LECTURE 5: SMOOTH MAPS. 1. Smooth Maps

Size: px
Start display at page:

Download "LECTURE 5: SMOOTH MAPS. 1. Smooth Maps"

Transcription

1 LECTURE 5: SMOOTH MAPS 1. Smooth Maps Recall that a smooth function on a smooth manifold M is a function f : M R so that for any chart 1 {ϕ α, U α, V α } of M, the function f ϕ 1 α is a smooth function on V α. More generally, we can define smooth maps between smooth manifolds: Definition 1.1. Let M, N be smooth manifolds. We say a continuous map f : M N is smooth if for any chart {ϕ α, U α, V α } of M and {ψ β, X β, Y β } of N, the map ψ β f ϕ 1 α : ϕ α (U α f 1 (X β )) ψ β (X β ) is smooth. [Note: Both ϕ α (U α f 1 (X β )) and ψ β (X β ) are Euclidian open sets.] Remark. In the definition we assume that the map f is already a continuous map. In general the smoothness of all ψ β f ϕ 1 α s does not imply the continuity of f. See Problem Set 2. Remark. One can check that if f : (M, A) (N, B) is smooth, A 1 is a chart on M that is compatible with A, and B 1 is a chart on N that is compatible with B, then f : (M, A 1 ) (N, B 1 ) is smooth. Remark. A map f = (f 1,, f n ) : M R k is smooth if and only if each f i C (M). The set of all smooth maps from M to N is denoted by C (M, N). We will leave it as an exercise to prove that if f C (M, N) and g C (N, P ), then g f C (M, P ). As a consequence, any smooth map f : M N induces a pullback map f : C (N) C (M), g g f. The pull-back will play an important role in the future. 1 In this course, when we say any chart of a smooth manifold M, we always mean any chart in a given atlas A that defines the smooth structure of M. 1

2 2 LECTURE 5: SMOOTH MAPS Example. The inclusion map ι : S n R n+1 is smooth, since ι ϕ 1 ± (y 1,, y n ) = 1 ( 2y 1,, 2y n, ±(1 y 2 ) ) 1 + y 2 are smooth maps from R n to R n+1. Moreover, if g is any smooth function on R n+1, the pull-back function ι g is ust the restriction of g to S n. Example. The proection map π : R n+1 \ {0} RP n is smooth, since ( ) x ϕ i π(x 1,, x n+1 1 ) = x,, xi 1, xi+1,, xn+1 i x i x i x i is smooth on π 1 (U i ) = {(x 1,, x n+1 ) : x i 0} for each i. As in the Euclidean case, we can define diffeomorphisms between smooth manifolds. Definition 1.2. Let M, N be smooth manifolds. A map f : M N is a diffeomorphism if it is smooth, biective, and f 1 is smooth. If there exists a diffeomorphism f : M N, then we say M and N are diffeomorphic. Sometimes we will denote M N. We will regard diffeomorphic smooth manifolds as the same. The following properties can be easily deduced from the corresponding properties in the Euclidean case: The identity map Id : M M is a diffeomorphism. If f : M N and g : N P are diffeomorphisms, so is g f. If f : M N is a diffeomorphism, so is f 1. Moreover, dim M = dim N. So in particular, for any smooth manifold M, Diff(M) = {f : M M f is a diffeomorphism} is a group, called the diffeomorphism group of M. Example. If M is a smooth manifold, then any chart (ϕ, U, V ) gives a diffeomorphism ϕ : U V from U M to V R n. Example. We have seen that on M = R, the two atlas A = {(ϕ 1 (x) = x, R, R)} and B = {(ϕ 2 (x) = x 3, R, R)} define non-equivalent smooth structures. However, the map ψ : (R, A) (R, B), ψ(x) = x 1/3 is a diffeomorphism. So we still think these two smooth structures are the same, although they are not equivalent. Remark. Here are some deep results on the smooth structures: (J. Milnor and M. Kervaire) The topological 7-sphere admits exactly 28 different smooth structures. (S. Donaldson and M. Freedman) For any n 4, R n has a unique smooth structure up to diffeomorphism; but on R 4 there exist uncountable many distinct pairwise non-diffeomorphic smooth structures.

3 LECTURE 5: SMOOTH MAPS 3 2. The differential of a smooth map We have seen that if U, V are Euclidean open sets, and f : U V is smooth, then for any a U, one naturally gets a linear map df a : T a U T f(a) V, which can be think of as a linearization of f near the point a, and is extremely useful in studying properties of f near a. Now suppose M, N are smooth manifolds, and f : M N smooth. We would like to define its differential df p at p, again as a linear map between tangent spaces, which serves as a linearization of f near p. But the first question is: What is the tangent space of a smooth manifold at a point? Since M is an abstract manifold, we don t have a simple nice geometric picture. To define tangent vectors on smooth manifolds, let s first re-interpret (algebraically) the tangent vectors in the Euclidean case. Recall that for any point a R n and any vector v at a, there is a conception of directional derivative at point a in the direction v, which send a smooth function f defined on R n to the quantity D a vf = lim t 0 f(a + t v) f(a) t = d dt f(a + t v). t=0 So any v gives us an operator D a v : C (R n ) R. In coordinates, if v = v 1,, v n, then D a vf = v i f x i, in other words, as an operator on C (R n ), Observe that for any f, g C (R n ), D v a = v i x. i (linearity) D v a(αf + βg) = αda v f + βda v g for any α, β R. (Leibnitz law) D v a(fg) = f(a)da v g + g(a)da v f. In general, we can define Definition 2.1. Any operator D a : C (R n ) R satisfying these two properties is called a derivative at a. So any vector v at a defines a derivative D v a at a. It is not hard to see that the correspondence v D v a preserves linearity, i.e. Da α v+β w = αda v + βda w. The next proposition tells us that the correspondence v D v a is one-to-one, so that we can identify the set (vector space) of tangent vectors at a with the set of derivatives at a: Proposition 2.2. Any derivative D : C (R n ) R at a is of the form D v a for some vector v at a. Proof. For any f C (R n ), we have f(x) = f(a) d dt f(a + t(x a))dt = f(a) + (x i a i )h i (x), i=1

