds Lecture 2 Let X be a subset of R N, Y a subset of R n and f : X Y a continuous map. We recall Definition 1. f is a C map if for every p X, there exists a neighborhood, U p, of p

More information

Math 598 Feb 14, Geometry and Topology II Spring 2005, PSU

Math 598 Feb 14, Geometry and Topology II Spring 2005, PSU Math 598 Feb 14, 2005 1 Geometry and Topology II Spring 2005, PSU Lecture Notes 7 2.7 Smooth submanifolds Let N be a smooth manifold. We say that M N m is an n-dimensional smooth submanifold of N, provided

More information

Changing coordinates to adapt to a map of constant rank

Changing coordinates to adapt to a map of constant rank Introduction to Submanifolds Most manifolds of interest appear as submanifolds of others e.g. of R n. For instance S 2 is a submanifold of R 3. It can be obtained in two ways: 1 as the image of a map into

More information

An Introduction to Riemannian Geometry

An Introduction to Riemannian Geometry An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity Leonor Godinho and José Natário Lisbon, 2004 Contents Chapter 1. Differentiable Manifolds 3 1. Topological Manifolds

More information

Defn 3.1: An n-manifold, M, is a topological space with the following properties:

Defn 3.1: An n-manifold, M, is a topological space with the following properties: Chapter 1 all sections 1.3 Defn: M is locally Euclidean of dimension n if for all p M, there exists an open set U p such that p U p and there exists a homeomorphism f p : U p V p where V p R n. (U p, f)

More information

Differential Topology Solution Set #2

Differential Topology Solution Set #2 Differential Topology Solution Set #2 Select Solutions 1. Show that X compact implies that any smooth map f : X Y is proper. Recall that a space is called compact if, for every cover {U } by open sets

More information

Math 205C - Topology Midterm

Math 205C - Topology Midterm Math 205C - Topology Midterm Erin Pearse 1. a) State the definition of an n-dimensional topological (differentiable) manifold. An n-dimensional topological manifold is a topological space that is Hausdorff,

More information

LECTURE 11: TRANSVERSALITY

LECTURE 11: TRANSVERSALITY LECTURE 11: TRANSVERSALITY Let f : M N be a smooth map. In the past three lectures, we are mainly studying the image of f, especially when f is an embedding. Today we would like to study the pre-image

More information

Modelling and Control of Mechanical Systems: A Geometric Approach

Modelling and Control of Mechanical Systems: A Geometric Approach Motivation Mathematical preliminaries Submanifolds Optional Modelling and Control of Mechanical Systems: A Geometric Approach Ravi N Banavar banavar@iitb.ac.in 1 1 Systems and Control Engineering, IIT

More information

Transversality. Abhishek Khetan. December 13, Basics 1. 2 The Transversality Theorem 1. 3 Transversality and Homotopy 2

Transversality. Abhishek Khetan. December 13, Basics 1. 2 The Transversality Theorem 1. 3 Transversality and Homotopy 2 Transversality Abhishek Khetan December 13, 2017 Contents 1 Basics 1 2 The Transversality Theorem 1 3 Transversality and Homotopy 2 4 Intersection Number Mod 2 4 5 Degree Mod 2 4 1 Basics Definition. Let

More information

Chapter -1: Di erential Calculus and Regular Surfaces

Chapter -1: Di erential Calculus and Regular Surfaces Chapter -1: Di erential Calculus and Regular Surfaces Peter Perry August 2008 Contents 1 Introduction 1 2 The Derivative as a Linear Map 2 3 The Big Theorems of Di erential Calculus 4 3.1 The Chain Rule............................

