f(x, y) = 1 2 x y2 xy 3

Size: px
Start display at page:

Download "f(x, y) = 1 2 x y2 xy 3"

Transcription

1 Problem. Find the critical points of the function and determine their nature. We have We find the critical points We calculate f(x, y) = 2 x y2 xy 3 f x = x y 3 = 0 = x = y 3 f y = 3y 3xy 2 = 0 = y = xy 2 = y = y 5 = y = 0, y =, or y =. (0, 0), (, ) (, ). f xx =, f xy = 3y 2, f yy = 3 6xy. At the critical point (0, 0) the Hessian is [ ] 0 H f = 0 3 which is positive definite, hence (0, 0) is a local minimum. At (x, y) = ±(, ), the Hessian is [ ] 3 H f = 3 3 which has negative determinant, hence it is definite, so ±(, ) are both saddle points.

2 Problem 2. Consider the function f(x, y) = y2 x 4. (i) Draw the level curves of f. (ii) At the point P (, ), find the unit direction of steepest increase for f. (iiii) For the vector u = 4 i+3 j 5, find the directional derivative of f at P in the direction u, and use it to estimate f((, ) +.0 u). (i) The function f is undefined at x = 0. The level curves of f are f(x, y) = c y 2 = cx 4 y = ± cx 2. When c > 0, we get two arches of a parabola i.e. the parabola minus the point (0, 0). When c = 0, we get the axis y = 0 minus the point (0, 0). (ii) We calculate the gradient f = ( 4y2 x 5, 2y ) x 4 which at P equals f(p ) = ( 4, 2). The unit direction of steepest increase is (iii) We have We obtain u = f ( 4, 2) ( 2, ) = =. f 20 5 ( 4 u f = f u = ( 4, 2) 5, 3 ) = 2. 5 f((, ) +.0 u)) f(, ) +.0 u f =.02 =.98.

3 Problem 3. Show that the function f : R 2 R 2 given by f(x, y) = (e x + e 2y, e 3y + e 2x ) is locally invertible at every point. We calculate the Jacobian [ ] e x 2e J f = 2y which has determinant det J f = 3e x+3y 4e 2x+2y 0. Thus J f is invertible at every point, so by the inverse function theorem, f is a local isomorphism. 2e 2x 3e 3y

4 Problem 4. Consider the region R given by x 2 + 4y Find the global minimum and global maximum of the function f(x, y) = 2 + 8y x 2 y 2 over the region R. We find the critical point of f in the interior of R. We have f x = 2x = 0 = x = 0 f y = 8 2y = 0 = y = 9. The point (0, 9) is however not in the interior of R. We use Lagrange multipliers to optimize f on the boundary of R which is g(x, y) = x 2 + 4y 2 = 00. We have f = λ g ( 2x, 2y + 8) = λ(2x, 8y) or else g = (2x, 8y) = 0 = x = y = 0 which however does not lie on the boundary. We must have x = λx = x = 0 or λ =, y + 9 = 4λy. If x = 0, then y = ±5 since x 2 + 4y 2 = 00, and f(0, 5) = 67 while f(0, 5) = 3. If λ = we obtain y + 9 = 4y hence y = 3. We must have x = ±8 and f(±8, 3) = 25. The global minimum occurs at (±8, 3) while the global maximum is at (0, 5).

5 Problem 5. [7 points.] Consider the functions Calculate at (x, y, z) = ( 2,, ). f(x, y, z) = (x 2 + 3xy, z cos x, z ln y) g(a, b, c) = ab(c + ) sin c. (g f) x and We calculate 2x + 3y 3x 0 Df = z sin x 0 cos x ln y 0 z y Dg = (b(c + ) sin c, a(c + ) sin c, ab(sin c + (c + ) cos c)). For (x, y, z) = ( 2,, ) we have a = 2, b = cos( 2), c = 0. Thus Dg( 2, cos 2, 0) = (0, 0, 2 cos 2) and 6 0 Dg( 2, cos 2, 0) Df( 2,, ) = (0, 0, 2 cos 2) sin 2 0 cos The first entry in the product is 0 hence (g f) = 0. x

6 Problem 6. Calculate the limits below or explain why they do not exist (i) lim x,y,z 0 x 2 y 2 z 2 x 4 +y 4 +z 4. (ii) lim x,y 0 xy 2 x 2 +4y 4. (i) When y z, we have y 2 z 2 z 4 x 4 + y 4 + z 4, hence y 2 z 2 x 4 + y 4 + z 4 = 0 x 2 y 2 z 2 x 4 + y 4 + z 4 x2 0. The limit is 0 by the squeeze theorem. When y > z, the argument is similar. (ii) If we let x, y 0 along the parabola x = my 2, the fraction becomes xy 2 x 2 + 4y 4 = my 4 m 2 y 4 + 4y 4 = m m This does depend on m, hence the limit does not exist.