4 4 LECTURE 5: SMOOTH MAPS where 1 f h i (x) = (a + t(x a))dt. 0 xi Note that the Leibnitz property implies D(1) = 0 since D(1) = D(1 1) = 2D(1). By linearity, D(c) = 0 for any constant c. So D(f) = 0 + D(x i )h i (a) + (a i a i )D(h i ) = It follows that as an operator on C (R n ), D = D(x i ) x i. x=a In other words, if we let v = D(x 1 ),, D(x n ), then D = D a v. i=1 D(x i ) f x i (a). This motivates the following definition: Definition 2.3. Let M be an n-dimensional smooth manifold. A tangent vector at a point p M is a R-linear map X p : C (M) R satisfying the Leibnitz law (1) X p (fg) = f(p)x p (g) + X p (f)g(p) for any f, g C (M). It is easy to see that the set of all tangent vectors of M at p is a linear space. We will denote this set by T p M, and call it the tangent space T p M to M at p.. As argued above, if f is a constant function, then X p (f) = 0. More generally, Lemma 2.4. If f = c in a neighborhood of p, then X p (f) = 0. Proof. Let ϕ be a smooth function on M that equals 1 near p, and equals 0 at points where f c. (The existence of such f is guaranteed by partition of unity.) Then (f c)ϕ 0. So 0 = X p ((f c)ϕ) = (f(p) c)x p (ϕ) + X p (f)ϕ(p) = X p (f). As a consequence, we see that if f = g in a neighborhood of p, then X p (f) = X p (g). In other words, X p (f) is determined by the values of f near p. So one can replace C (M) in Definition 2.3 by C (U), where U is any open set that contains p. In other words, as linear spaces, T p M is isomorphic to T p U. Finally we are ready to define the differential of a smooth map between smooth manifolds. Recall that the differential of a smooth map f : U V between open sets in Euclidean spaces at a U is a linear map df a : T a U = R n x T f(a) V = R m y whose matrix is the Jacobian matrix ( f i ) of f at a. To transplant this conception to x smooth maps, we need to take a closer look at the two interpretation of T a U: We have

5 LECTURE 5: SMOOTH MAPS 5 seen that we can identify the (geometric )vector v at a with the (algebraic) derivative D v a = v i. Note that geometrically, x i ( ) fi f 1 df a ( v) = v = x x v,, f n x v. The vector in the right hand side is a vector in R m y. When interpreted as a derivative on C (R m y ), it is a map that maps g C (R m y ) to v f i g x y = v i x (g f) = Da v(g f). i In other words, the derivative that corresponds to the vector df a ( v) is the derivative at f(a) that maps g C (R m ) to D v a (g f). Motivated by these computations, we define Definition 2.5. Let f : M N be a smooth map. Then for each p M, the differential of f is the linear map df p : T p M T f(p) N defined by for all X p T p M and g C (N). df p (X p )(g) = X p (g f) The chain rule still holds for composition of smooth maps: Theorem 2.6 (Chain rule). Suppose f : M N and g : N P are smooth maps, then d(g f) p = dg f(p) df p. Proof. For any X p T p M and h C (P ), d(g f) p (X p )(h) = X p (h g f) = df p (X p )(h g) = dg f(p) (df p (X p ))(h). So the theorem follows. Obviously the differential of the identity map is the identity map between tangent spaces. By repeating the proof of Theorem 1.2 in Lecture 2 we get Corollary 2.7. If f : M N is a diffeomorphism, then df p : T p M T f(p) N is a linear isomorphism. In particular, we have Corollary 2.8. If dim M = n, then T p M is an n-dimensional linear space. Proof. Let {ϕ, U, V } be a chart near p. Then ϕ : U V is a diffeomorphism. It follows that dim T p M = dim T p U = dim T f(p) V = n. In particular, we see that the tangent vectors i := dϕ 1 ( x i ) form a basis of T p M. In coordinates, one has the following explicit formula for i : i : C (U) R, i (f) = (f ϕ 1 ) (ϕ(p)). x i

LECTURE 22: INTEGRATION ON MANIFOLDS. 1. Orientations

LECTURE 22: INTEGRATION ON MANIFOLDS. 1. Orientations LECTURE 22: INTEGRATION ON ANIFOLDS 1. Orientations Let be a smooth manifold of dimension n, and let ω Ω n () be a smooth n-form. We want to define the integral ω. First assume = R n. In calculus we learned

More information

LECTURE 11: TRANSVERSALITY

LECTURE 11: TRANSVERSALITY LECTURE 11: TRANSVERSALITY Let f : M N be a smooth map. In the past three lectures, we are mainly studying the image of f, especially when f is an embedding. Today we would like to study the pre-image