More information

Math 215B: Solutions 3

Math 215B: Solutions 3 Math 215B: Solutions 3 (1) For this problem you may assume the classification of smooth one-dimensional manifolds: Any compact smooth one-dimensional manifold is diffeomorphic to a finite disjoint union

More information

BROUWER FIXED POINT THEOREM. Contents 1. Introduction 1 2. Preliminaries 1 3. Brouwer fixed point theorem 3 Acknowledgments 8 References 8

BROUWER FIXED POINT THEOREM. Contents 1. Introduction 1 2. Preliminaries 1 3. Brouwer fixed point theorem 3 Acknowledgments 8 References 8 BROUWER FIXED POINT THEOREM DANIELE CARATELLI Abstract. This paper aims at proving the Brouwer fixed point theorem for smooth maps. The theorem states that any continuous (smooth in our proof) function

More information

1 )(y 0) {1}. Thus, the total count of points in (F 1 (y)) is equal to deg y0

1 )(y 0) {1}. Thus, the total count of points in (F 1 (y)) is equal to deg y0 1. Classification of 1-manifolds Theorem 1.1. Let M be a connected 1 manifold. Then M is diffeomorphic either to [0, 1], [0, 1), (0, 1), or S 1. We know that none of these four manifolds are not diffeomorphic

More information

Math 147, Homework 1 Solutions Due: April 10, 2012

Math 147, Homework 1 Solutions Due: April 10, 2012 1. For what values of a is the set: Math 147, Homework 1 Solutions Due: April 10, 2012 M a = { (x, y, z) : x 2 + y 2 z 2 = a } a smooth manifold? Give explicit parametrizations for open sets covering M

More information

Manifolds and tangent bundles. Vector fields and flows. 1 Differential manifolds, smooth maps, submanifolds

Manifolds and tangent bundles. Vector fields and flows. 1 Differential manifolds, smooth maps, submanifolds MA 755 Fall 05. Notes #1. I. Kogan. Manifolds and tangent bundles. Vector fields and flows. 1 Differential manifolds, smooth maps, submanifolds Definition 1 An n-dimensional C k -differentiable manifold

More information

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim SOLUTIONS Dec 13, 218 Math 868 Final Exam In this exam, all manifolds, maps, vector fields, etc. are smooth. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each).

More information

Chapter 1. Smooth Manifolds

Chapter 1. Smooth Manifolds Chapter 1. Smooth Manifolds Theorem 1. [Exercise 1.18] Let M be a topological manifold. Then any two smooth atlases for M determine the same smooth structure if and only if their union is a smooth atlas.

More information

Good Problems. Math 641

Good Problems. Math 641 Math 641 Good Problems Questions get two ratings: A number which is relevance to the course material, a measure of how much I expect you to be prepared to do such a problem on the exam. 3 means of course

More information

LECTURE 15-16: PROPER ACTIONS AND ORBIT SPACES

LECTURE 15-16: PROPER ACTIONS AND ORBIT SPACES LECTURE 15-16: PROPER ACTIONS AND ORBIT SPACES 1. Proper actions Suppose G acts on M smoothly, and m M. Then the orbit of G through m is G m = {g m g G}. If m, m lies in the same orbit, i.e. m = g m for

More information

Introduction to Computational Manifolds and Applications

Introduction to Computational Manifolds and Applications IMPA - Instituto de Matemática Pura e Aplicada, Rio de Janeiro, RJ, Brazil Introduction to Computational Manifolds and Applications Part 1 - Foundations Prof. Jean Gallier jean@cis.upenn.edu Department

More information

Differentiable Topology and Geometry

Differentiable Topology and Geometry Differentiable Topology and Geometry April 8, 2004 These notes were taken from the lecture course Differentiable Manifolds given by Mladen Bestvina, at University of Utah, U.S., Fall 2002, and L A TEXed

More information

Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009.

Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009. Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009. Solutions (1) Let Γ be a discrete group acting on a manifold M. (a) Define what it means for Γ to act freely. Solution: Γ acts

More information

LECTURE NOTES ON DIFFERENTIABLE MANIFOLDS

LECTURE NOTES ON DIFFERENTIABLE MANIFOLDS LECTURE NOTES ON DIFFERENTIABLE MANIFOLDS JIE WU Contents 1. Tangent Spaces, Vector Fields in R n and the Inverse Mapping Theorem 2 1.1. Tangent Space to a Level Surface 2 1.2. Tangent Space and Vectors

More information

INVERSE FUNCTION THEOREM and SURFACES IN R n

INVERSE FUNCTION THEOREM and SURFACES IN R n INVERSE FUNCTION THEOREM and SURFACES IN R n Let f C k (U; R n ), with U R n open. Assume df(a) GL(R n ), where a U. The Inverse Function Theorem says there is an open neighborhood V U of a in R n so that

More information

DIFFERENTIAL TOPOLOGY AND THE POINCARÉ-HOPF THEOREM

DIFFERENTIAL TOPOLOGY AND THE POINCARÉ-HOPF THEOREM DIFFERENTIAL TOPOLOGY AND THE POINCARÉ-HOPF THEOREM ARIEL HAFFTKA 1. Introduction In this paper we approach the topology of smooth manifolds using differential tools, as opposed to algebraic ones such

More information

CHAPTER 3 SUBMANIFOLDS

CHAPTER 3 SUBMANIFOLDS CHAPTER 3 SUBMANIFOLDS One basic notion that was not addressed in Chapter 1 is the concept of containment: When one manifold is a subset on a second manifold. This notion is subtle in a manner the reader

More information

Implicit Functions, Curves and Surfaces

Implicit Functions, Curves and Surfaces Chapter 11 Implicit Functions, Curves and Surfaces 11.1 Implicit Function Theorem Motivation. In many problems, objects or quantities of interest can only be described indirectly or implicitly. It is then

More information

Geometry Qualifying Exam Notes

Geometry Qualifying Exam Notes Geometry Qualifying Exam Notes F 1 F 1 x 1 x n Definition: The Jacobian matrix of a map f : N M is.. F m F m x 1 x n square matrix, its determinant is called the Jacobian determinant.. When this is a Definition:

More information

Theorem 3.11 (Equidimensional Sard). Let f : M N be a C 1 map of n-manifolds, and let C M be the set of critical points. Then f (C) has measure zero.

Theorem 3.11 (Equidimensional Sard). Let f : M N be a C 1 map of n-manifolds, and let C M be the set of critical points. Then f (C) has measure zero. Now we investigate the measure of the critical values of a map f : M N where dim M = dim N. Of course the set of critical points need not have measure zero, but we shall see that because the values of

More information

LECTURE 2. (TEXED): IN CLASS: PROBABLY LECTURE 3. MANIFOLDS 1. FALL TANGENT VECTORS.

LECTURE 2. (TEXED): IN CLASS: PROBABLY LECTURE 3. MANIFOLDS 1. FALL TANGENT VECTORS. LECTURE 2. (TEXED): IN CLASS: PROBABLY LECTURE 3. MANIFOLDS 1. FALL 2006. TANGENT VECTORS. Overview: Tangent vectors, spaces and bundles. First: to an embedded manifold of Euclidean space. Then to one

More information

Math Topology II: Smooth Manifolds. Spring Homework 2 Solution Submit solutions to the following problems:

Math Topology II: Smooth Manifolds. Spring Homework 2 Solution Submit solutions to the following problems: Math 132 - Topology II: Smooth Manifolds. Spring 2017. Homework 2 Solution Submit solutions to the following problems: 1. Let H = {a + bi + cj + dk (a, b, c, d) R 4 }, where i 2 = j 2 = k 2 = 1, ij = k,

More information

LECTURE 5: SMOOTH MAPS. 1. Smooth Maps

LECTURE 5: SMOOTH MAPS. 1. Smooth Maps LECTURE 5: SMOOTH MAPS 1. Smooth Maps Recall that a smooth function on a smooth manifold M is a function f : M R so that for any chart 1 {ϕ α, U α, V α } of M, the function f ϕ 1 α is a smooth function

More information

LECTURE 9: THE WHITNEY EMBEDDING THEOREM

LECTURE 9: THE WHITNEY EMBEDDING THEOREM LECTURE 9: THE WHITNEY EMBEDDING THEOREM Historically, the word manifold (Mannigfaltigkeit in German) first appeared in Riemann s doctoral thesis in 1851. At the early times, manifolds are defined extrinsically:

More information

Math 6455 Nov 1, Differential Geometry I Fall 2006, Georgia Tech

Math 6455 Nov 1, Differential Geometry I Fall 2006, Georgia Tech Math 6455 Nov 1, 26 1 Differential Geometry I Fall 26, Georgia Tech Lecture Notes 14 Connections Suppose that we have a vector field X on a Riemannian manifold M. How can we measure how much X is changing

More information

Integration and Manifolds

Integration and Manifolds Integration and Manifolds Course No. 100 311 Fall 2007 Michael Stoll Contents 1. Manifolds 2 2. Differentiable Maps and Tangent Spaces 8 3. Vector Bundles and the Tangent Bundle 13 4. Orientation and Orientability

More information

Notes on Differential Topology

Notes on Differential Topology Notes on Differential Topology George Torres Last updated January 18, 2018 Contents 1 Smooth manifolds and Topological manifolds 3 1.1 Smooth Structures............................................ 3 1.2

More information

The theory of manifolds Lecture 3

The theory of manifolds Lecture 3 The theory of manifolds Lecture 3 We recall that a subset, X, of R N is an n-dimensional manifold, if, for every p X, there exists an open set, U R n, a neighborhood, V, of p in R N and a C -diffeomorphism,

More information

Math 396. Bijectivity vs. isomorphism

Math 396. Bijectivity vs. isomorphism Math 396. Bijectivity vs. isomorphism 1. Motivation Let f : X Y be a C p map between two C p -premanifolds with corners, with 1 p. Assuming f is bijective, we would like a criterion to tell us that f 1

More information

Lecture Notes for MA455 Manifolds

Lecture Notes for MA455 Manifolds Lecture Notes for MA455 Manifolds David Mond March 7, 2008 Contents 1 Foundations 3 1.1 First definitions.................................. 3 1.2 Submersions and Immersions........................... 15

More information

On Minimal Surfaces and Their Representations

On Minimal Surfaces and Their Representations Trinity University Digital Commons @ Trinity Math Honors Theses Mathematics Department 4-21-2010 On Minimal Surfaces and Their Representations Brian Fitzpatrick Trinity University, bfitzpat@trinity.edu

More information

is holomorphic. In other words, a holomorphic function is a collection of compatible holomorphic functions on all charts.

is holomorphic. In other words, a holomorphic function is a collection of compatible holomorphic functions on all charts. RIEMANN SURFACES 2. Week 2. Basic definitions 2.1. Smooth manifolds. Complex manifolds. Let X be a topological space. A (real) chart of X is a pair (U, f : U R n ) where U is an open subset of X and f

More information

Lecture 2. Smooth functions and maps

Lecture 2. Smooth functions and maps Lecture 2. Smooth functions and maps 2.1 Definition of smooth maps Given a differentiable manifold, all questions of differentiability are to be reduced to questions about functions between Euclidean spaces,

More information

Notes for Math 535 Differential Geometry Spring Francis Bonahon. Department of Mathematics, University of Southern California

Notes for Math 535 Differential Geometry Spring Francis Bonahon. Department of Mathematics, University of Southern California Notes for Math 535 Differential Geometry Spring 2016 Francis Bonahon Department of Mathematics, University of Southern California Date of this version: April 27, 2016 c Francis Bonahon 2016 CHAPTER 1 A

More information

f(x, y) = 1 2 x y2 xy 3

f(x, y) = 1 2 x y2 xy 3 Problem. Find the critical points of the function and determine their nature. We have We find the critical points We calculate f(x, y) = 2 x2 + 3 2 y2 xy 3 f x = x y 3 = 0 = x = y 3 f y = 3y 3xy 2 = 0

More information

Foliations of Three Dimensional Manifolds

Foliations of Three Dimensional Manifolds Foliations of Three Dimensional Manifolds M. H. Vartanian December 17, 2007 Abstract The theory of foliations began with a question by H. Hopf in the 1930 s: Does there exist on S 3 a completely integrable