7 Problem 7. Find the closest point to the origin lying on both planes x y 2z = 5, 2x y + 2z = 8. We use Lagrange multipliers to minimize the function f(x, y, z) = x 2 + y 2 + z 2. We have f = λ(,, 2) + µ(2,, 2) which gives We have We have (2x, 2y, 2z) = (λ + 2µ, λ µ, 2λ + 2µ). x = λ 2 + µ, y = λ 2 µ, z = λ + µ. 2 x y 2z = 5 = 3λ µ 2 = 5 2x y + 2z = 6 = λ 2 + 9µ 2 = 8. We solve λ = 2 and µ = 2 hence x = 3, y = 2, z = 0. The point is (3, 2, 0).

8 Problem 8. Consider the surface S R 3 with equation xy 2 z 3 = 0 in the first octant. (i) Show that γ : R 2 R 3 given by is a parametrization of S for u, v > 0. γ(u, v) = (u 3, v 3, uv 2 ) (ii) Using this parametrization, find vectors spanning the tangent plane to S at (,, ). (i) Clearly, the image of γ is in S. We show γ is bijective. Indeed, the inverse is given by u = x 3, y = v 3 = x = u 3, y = v 3 = z 3 = u 3 v 6 = z = uv 2. We show that Dγ(u, v) is injective. Indeed, we calculate 3u 2 0 Dγ(u, v) = 0 3v 2. v 2 2uv Clearly, the columns of Dγ are linearly independent since otherwise u = v = 0 which is not allowed. (ii) The tangent plane is the column space of Dγ(, ) which is spanned by the columns of Dγ(, ). The 3 0 basis is given by 0, 3. 2

9 Problem 9. Prove that the function f(x, y, z) = { x 7 x 6 +y 6 +z 6 if (x, y, z) (0, 0, 0) 0 if (x, y, z) = (0, 0, 0) admits all directional derivatives, but it is not differentiable. We fix a unit vector u = (u, u 2, u 3 ) and we use the definition of directional derivative to calculate f u = lim f(hu) f(0) f(hu) h 7 u 7 = lim = lim h 0 h h 0 h h 0 h 6 (u 6 + u6 2 + u6 3 ) h = u 7 u 6 + u u6 3 Thus directional all directional derivatives exist. Note that for the vectors u = i, we have f x = while for u = j and v = k, we obtain f y = f z = 0. Thus, if f is differentiable, its derivative equals the Jacobian which is Df(0, 0, 0) = (, 0, 0). But then f u = Df u = (, 0, 0) (u, u 2, u 3 ) = u which is not the answer we found above. Therefore, f is not differentiable at the origin.

10 Problem 0. Consider the surface S R 4 given by the equations x 2 + y 2 xz + w 2 = 2 xyz xw + z 2 + w 2 = 2. (i) Show that S is a smooth manifold near (, 0, 0, ). (ii) Show that near (, 0, 0, ) we can solve for z, w in terms of x and y: (z, w) = g(x, y). (iii) Find the derivative of g at (, 0). (iv) Find vectors spanning the tangent plane to S at (, 0, 0, ). (i) We calculate the derivative of the two equations to obtain the matrix [ ] 2x z 2y x 2w. yz w xz 2z xy x + 2w At (, 0, 0, ) this matrix becomes [ 2 0 ] This is clearly surjective since the columns span R 2. The result follows from the implicit function theorem. (ii) In fact, since the second block g of class C. (iii) We have Dg(, 0) = [ ] 2 is invertible, we can solve (z, w) = g(x, y) for some function 0 [ ] [ ] = [ ] [ ] = [ ] (iv) The tangent plane is the null space of the matrix [ ] We can either row reduce, or we can observe that the vectors 0 4, 0 are in the nullspace. 0

11 Problem. Consider U the set of n n matrices A such that 2I A 2 is invertible. (i) Prove that U is an open set in Mat n n. (ii) Find the derivative of the function f(a) = (2I A 2 ) at A = I. [ + (iii) Using linear approximation, estimate the inverse of 2I A 2 where A = (i) We let F (A) = det(2i A 2 ). The function F is a composition of two continuous functions, the determinant and the function A 2I A 2. Thus F is continuous. We have that U is the preimage of the open set R \ {0} under the continuous function F, hence U is open. (ii) We have f = g h where g(b) = B and h(a) = 2I A 2. We calculated in class the derivative ]. Dg(B)(H) = B HB = Dg(I)(H) = H and We have Dh(A)(H) = AH HA = Dh(I)(H) = 2H. Df(I) = Dg(h(I)) Dh(I) = Dg(I) Dh(I) = Df(I)(H) = 2H. (iii) By linear approximation, we have f(i + H) f(i) + Df(I)(H) = I + 2H = (2I A 2 ) I + 2 [ ] [ + = ]