More information

Defn 3.1: An n-manifold, M, is a topological space with the following properties:

Defn 3.1: An n-manifold, M, is a topological space with the following properties: Chapter 1 all sections 1.3 Defn: M is locally Euclidean of dimension n if for all p M, there exists an open set U p such that p U p and there exists a homeomorphism f p : U p V p where V p R n. (U p, f)

More information

M4P52 Manifolds, 2016 Problem Sheet 1

M4P52 Manifolds, 2016 Problem Sheet 1 Problem Sheet. Let X and Y be n-dimensional topological manifolds. Prove that the disjoint union X Y is an n-dimensional topological manifold. Is S S 2 a topological manifold? 2. Recall that that the discrete

More information

Math Topology II: Smooth Manifolds. Spring Homework 2 Solution Submit solutions to the following problems:

Math Topology II: Smooth Manifolds. Spring Homework 2 Solution Submit solutions to the following problems: Math 132 - Topology II: Smooth Manifolds. Spring 2017. Homework 2 Solution Submit solutions to the following problems: 1. Let H = {a + bi + cj + dk (a, b, c, d) R 4 }, where i 2 = j 2 = k 2 = 1, ij = k,

More information

The theory of manifolds Lecture 2

The theory of manifolds Lecture 2 The theory of manifolds Lecture 2 Let X be a subset of R N, Y a subset of R n and f : X Y a continuous map. We recall Definition 1. f is a C map if for every p X, there exists a neighborhood, U p, of p

More information

0.1 Diffeomorphisms. 0.2 The differential

0.1 Diffeomorphisms. 0.2 The differential Lectures 6 and 7, October 10 and 12 Easy fact: An open subset of a differentiable manifold is a differentiable manifold of the same dimension the ambient space differentiable structure induces a differentiable

More information

LECTURE 3: SMOOTH FUNCTIONS

LECTURE 3: SMOOTH FUNCTIONS LECTURE 3: SMOOTH FUNCTIONS Let M be a smooth manifold. 1. Smooth Functions Definition 1.1. We say a function f : M R is smooth if for any chart {ϕ α, U α, V α } in A that defines the smooth structure

More information

Math 6455 Nov 1, Differential Geometry I Fall 2006, Georgia Tech

Math 6455 Nov 1, Differential Geometry I Fall 2006, Georgia Tech Math 6455 Nov 1, 26 1 Differential Geometry I Fall 26, Georgia Tech Lecture Notes 14 Connections Suppose that we have a vector field X on a Riemannian manifold M. How can we measure how much X is changing

More information

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups A Lie group is a special smooth manifold on which there is a group structure, and moreover, the two structures are compatible. Lie groups are

More information

CHAPTER 1. Preliminaries Basic Relevant Algebra Introduction to Differential Geometry. By Christian Bär

CHAPTER 1. Preliminaries Basic Relevant Algebra Introduction to Differential Geometry. By Christian Bär CHAPTER 1 Preliminaries 1.1. Basic Relevant Algebra 1.2. Introduction to Differential Geometry By Christian Bär Inthis lecturewegiveabriefintroductiontothe theoryofmanifoldsandrelatedbasic concepts of

More information

Math 598 Feb 14, Geometry and Topology II Spring 2005, PSU

Math 598 Feb 14, Geometry and Topology II Spring 2005, PSU Math 598 Feb 14, 2005 1 Geometry and Topology II Spring 2005, PSU Lecture Notes 7 2.7 Smooth submanifolds Let N be a smooth manifold. We say that M N m is an n-dimensional smooth submanifold of N, provided

More information

Manifolds and tangent bundles. Vector fields and flows. 1 Differential manifolds, smooth maps, submanifolds

Manifolds and tangent bundles. Vector fields and flows. 1 Differential manifolds, smooth maps, submanifolds MA 755 Fall 05. Notes #1. I. Kogan. Manifolds and tangent bundles. Vector fields and flows. 1 Differential manifolds, smooth maps, submanifolds Definition 1 An n-dimensional C k -differentiable manifold

More information

TANGENT VECTORS. THREE OR FOUR DEFINITIONS.

TANGENT VECTORS. THREE OR FOUR DEFINITIONS. TANGENT VECTORS. THREE OR FOUR DEFINITIONS. RMONT We define and try to understand the tangent space of a manifold Q at a point q, as well as vector fields on a manifold. The tangent space at q Q is a real

More information

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f))

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f)) 1. Basic algebra of vector fields Let V be a finite dimensional vector space over R. Recall that V = {L : V R} is defined to be the set of all linear maps to R. V is isomorphic to V, but there is no canonical

More information

1 Differentiable manifolds and smooth maps

1 Differentiable manifolds and smooth maps 1 Differentiable manifolds and smooth maps Last updated: April 14, 2011. 1.1 Examples and definitions Roughly, manifolds are sets where one can introduce coordinates. An n-dimensional manifold is a set

More information

STOKES THEOREM ON MANIFOLDS

STOKES THEOREM ON MANIFOLDS STOKES THEOREM ON MANIFOLDS GIDEON DRESDNER Abstract. The generalization of the Fundamental Theorem of Calculus to higher dimensions requires fairly sophisticated geometric and algebraic machinery. In

More information

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.)