More information

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015 DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES MAGGIE MILLER September 25, 2015 1. 09/16/2015 1.1. Textbooks. Textbooks relevant to this class are Riemannian Geometry by do Carmo Riemannian Geometry

More information

Differentiable manifolds Math 6510 Class Notes

Differentiable manifolds Math 6510 Class Notes Differentiable manifolds Math 6510 Class Notes Mladen Bestvina Fall 2005, revised Fall 2006, 2012 1 Definition of a manifold Intuitively, an n-dimensional manifold is a space that is equipped with a set

More information

Subgroups of Lie groups. Definition 0.7. A Lie subgroup of a Lie group G is a subgroup which is also a submanifold.

Subgroups of Lie groups. Definition 0.7. A Lie subgroup of a Lie group G is a subgroup which is also a submanifold. Recollections from finite group theory. The notion of a group acting on a set is extremely useful. Indeed, the whole of group theory arose through this route. As an example of the abstract power of this

More information

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X. Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

More information

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE JOHANNES EBERT 1.1. October 11th. 1. Recapitulation from differential topology Definition 1.1. Let M m, N n, be two smooth manifolds

More information

Smooth manifolds. A.1 Introduction. A.2 Basic notions

Smooth manifolds. A.1 Introduction. A.2 Basic notions A P P E N D I X A Smooth manifolds A.1 Introduction The theory of smooth manifolds can be thought of a natural and very useful extension of the differential calculus on R n in that its main theorems, which

More information

DIFFERENTIAL GEOMETRY 1 PROBLEM SET 1 SOLUTIONS

DIFFERENTIAL GEOMETRY 1 PROBLEM SET 1 SOLUTIONS DIFFERENTIAL GEOMETRY PROBLEM SET SOLUTIONS Lee: -4,--5,-6,-7 Problem -4: If k is an integer between 0 and min m, n, show that the set of m n matrices whose rank is at least k is an open submanifold of

More information

SMSTC (2008/09) Geometry and Topology.

SMSTC (2008/09) Geometry and Topology. SMSTC (2008/09) Geometry and Topology www.smstc.ac.uk Contents 1 Smooth manifolds in euclidean space 1 1 1.1 Topology of subsets of euclidean space............................. 1 1 1.2 Calculus without

More information

Math 190: Fall 2014 Homework 4 Solutions Due 5:00pm on Friday 11/7/2014

Math 190: Fall 2014 Homework 4 Solutions Due 5:00pm on Friday 11/7/2014 Math 90: Fall 04 Homework 4 Solutions Due 5:00pm on Friday /7/04 Problem : Recall that S n denotes the n-dimensional unit sphere: S n = {(x 0, x,..., x n ) R n+ : x 0 + x + + x n = }. Let N S n denote

More information

DEVELOPMENT OF MORSE THEORY

DEVELOPMENT OF MORSE THEORY DEVELOPMENT OF MORSE THEORY MATTHEW STEED Abstract. In this paper, we develop Morse theory, which allows us to determine topological information about manifolds using certain real-valued functions defined

More information

1 Differentiable manifolds and smooth maps

1 Differentiable manifolds and smooth maps 1 Differentiable manifolds and smooth maps Last updated: April 14, 2011. 1.1 Examples and definitions Roughly, manifolds are sets where one can introduce coordinates. An n-dimensional manifold is a set

More information

M4P52 Manifolds, 2016 Problem Sheet 1

M4P52 Manifolds, 2016 Problem Sheet 1 Problem Sheet. Let X and Y be n-dimensional topological manifolds. Prove that the disjoint union X Y is an n-dimensional topological manifold. Is S S 2 a topological manifold? 2. Recall that that the discrete

More information

Many of the exercises are taken from the books referred at the end of the document.