Math 10C - Fall Final Exam

Math 10C - Fall Final Exam Math 1C - Fall 217 - Final Exam Problem 1. Consider the function f(x, y) = 1 x 2 (y 1) 2. (i) Draw the level curve through the point P (1, 2). Find the gradient of f at the point P and draw the gradient

More information

PRACTICE PROBLEMS FOR MIDTERM I

PRACTICE PROBLEMS FOR MIDTERM I Problem. Find the limits or explain why they do not exist (i) lim x,y 0 x +y 6 x 6 +y ; (ii) lim x,y,z 0 x 6 +y 6 +z 6 x +y +z. (iii) lim x,y 0 sin(x +y ) x +y Problem. PRACTICE PROBLEMS FOR MIDTERM I

More information

Math 147, Homework 1 Solutions Due: April 10, 2012

Math 147, Homework 1 Solutions Due: April 10, 2012 1. For what values of a is the set: Math 147, Homework 1 Solutions Due: April 10, 2012 M a = { (x, y, z) : x 2 + y 2 z 2 = a } a smooth manifold? Give explicit parametrizations for open sets covering M

More information

e x3 dx dy. 0 y x 2, 0 x 1.

e x3 dx dy. 0 y x 2, 0 x 1. Problem 1. Evaluate by changing the order of integration y e x3 dx dy. Solution:We change the order of integration over the region y x 1. We find and x e x3 dy dx = y x, x 1. x e x3 dx = 1 x=1 3 ex3 x=

More information

Name: Instructor: Lecture time: TA: Section time:

Name: Instructor: Lecture time: TA: Section time: Math 2220 Prelim 1 February 17, 2009 Name: Instructor: Lecture time: TA: Section time: INSTRUCTIONS READ THIS NOW This test has 6 problems on 7 pages worth a total of 100 points. Look over your test package

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

Multivariable Calculus and Matrix Algebra-Summer 2017

Multivariable Calculus and Matrix Algebra-Summer 2017 Multivariable Calculus and Matrix Algebra-Summer 017 Homework 4 Solutions Note that the solutions below are for the latest version of the problems posted. For those of you who worked on an earlier version

More information

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29 Practice problems for Exam.. Given a = and b =. Find the area of the parallelogram with adjacent sides a and b. A = a b a ı j k b = = ı j + k = ı + 4 j 3 k Thus, A = 9. a b = () + (4) + ( 3)

More information

MATH20132 Calculus of Several Variables. 2018

MATH20132 Calculus of Several Variables. 2018 MATH20132 Calculus of Several Variables 2018 Solutions to Problems 8 Lagrange s Method 1 For x R 2 let fx = x 2 3xy +y 2 5x+5y i Find the critical values of fx in R 2, ii Findthecriticalvaluesoffxrestrictedtotheparametriccurvet

More information

Differential Topology Solution Set #2

Differential Topology Solution Set #2 Differential Topology Solution Set #2 Select Solutions 1. Show that X compact implies that any smooth map f : X Y is proper. Recall that a space is called compact if, for every cover {U } by open sets

More information

1. For each function, find all of its critical points and then classify each point as a local extremum or saddle point.

1. For each function, find all of its critical points and then classify each point as a local extremum or saddle point. Solutions Review for Exam # Math 6. For each function, find all of its critical points and then classify each point as a local extremum or saddle point. a fx, y x + 6xy + y Solution.The gradient of f is

More information

Implicit Functions, Curves and Surfaces

Implicit Functions, Curves and Surfaces Chapter 11 Implicit Functions, Curves and Surfaces 11.1 Implicit Function Theorem Motivation. In many problems, objects or quantities of interest can only be described indirectly or implicitly. It is then

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homework 5 1.7 Problem. f = x 2 y, y 2 x. If we solve f = 0, we can find two solutions (0, 0) and (1, 1). At (0, 0), f xx = 0, f yy = 0, f xy = and D = f xx f yy fxy 2 < 0, therefore (0, 0)

More information

z 2 = 1 4 (x 2) + 1 (y 6)

z 2 = 1 4 (x 2) + 1 (y 6) MA 5 Fall 007 Exam # Review Solutions. Consider the function fx, y y x. a Sketch the domain of f. For the domain, need y x 0, i.e., y x. - - - 0 0 - - - b Sketch the level curves fx, y k for k 0,,,. The

More information

McGill University April Calculus 3. Tuesday April 29, 2014 Solutions

McGill University April Calculus 3. Tuesday April 29, 2014 Solutions McGill University April 4 Faculty of Science Final Examination Calculus 3 Math Tuesday April 9, 4 Solutions Problem (6 points) Let r(t) = (t, cos t, sin t). i. Find the velocity r (t) and the acceleration