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.) 4 Vector fields Last updated: November 26, 2009. (Under construction.) 4.1 Tangent vectors as derivations After we have introduced topological notions, we can come back to analysis on manifolds. Let M

More information

Integration and Manifolds

Integration and Manifolds Integration and Manifolds Course No. 100 311 Fall 2007 Michael Stoll Contents 1. Manifolds 2 2. Differentiable Maps and Tangent Spaces 8 3. Vector Bundles and the Tangent Bundle 13 4. Orientation and Orientability

More information

(1) Let π Ui : U i R k U i be the natural projection. Then π π 1 (U i ) = π i τ i. In other words, we have the following commutative diagram: U i R k

(1) Let π Ui : U i R k U i be the natural projection. Then π π 1 (U i ) = π i τ i. In other words, we have the following commutative diagram: U i R k 1. Vector Bundles Convention: All manifolds here are Hausdorff and paracompact. To make our life easier, we will assume that all topological spaces are homeomorphic to CW complexes unless stated otherwise.

More information

SMSTC (2017/18) Geometry and Topology 2.

SMSTC (2017/18) Geometry and Topology 2. SMSTC (2017/18) Geometry and Topology 2 Lecture 1: Differentiable Functions and Manifolds in R n Lecturer: Diletta Martinelli (Notes by Bernd Schroers) a wwwsmstcacuk 11 General remarks In this lecture

More information

LECTURE 10: THE PARALLEL TRANSPORT

LECTURE 10: THE PARALLEL TRANSPORT LECTURE 10: THE PARALLEL TRANSPORT 1. The parallel transport We shall start with the geometric meaning of linear connections. Suppose M is a smooth manifold with a linear connection. Let γ : [a, b] M be

More information

BROUWER FIXED POINT THEOREM. Contents 1. Introduction 1 2. Preliminaries 1 3. Brouwer fixed point theorem 3 Acknowledgments 8 References 8

BROUWER FIXED POINT THEOREM. Contents 1. Introduction 1 2. Preliminaries 1 3. Brouwer fixed point theorem 3 Acknowledgments 8 References 8 BROUWER FIXED POINT THEOREM DANIELE CARATELLI Abstract. This paper aims at proving the Brouwer fixed point theorem for smooth maps. The theorem states that any continuous (smooth in our proof) function

More information

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim SOLUTIONS Dec 13, 218 Math 868 Final Exam In this exam, all manifolds, maps, vector fields, etc. are smooth. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each).

More information

Worksheet on Vector Fields and the Lie Bracket

Worksheet on Vector Fields and the Lie Bracket Worksheet on Vector Fields and the Lie Bracket Math 6456 Differential Geometry January 8, 2008 Let M be a differentiable manifold and T M := p M T p M Definition 8 A smooth vector field is a mapping w

More information

LECTURE 9: THE WHITNEY EMBEDDING THEOREM

LECTURE 9: THE WHITNEY EMBEDDING THEOREM LECTURE 9: THE WHITNEY EMBEDDING THEOREM Historically, the word manifold (Mannigfaltigkeit in German) first appeared in Riemann s doctoral thesis in 1851. At the early times, manifolds are defined extrinsically:

More information

Notes on Spivak, Differential Geometry, vol 1.

Notes on Spivak, Differential Geometry, vol 1. Notes on Spivak, Differential Geometry, vol 1. Chapter 1. Chapter 1 deals with topological manifolds. There is some discussion about more subtle topological aspects (pp. 2 7) which we can gloss over. A

More information

CALCULUS ON MANIFOLDS

CALCULUS ON MANIFOLDS CALCULUS ON MANIFOLDS 1. Manifolds Morally, manifolds are topological spaces which locally look like open balls of the Euclidean space R n. One can construct them by piecing together such balls ( cells

More information

1.4 The Jacobian of a map

1.4 The Jacobian of a map 1.4 The Jacobian of a map Derivative of a differentiable map Let F : M n N m be a differentiable map between two C 1 manifolds. Given a point p M we define the derivative of F at p by df p df (p) : T p

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

The theory of manifolds Lecture 3

The theory of manifolds Lecture 3 The theory of manifolds Lecture 3 We recall that a subset, X, of R N is an n-dimensional manifold, if, for every p X, there exists an open set, U R n, a neighborhood, V, of p in R N and a C -diffeomorphism,

More information

Math 396. Bijectivity vs. isomorphism

Math 396. Bijectivity vs. isomorphism Math 396. Bijectivity vs. isomorphism 1. Motivation Let f : X Y be a C p map between two C p -premanifolds with corners, with 1 p. Assuming f is bijective, we would like a criterion to tell us that f 1

More information

10. Smooth Varieties. 82 Andreas Gathmann

10. Smooth Varieties. 82 Andreas Gathmann 82 Andreas Gathmann 10. Smooth Varieties Let a be a point on a variety X. In the last chapter we have introduced the tangent cone C a X as a way to study X locally around a (see Construction 9.20). It

More information

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015 DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES MAGGIE MILLER September 25, 2015 1. 09/16/2015 1.1. Textbooks. Textbooks relevant to this class are Riemannian Geometry by do Carmo Riemannian Geometry

More information

Math 147, Homework 1 Solutions Due: April 10, 2012

Math 147, Homework 1 Solutions Due: April 10, 2012 1. For what values of a is the set: Math 147, Homework 1 Solutions Due: April 10, 2012 M a = { (x, y, z) : x 2 + y 2 z 2 = a } a smooth manifold? Give explicit parametrizations for open sets covering M

More information

Symplectic and Poisson Manifolds

Symplectic and Poisson Manifolds Symplectic and Poisson Manifolds Harry Smith In this survey we look at the basic definitions relating to symplectic manifolds and Poisson manifolds and consider different examples of these. We go on to

More information

Definition 5.1. A vector field v on a manifold M is map M T M such that for all x M, v(x) T x M.