Many of the exercises are taken from the books referred at the end of the document. Exercises in Geometry I University of Bonn, Winter semester 2014/15 Prof. Christian Blohmann Assistant: Néstor León Delgado The collection of exercises here presented corresponds to the exercises for the

More information

We have the following immediate corollary. 1

We have the following immediate corollary. 1 1. Thom Spaces and Transversality Definition 1.1. Let π : E B be a real k vector bundle with a Euclidean metric and let E 1 be the set of elements of norm 1. The Thom space T (E) of E is the quotient E/E

More information

Differential Geometry (preliminary draft) Massimiliano Mella

Differential Geometry (preliminary draft) Massimiliano Mella Differential Geometry (preliminary draft) Massimiliano Mella Introduction These notes are intended for an undergraduate level third year. It is a pleasure to thank C. Bisi for a carefull reading. CHAPTER

More information

Introduction to Differential Geometry. Lecture Notes for MAT367

Introduction to Differential Geometry. Lecture Notes for MAT367 Introduction to Differential Geometry Lecture Notes for MAT367 Contents 1 Introduction................................................... 1 1.1 Some history..............................................

More information

Course Summary Math 211

Course Summary Math 211 Course Summary Math 211 table of contents I. Functions of several variables. II. R n. III. Derivatives. IV. Taylor s Theorem. V. Differential Geometry. VI. Applications. 1. Best affine approximations.

More information

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves Chapter 3 Riemannian Manifolds - I The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves embedded in Riemannian manifolds. A Riemannian manifold is an abstraction

More information

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f))

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f)) 1. Basic algebra of vector fields Let V be a finite dimensional vector space over R. Recall that V = {L : V R} is defined to be the set of all linear maps to R. V is isomorphic to V, but there is no canonical

More information

An Introduction to Riemannian Geometry

An Introduction to Riemannian Geometry Lecture Notes in Mathematics An Introduction to Riemannian Geometry Sigmundur Gudmundsson (Lund University) (version 1.0340-20th of June 2017) The latest version of this document can be found at http://www.matematik.lu.se/matematiklu/personal/sigma/

More information

Notes on Spivak, Differential Geometry, vol 1.

Notes on Spivak, Differential Geometry, vol 1. Notes on Spivak, Differential Geometry, vol 1. Chapter 1. Chapter 1 deals with topological manifolds. There is some discussion about more subtle topological aspects (pp. 2 7) which we can gloss over. A

More information

(2) For x π(p ) the fiber π 1 (x) is a closed C p subpremanifold in P, and for all ξ π 1 (x) the kernel of the surjection dπ(ξ) : T ξ (P ) T x (X) is

(2) For x π(p ) the fiber π 1 (x) is a closed C p subpremanifold in P, and for all ξ π 1 (x) the kernel of the surjection dπ(ξ) : T ξ (P ) T x (X) is Math 396. Submersions and transverse intersections Fix 1 p, and let f : X X be a C p mapping between C p premanifolds (no corners or boundary!). In a separate handout there is proved an important local

More information

MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005

MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005 MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005 1. True or False (22 points, 2 each) T or F Every set in R n is either open or closed

More information

Integration on Manifolds

Integration on Manifolds Integration on Manifolds Manifolds A manifold is a generalization of a surface. We shall give the precise definition shortly. These notes are intended to provide a lightning fast introduction to integration

More information

Chapter X. Matrix Lie Groups.

Chapter X. Matrix Lie Groups. Notes c F.P. Greenleaf and S. Marques 2006-2016 LAII-s16-matrixgps.tex version 7/28/2016 Chapter X. Matrix Lie Groups. X.1. Matrix Groups and Implicit Function Theorem. The rank of a linear operator T

More information

THE LOCAL STRUCTURE OF SMOOTH MAPS OF MANIFOLDS. By Jonathan Michael Bloom

THE LOCAL STRUCTURE OF SMOOTH MAPS OF MANIFOLDS. By Jonathan Michael Bloom THE LOCAL STRUCTURE OF SMOOTH MAPS OF MANIFOLDS By Jonathan Michael Bloom SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELORS OF ARTS WITH HONORS AT HARVARD UNIVERSITY CAMBRIDGE,

More information

SARD S THEOREM ALEX WRIGHT

SARD S THEOREM ALEX WRIGHT SARD S THEOREM ALEX WRIGHT Abstract. A proof of Sard s Theorem is presented, and applications to the Whitney Embedding and Immersion Theorems, the existence of Morse functions, and the General Position

More information

Math 423 Course Notes

Math 423 Course Notes Math 423 Course Notes David Rose October 18, 2003 Contents 1 Smooth Manifolds 3 1.1 Definitions and Examples.................... 3 1.2 Morphisms of Manifolds..................... 5 1.3 Partitions of Unity........................

More information

Math Advanced Calculus II

Math Advanced Calculus II Math 452 - Advanced Calculus II Manifolds and Lagrange Multipliers In this section, we will investigate the structure of critical points of differentiable functions. In practice, one often is trying to

More information

The theory of manifolds Lecture 3. Tf : TR n TR m

The theory of manifolds Lecture 3. Tf : TR n TR m The theory of manifolds Lecture 3 Definition 1. The tangent space of an open set U R n, TU is the set of pairs (x, v) U R n. This should be thought of as a vector v based at the point x U. Denote by T

More information

Differential Topology Final Exam With Solutions

Differential Topology Final Exam With Solutions Differential Topology Final Exam With Solutions Instructor: W. D. Gillam Date: Friday, May 20, 2016, 13:00 (1) Let X be a subset of R n, Y a subset of R m. Give the definitions of... (a) smooth function

More information

Math 114: Course Summary

Math 114: Course Summary Math 114: Course Summary Rich Schwartz September 25, 2009 General Information: Math 114 is a course in real analysis. It is the second half of the undergraduate series in real analysis, M113-4. In M113,

More information

Introduction. Chapter Some history

Introduction. Chapter Some history Chapter 1 Introduction 1.1 Some history In the words of S.S. Chern, the fundamental objects of study in differential geometry are manifolds. 1 Roughly, an n-dimensional manifold is a mathematical object

More information

225A DIFFERENTIAL TOPOLOGY FINAL

225A DIFFERENTIAL TOPOLOGY FINAL 225A DIFFERENTIAL TOPOLOGY FINAL KIM, SUNGJIN Problem 1. From hitney s Embedding Theorem, we can assume that N is an embedded submanifold of R K for some K > 0. Then it is possible to define distance function.

More information

1 Structures 2. 2 Framework of Riemann surfaces Basic configuration Holomorphic functions... 3

1 Structures 2. 2 Framework of Riemann surfaces Basic configuration Holomorphic functions... 3 Compact course notes Riemann surfaces Fall 2011 Professor: S. Lvovski transcribed by: J. Lazovskis Independent University of Moscow December 23, 2011 Contents 1 Structures 2 2 Framework of Riemann surfaces

More information

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups A Lie group is a special smooth manifold on which there is a group structure, and moreover, the two structures are compatible. Lie groups are

More information

Geometry 9: Serre-Swan theorem

Geometry 9: Serre-Swan theorem Geometry 9: Serre-Swan theorem Rules: You may choose to solve only hard exercises (marked with!, * and **) or ordinary ones (marked with! or unmarked), or both, if you want to have extra problems. To have

More information

Manifolds. Lecture Notes Klaus Wirthmüller

Manifolds. Lecture Notes Klaus Wirthmüller Manifolds Lecture Notes 2011 2016 Klaus Wirthmüller K. Wirthmüller: Manifolds 2011 2016 i Preface These are notes of a course that I have taught at the Technische Universität Kaiserslautern thrice between

More information

1 Smooth manifolds and Lie groups

1 Smooth manifolds and Lie groups An undergraduate approach to Lie theory Slide 1 Andrew Baker, Glasgow Glasgow, 12/11/1999 1 Smooth manifolds and Lie groups A continuous g : V 1 V 2 with V k R m k open is called smooth if it is infinitely

More information

D(f/g)(P ) = D(f)(P )g(p ) f(p )D(g)(P ). g 2 (P )