Definition 5.1. A vector field v on a manifold M is map M T M such that for all x M, v(x) T x M. 5 Vector fields Last updated: March 12, 2012. 5.1 Definition and general properties We first need to define what a vector field is. Definition 5.1. A vector field v on a manifold M is map M T M such that

More information

Lecture 2. Smooth functions and maps

Lecture 2. Smooth functions and maps Lecture 2. Smooth functions and maps 2.1 Definition of smooth maps Given a differentiable manifold, all questions of differentiability are to be reduced to questions about functions between Euclidean spaces,

More information

Bordism and the Pontryagin-Thom Theorem

Bordism and the Pontryagin-Thom Theorem Bordism and the Pontryagin-Thom Theorem Richard Wong Differential Topology Term Paper December 2, 2016 1 Introduction Given the classification of low dimensional manifolds up to equivalence relations such

More information

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE JOHANNES EBERT 1.1. October 11th. 1. Recapitulation from differential topology Definition 1.1. Let M m, N n, be two smooth manifolds

More information

Chapter 1. Smooth Manifolds

Chapter 1. Smooth Manifolds Chapter 1. Smooth Manifolds Theorem 1. [Exercise 1.18] Let M be a topological manifold. Then any two smooth atlases for M determine the same smooth structure if and only if their union is a smooth atlas.

More information

Let X be a topological space. We want it to look locally like C. So we make the following definition.

Let X be a topological space. We want it to look locally like C. So we make the following definition. February 17, 2010 1 Riemann surfaces 1.1 Definitions and examples Let X be a topological space. We want it to look locally like C. So we make the following definition. Definition 1. A complex chart on

More information

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves Chapter 3 Riemannian Manifolds - I The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves embedded in Riemannian manifolds. A Riemannian manifold is an abstraction

More information

LECTURE NOTES ON DIFFERENTIABLE MANIFOLDS

LECTURE NOTES ON DIFFERENTIABLE MANIFOLDS LECTURE NOTES ON DIFFERENTIABLE MANIFOLDS JIE WU Contents 1. Tangent Spaces, Vector Fields in R n and the Inverse Mapping Theorem 2 1.1. Tangent Space to a Level Surface 2 1.2. Tangent Space and Vectors

More information

INVERSE FUNCTION THEOREM and SURFACES IN R n

INVERSE FUNCTION THEOREM and SURFACES IN R n INVERSE FUNCTION THEOREM and SURFACES IN R n Let f C k (U; R n ), with U R n open. Assume df(a) GL(R n ), where a U. The Inverse Function Theorem says there is an open neighborhood V U of a in R n so that

More information

LECTURE 2. (TEXED): IN CLASS: PROBABLY LECTURE 3. MANIFOLDS 1. FALL TANGENT VECTORS.

LECTURE 2. (TEXED): IN CLASS: PROBABLY LECTURE 3. MANIFOLDS 1. FALL TANGENT VECTORS. LECTURE 2. (TEXED): IN CLASS: PROBABLY LECTURE 3. MANIFOLDS 1. FALL 2006. TANGENT VECTORS. Overview: Tangent vectors, spaces and bundles. First: to an embedded manifold of Euclidean space. Then to one

More information

Analysis II: The Implicit and Inverse Function Theorems

Analysis II: The Implicit and Inverse Function Theorems Analysis II: The Implicit and Inverse Function Theorems Jesse Ratzkin November 17, 2009 Let f : R n R m be C 1. When is the zero set Z = {x R n : f(x) = 0} the graph of another function? When is Z nicely

More information

Math 6455 Oct 10, Differential Geometry I Fall 2006, Georgia Tech. Integration on Manifolds, Volume, and Partitions of Unity

Math 6455 Oct 10, Differential Geometry I Fall 2006, Georgia Tech. Integration on Manifolds, Volume, and Partitions of Unity Math 6455 Oct 10, 2006 1 Differential Geometry I Fall 2006, Georgia Tech Lecture Notes 13 Integration on Manifolds, Volume, and Partitions of Unity Suppose that we have an orientable Riemannian manifold

More information

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES 1. Vector Bundles In general, smooth manifolds are very non-linear. However, there exist many smooth manifolds which admit very nice partial linear structures.

More information

WEYL INTEGRATION FORMULA

WEYL INTEGRATION FORMULA WEYL INERAION FORMULA YIFAN WU, wuyifan@umich.edu Abstract. In this exposition, we will prove the Weyl integration formula, which states that if is a compact connected Lie group with maximal torus, and

More information

Chap. 1. Some Differential Geometric Tools

Chap. 1. Some Differential Geometric Tools Chap. 1. Some Differential Geometric Tools 1. Manifold, Diffeomorphism 1.1. The Implicit Function Theorem ϕ : U R n R n p (0 p < n), of class C k (k 1) x 0 U such that ϕ(x 0 ) = 0 rank Dϕ(x) = n p x U

More information

LECTURE 5: COMPLEX AND KÄHLER MANIFOLDS

LECTURE 5: COMPLEX AND KÄHLER MANIFOLDS LECTURE 5: COMPLEX AND KÄHLER MANIFOLDS Contents 1. Almost complex manifolds 1. Complex manifolds 5 3. Kähler manifolds 9 4. Dolbeault cohomology 11 1. Almost complex manifolds Almost complex structures.

More information

We have the following immediate corollary. 1

We have the following immediate corollary. 1 1. Thom Spaces and Transversality Definition 1.1. Let π : E B be a real k vector bundle with a Euclidean metric and let E 1 be the set of elements of norm 1. The Thom space T (E) of E is the quotient E/E

More information

Coordinate Systems and Canonical Forms

Coordinate Systems and Canonical Forms Appendix D Coordinate Systems and Canonical Forms D.1. Local Coordinates Let O be an open set in R n. We say that an n-tuple of smooth realvalued functions defined in O, (φ 1,...,φ n ), forms a local coordinate

More information

Math 423 Course Notes

Math 423 Course Notes Math 423 Course Notes David Rose October 18, 2003 Contents 1 Smooth Manifolds 3 1.1 Definitions and Examples.................... 3 1.2 Morphisms of Manifolds..................... 5 1.3 Partitions of Unity........................

More information

MATH 423/ Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication.

MATH 423/ Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication. MATH 423/673 1 Curves Definition: The velocity vector of a curve α : I R 3 at time t is the tangent vector to R 3 at α(t), defined by α (t) T α(t) R 3 α α(t + h) α(t) (t) := lim h 0 h Note that the algebraic

More information

NOTES ON MANIFOLDS ALBERTO S. CATTANEO

NOTES ON MANIFOLDS ALBERTO S. CATTANEO NOTES ON MANIFOLDS ALBERTO S. CATTANEO Contents 1. Introduction 2 2. Manifolds 2 2.1. Coordinates 6 2.2. Dimension 7 2.3. The implicit function theorem 7 3. Maps 8 3.1. The pullback 10 3.2. Submanifolds

More information

The theory of manifolds Lecture 3. Tf : TR n TR m

The theory of manifolds Lecture 3. Tf : TR n TR m The theory of manifolds Lecture 3 Definition 1. The tangent space of an open set U R n, TU is the set of pairs (x, v) U R n. This should be thought of as a vector v based at the point x U. Denote by T

More information

Solutions to Problem Set 5 for , Fall 2007

Solutions to Problem Set 5 for , Fall 2007 Solutions to Problem Set 5 for 18.101, Fall 2007 1 Exercise 1 Solution For the counterexample, let us consider M = (0, + ) and let us take V = on M. x Let W be the vector field on M that is identically

More information

i = f iα : φ i (U i ) ψ α (V α ) which satisfy 1 ) Df iα = Df jβ D(φ j φ 1 i ). (39)

i = f iα : φ i (U i ) ψ α (V α ) which satisfy 1 ) Df iα = Df jβ D(φ j φ 1 i ). (39) 2.3 The derivative A description of the tangent bundle is not complete without defining the derivative of a general smooth map of manifolds f : M N. Such a map may be defined locally in charts (U i, φ

More information

KUIPER S THEOREM ON CONFORMALLY FLAT MANIFOLDS

KUIPER S THEOREM ON CONFORMALLY FLAT MANIFOLDS KUIPER S THEOREM ON CONFORMALLY FLAT MANIFOLDS RALPH HOWARD DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTH CAROLINA COLUMBIA, S.C. 29208, USA HOWARD@MATH.SC.EDU 1. Introduction These are notes to that show

More information

Notes for Math 535 Differential Geometry Spring Francis Bonahon. Department of Mathematics, University of Southern California

Notes for Math 535 Differential Geometry Spring Francis Bonahon. Department of Mathematics, University of Southern California Notes for Math 535 Differential Geometry Spring 2016 Francis Bonahon Department of Mathematics, University of Southern California Date of this version: April 27, 2016 c Francis Bonahon 2016 CHAPTER 1 A

More information

with a given direct sum decomposition into even and odd pieces, and a map which is bilinear, satisfies the associative law for multiplication, and

with a given direct sum decomposition into even and odd pieces, and a map which is bilinear, satisfies the associative law for multiplication, and Chapter 2 Rules of calculus. 2.1 Superalgebras. A (commutative associative) superalgebra is a vector space A = A even A odd with a given direct sum decomposition into even and odd pieces, and a map A A

More information

DIFFERENTIAL TOPOLOGY AND THE POINCARÉ-HOPF THEOREM

DIFFERENTIAL TOPOLOGY AND THE POINCARÉ-HOPF THEOREM DIFFERENTIAL TOPOLOGY AND THE POINCARÉ-HOPF THEOREM ARIEL HAFFTKA 1. Introduction In this paper we approach the topology of smooth manifolds using differential tools, as opposed to algebraic ones such

More information

1 The Local-to-Global Lemma

1 The Local-to-Global Lemma Point-Set Topology Connectedness: Lecture 2 1 The Local-to-Global Lemma In the world of advanced mathematics, we are often interested in comparing the local properties of a space to its global properties.