D(f/g)(P ) = D(f)(P )g(p ) f(p )D(g)(P ). g 2 (P ) We first record a very useful: 11. Higher derivatives Theorem 11.1. Let A R n be an open subset. Let f : A R m and g : A R m be two functions and suppose that P A. Let λ A be a scalar. If f and g are differentiable

More information

An Introduction to Riemannian Geometry

An Introduction to Riemannian Geometry Lecture Notes An Introduction to Riemannian Geometry (version 1.250-29 January 2007) Sigmundur Gudmundsson (Lund University) The latest version of this document can be obtained at: http://www.matematik.lu.se/matematiklu/personal/sigma/index.html

More information

Differential Topology Solution Set #3

Differential Topology Solution Set #3 Differential Topology Solution Set #3 Select Solutions 1. Chapter 1, Section 4, #7 2. Chapter 1, Section 4, #8 3. Chapter 1, Section 4, #11(a)-(b) #11(a) The n n matrices with determinant 1 form a group

More information

Math 215B: Solutions 1

Math 215B: Solutions 1 Math 15B: Solutions 1 Due Thursday, January 18, 018 (1) Let π : X X be a covering space. Let Φ be a smooth structure on X. Prove that there is a smooth structure Φ on X so that π : ( X, Φ) (X, Φ) is an

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

THE JORDAN-BROUWER SEPARATION THEOREM

THE JORDAN-BROUWER SEPARATION THEOREM THE JORDAN-BROUWER SEPARATION THEOREM WOLFGANG SCHMALTZ Abstract. The Classical Jordan Curve Theorem says that every simple closed curve in R 2 divides the plane into two pieces, an inside and an outside

More information

(iv) Whitney s condition B. Suppose S β S α. If two sequences (a k ) S α and (b k ) S β both converge to the same x S β then lim.

(iv) Whitney s condition B. Suppose S β S α. If two sequences (a k ) S α and (b k ) S β both converge to the same x S β then lim. 0.1. Stratified spaces. References are [7], [6], [3]. Singular spaces are naturally associated to many important mathematical objects (for example in representation theory). We are essentially interested

More information

Math 147, Homework 5 Solutions Due: May 15, 2012

Math 147, Homework 5 Solutions Due: May 15, 2012 Math 147, Homework 5 Solutions Due: May 15, 2012 1 Let f : R 3 R 6 and φ : R 3 R 3 be the smooth maps defined by: f(x, y, z) = (x 2, y 2, z 2, xy, xz, yz) and φ(x, y, z) = ( x, y, z) (a) Show that f is

More information

Course 224: Geometry - Continuity and Differentiability

Course 224: Geometry - Continuity and Differentiability Course 224: Geometry - Continuity and Differentiability Lecture Notes by Prof. David Simms L A TEXed by Chris Blair 1 Continuity Consider M, N finite dimensional real or complex vector spaces. What does

More information

MATRIX LIE GROUPS AND LIE GROUPS

MATRIX LIE GROUPS AND LIE GROUPS MATRIX LIE GROUPS AND LIE GROUPS Steven Sy December 7, 2005 I MATRIX LIE GROUPS Definition: A matrix Lie group is a closed subgroup of Thus if is any sequence of matrices in, and for some, then either

More information

MARKOV PARTITIONS FOR HYPERBOLIC SETS

MARKOV PARTITIONS FOR HYPERBOLIC SETS MARKOV PARTITIONS FOR HYPERBOLIC SETS TODD FISHER, HIMAL RATHNAKUMARA Abstract. We show that if f is a diffeomorphism of a manifold to itself, Λ is a mixing (or transitive) hyperbolic set, and V is a neighborhood

More information

Differential Topology

Differential Topology Differential Topology Lectures by, Princeton University, Fall term 1958 Notes by James Munkres Differential topology may be defined as the study of those properties of differentiable manifolds which are

More information

Math 291-2: Final Exam Solutions Northwestern University, Winter 2016

Math 291-2: Final Exam Solutions Northwestern University, Winter 2016 Math 29-2: Final Exam Solutions Northwestern University, Winter 206 Determine whether each of the following statements is true or false f it is true, explain why; if it is false, give a counterexample

More information