More information

DEVELOPMENT OF MORSE THEORY

DEVELOPMENT OF MORSE THEORY DEVELOPMENT OF MORSE THEORY MATTHEW STEED Abstract. In this paper, we develop Morse theory, which allows us to determine topological information about manifolds using certain real-valued functions defined

More information

BACKGROUND IN SYMPLECTIC GEOMETRY

BACKGROUND IN SYMPLECTIC GEOMETRY BACKGROUND IN SYMPLECTIC GEOMETRY NILAY KUMAR Today I want to introduce some of the symplectic structure underlying classical mechanics. The key idea is actually quite old and in its various formulations

More information

Vector fields Lecture 2

Vector fields Lecture 2 Vector fields Lecture 2 Let U be an open subset of R n and v a vector field on U. We ll say that v is complete if, for every p U, there exists an integral curve, γ : R U with γ(0) = p, i.e., for every

More information

Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra

Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra Algebraic Varieties Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra Algebraic varieties represent solutions of a system of polynomial

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Randall R. Holmes Auburn University Typeset by AMS-TEX Chapter 1. Metric Spaces 1. Definition and Examples. As the course progresses we will need to review some basic notions about

More information

PICARD S THEOREM STEFAN FRIEDL

PICARD S THEOREM STEFAN FRIEDL PICARD S THEOREM STEFAN FRIEDL Abstract. We give a summary for the proof of Picard s Theorem. The proof is for the most part an excerpt of [F]. 1. Introduction Definition. Let U C be an open subset. A

More information

Let V, W be two finite-dimensional vector spaces over R. We are going to define a new vector space V W with two properties:

Let V, W be two finite-dimensional vector spaces over R. We are going to define a new vector space V W with two properties: 5 Tensor products We have so far encountered vector fields and the derivatives of smooth functions as analytical objects on manifolds. These are examples of a general class of objects called tensors which

More information

satisfying the following condition: If T : V V is any linear map, then µ(x 1,,X n )= det T µ(x 1,,X n ).

satisfying the following condition: If T : V V is any linear map, then µ(x 1,,X n )= det T µ(x 1,,X n ). ensities Although differential forms are natural objects to integrate on manifolds, and are essential for use in Stoke s theorem, they have the disadvantage of requiring oriented manifolds in order for

More information

Transversality. Abhishek Khetan. December 13, Basics 1. 2 The Transversality Theorem 1. 3 Transversality and Homotopy 2

Transversality. Abhishek Khetan. December 13, Basics 1. 2 The Transversality Theorem 1. 3 Transversality and Homotopy 2 Transversality Abhishek Khetan December 13, 2017 Contents 1 Basics 1 2 The Transversality Theorem 1 3 Transversality and Homotopy 2 4 Intersection Number Mod 2 4 5 Degree Mod 2 4 1 Basics Definition. Let

More information

Lecture 8. Connections

Lecture 8. Connections Lecture 8. Connections This lecture introduces connections, which are the machinery required to allow differentiation of vector fields. 8.1 Differentiating vector fields. The idea of differentiating vector

More information

NOTES ON DIFFERENTIAL FORMS. PART 1: FORMS ON R n

NOTES ON DIFFERENTIAL FORMS. PART 1: FORMS ON R n NOTES ON DIFFERENTIAL FORMS. PART 1: FORMS ON R n 1. What is a form? Since we re not following the development in Guillemin and Pollack, I d better write up an alternate approach. In this approach, we

More information

COMPLEX ANALYSIS AND RIEMANN SURFACES

COMPLEX ANALYSIS AND RIEMANN SURFACES COMPLEX ANALYSIS AND RIEMANN SURFACES KEATON QUINN 1 A review of complex analysis Preliminaries The complex numbers C are a 1-dimensional vector space over themselves and so a 2-dimensional vector space

More information

SYMPLECTIC LEFSCHETZ FIBRATIONS ALEXANDER CAVIEDES CASTRO

SYMPLECTIC LEFSCHETZ FIBRATIONS ALEXANDER CAVIEDES CASTRO SYMPLECTIC LEFSCHETZ FIBRATIONS ALEXANDER CAVIEDES CASTRO. Introduction A Lefschetz pencil is a construction that comes from algebraic geometry, but it is closely related with symplectic geometry. Indeed,

More information

LECTURE 8: THE SECTIONAL AND RICCI CURVATURES

LECTURE 8: THE SECTIONAL AND RICCI CURVATURES LECTURE 8: THE SECTIONAL AND RICCI CURVATURES 1. The Sectional Curvature We start with some simple linear algebra. As usual we denote by ( V ) the set of 4-tensors that is anti-symmetric with respect to

More information

Chapter 4. Inverse Function Theorem. 4.1 The Inverse Function Theorem

Chapter 4. Inverse Function Theorem. 4.1 The Inverse Function Theorem Chapter 4 Inverse Function Theorem d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d dd d d d d This chapter

More information

SARD S THEOREM ALEX WRIGHT

SARD S THEOREM ALEX WRIGHT SARD S THEOREM ALEX WRIGHT Abstract. A proof of Sard s Theorem is presented, and applications to the Whitney Embedding and Immersion Theorems, the existence of Morse functions, and the General Position

More information

Vector fields and one forms. v : M TM

Vector fields and one forms. v : M TM Vector fields and one forms Definition 1. A C k vector field on M is a C k map so that for all p M, v(p) T p M. v : M TM You should think of this as a C k choice of vector in T p M for all p M. We can

More information

Differential Topology Solution Set #2

Differential Topology Solution Set #2 Differential Topology Solution Set #2 Select Solutions 1. Show that X compact implies that any smooth map f : X Y is proper. Recall that a space is called compact if, for every cover {U } by open sets

More information

Lecture Notes a posteriori for Math 201

Lecture Notes a posteriori for Math 201 Lecture Notes a posteriori for Math 201 Jeremy Kahn September 22, 2011 1 Tuesday, September 13 We defined the tangent space T p M of a manifold at a point p, and the tangent bundle T M. Zev Choroles gave

More information

1. Classifying Spaces. Classifying Spaces

1. Classifying Spaces. Classifying Spaces Classifying Spaces 1. Classifying Spaces. To make our lives much easier, all topological spaces from now on will be homeomorphic to CW complexes. Fact: All smooth manifolds are homeomorphic to CW complexes.

More information

REAL AND COMPLEX SMOOTH MANIFOLDS

REAL AND COMPLEX SMOOTH MANIFOLDS CHAPTER 4 REAL AND COMPLEX SMOOTH MANIFOLDS Abridged version from Introduction to Modern Topology and Geometry by Anatole Katok and Alexey Sossinsky The notion of smooth or differentiable manifold is one

More information

Differential Geometry (preliminary draft) Massimiliano Mella

Differential Geometry (preliminary draft) Massimiliano Mella Differential Geometry (preliminary draft) Massimiliano Mella Introduction These notes are intended for an undergraduate level third year. It is a pleasure to thank C. Bisi for a carefull reading. CHAPTER

More information

An Introduction to Differential Topology, (Subject to permanent revision)

An Introduction to Differential Topology, (Subject to permanent revision) An Introduction to Differential Topology, de Rham Theory and Morse Theory (Subject to permanent revision) Michael Müger Department of Mathematics, Radboud University Nijmegen, The Netherlands email: mueger@math.ru.nl

More information

2. Intersection Multiplicities

2. Intersection Multiplicities 2. Intersection Multiplicities 11 2. Intersection Multiplicities Let us start our study of curves by introducing the concept of intersection multiplicity, which will be central throughout these notes.

More information

Lecture 4 Super Lie groups

Lecture 4 Super Lie groups Lecture 4 Super Lie groups In this lecture we want to take a closer look to supermanifolds with a group structure: Lie supergroups or super Lie groups. As in the ordinary setting, a super Lie group is

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37 RAVI VAKIL CONTENTS 1. Motivation and game plan 1 2. The affine case: three definitions 2 Welcome back to the third quarter! The theme for this quarter, insofar

More information

Introduction to Computational Manifolds and Applications

Introduction to Computational Manifolds and Applications IMPA - Instituto de Matemática Pura e Aplicada, Rio de Janeiro, RJ, Brazil Introduction to Computational Manifolds and Applications Part 1 - Foundations Prof. Jean Gallier jean@cis.upenn.edu Department

More information

Let us recall in a nutshell the definition of some important algebraic structure, increasingly more refined than that of group.

Let us recall in a nutshell the definition of some important algebraic structure, increasingly more refined than that of group. Chapter 1 SOME MATHEMATICAL TOOLS 1.1 Some definitions in algebra Let us recall in a nutshell the definition of some important algebraic structure, increasingly more refined than that of group. Ring A

More information

SISSA Differential Geometry

SISSA Differential Geometry SISSA Differential Geometry Boris DUBROVIN Contents 1 Geometry of Manifolds 3 1.1 Definition of smooth manifolds.......................... 3 1.2 Tangent space to a manifold............................

More information

Algebraic geometry of the ring of continuous functions

Algebraic geometry of the ring of continuous functions Algebraic geometry of the ring of continuous functions Nicolas Addington October 27 Abstract Maximal ideals of the ring of continuous functions on a compact space correspond to points of the space. For

More information

LECTURE 26: THE CHERN-WEIL THEORY

LECTURE 26: THE CHERN-WEIL THEORY LECTURE 26: THE CHERN-WEIL THEORY 1. Invariant Polynomials We start with some necessary backgrounds on invariant polynomials. Let V be a vector space. Recall that a k-tensor T k V is called symmetric if

More information

Lifting Smooth Homotopies of Orbit Spaces of Proper Lie Group Actions

Lifting Smooth Homotopies of Orbit Spaces of Proper Lie Group Actions Journal of Lie Theory Volume 15 (2005) 447 456 c 2005 Heldermann Verlag Lifting Smooth Homotopies of Orbit Spaces of Proper Lie Group Actions Marja Kankaanrinta Communicated by J. D. Lawson Abstract. By

More information

Math 147, Homework 5 Solutions Due: May 15, 2012

Math 147, Homework 5 Solutions Due: May 15, 2012 Math 147, Homework 5 Solutions Due: May 15, 2012 1 Let f : R 3 R 6 and φ : R 3 R 3 be the smooth maps defined by: f(x, y, z) = (x 2, y 2, z 2, xy, xz, yz) and φ(x, y, z) = ( x, y, z) (a) Show that f is

More information

THE INVERSE FUNCTION THEOREM

THE INVERSE FUNCTION THEOREM THE INVERSE FUNCTION THEOREM W. PATRICK HOOPER The implicit function theorem is the following result: Theorem 1. Let f be a C 1 function from a neighborhood of a point a R n into R n. Suppose A = Df(a)

More information

MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, Elementary tensor calculus

MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, Elementary tensor calculus MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, 205 Elementary tensor calculus We will study in this section some basic multilinear algebra and operations on tensors. Let

More information