More information

3 Applications of partial differentiation

3 Applications of partial differentiation Advanced Calculus Chapter 3 Applications of partial differentiation 37 3 Applications of partial differentiation 3.1 Stationary points Higher derivatives Let U R 2 and f : U R. The partial derivatives

More information

Chapter 3. Differentiable Mappings. 1. Differentiable Mappings

Chapter 3. Differentiable Mappings. 1. Differentiable Mappings Chapter 3 Differentiable Mappings 1 Differentiable Mappings Let V and W be two linear spaces over IR A mapping L from V to W is called a linear mapping if L(u + v) = Lu + Lv for all u, v V and L(λv) =

More information

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

7a3 2. (c) πa 3 (d) πa 3 (e) πa3 1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

More information

MATH Midterm 1 Sample 4

MATH Midterm 1 Sample 4 1. (15 marks) (a) (4 marks) Given the function: f(x, y) = arcsin x 2 + y, find its first order partial derivatives at the point (0, 3). Simplify your answers. Solution: Compute the first order partial

More information

Math 61CM - Quick answer key to section problems Fall 2018

Math 61CM - Quick answer key to section problems Fall 2018 Math 6CM - Quick answer key to section problems Fall 08 Cédric De Groote These are NOT complete solutions! You are always expected to write down all the details and justify everything. This document is

More information

Practice Midterm 2 Math 2153

Practice Midterm 2 Math 2153 Practice Midterm 2 Math 23. Decide if the following statements are TRUE or FALSE and circle your answer. You do NOT need to justify your answers. (a) ( point) If both partial derivatives f x and f y exist

More information

Math 207 Honors Calculus III Final Exam Solutions

Math 207 Honors Calculus III Final Exam Solutions Math 207 Honors Calculus III Final Exam Solutions PART I. Problem 1. A particle moves in the 3-dimensional space so that its velocity v(t) and acceleration a(t) satisfy v(0) = 3j and v(t) a(t) = t 3 for

More information

Linear Algebra Review

Linear Algebra Review Linear Algebra Review ORIE 4741 September 1, 2017 Linear Algebra Review September 1, 2017 1 / 33 Outline 1 Linear Independence and Dependence 2 Matrix Rank 3 Invertible Matrices 4 Norms 5 Projection Matrix

More information

MA102: Multivariable Calculus

MA102: Multivariable Calculus MA102: Multivariable Calculus Rupam Barman and Shreemayee Bora Department of Mathematics IIT Guwahati Differentiability of f : U R n R m Definition: Let U R n be open. Then f : U R n R m is differentiable

More information

Math 212-Lecture Interior critical points of functions of two variables

Math 212-Lecture Interior critical points of functions of two variables Math 212-Lecture 24 13.10. Interior critical points of functions of two variables Previously, we have concluded that if f has derivatives, all interior local min or local max should be critical points.

More information

Math 2163, Practice Exam II, Solution

Math 2163, Practice Exam II, Solution Math 63, Practice Exam II, Solution. (a) f =< f s, f t >=< s e t, s e t >, an v v = , so D v f(, ) =< ()e, e > =< 4, 4 > = 4. (b) f =< xy 3, 3x y 4y 3 > an v =< cos π, sin π >=, so

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

Math 118, Fall 2014 Final Exam

Math 118, Fall 2014 Final Exam Math 8, Fall 4 Final Exam True or false Please circle your choice; no explanation is necessary True There is a linear transformation T such that T e ) = e and T e ) = e Solution Since T is linear, if T

More information

0.1 Tangent Spaces and Lagrange Multipliers

0.1 Tangent Spaces and Lagrange Multipliers 01 TANGENT SPACES AND LAGRANGE MULTIPLIERS 1 01 Tangent Spaces and Lagrange Multipliers If a differentiable function G = (G 1,, G k ) : E n+k E k then the surface S defined by S = { x G( x) = v} is called

More information

Method of Lagrange Multipliers

Method of Lagrange Multipliers Method of Lagrange Multipliers A. Salih Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram September 2013 Lagrange multiplier method is a technique

More information

Solutions to Homework 7

Solutions to Homework 7 Solutions to Homework 7 Exercise #3 in section 5.2: A rectangular box is inscribed in a hemisphere of radius r. Find the dimensions of the box of maximum volume. Solution: The base of the rectangular box

More information

can only hit 3 points in the codomain. Hence, f is not surjective. For another example, if n = 4

can only hit 3 points in the codomain. Hence, f is not surjective. For another example, if n = 4 .. Conditions for Injectivity and Surjectivity In this section, we discuss what we can say about linear maps T : R n R m given only m and n. We motivate this problem by looking at maps f : {,..., n} {,...,

More information

Course Summary Math 211

Course Summary Math 211 Course Summary Math 211 table of contents I. Functions of several variables. II. R n. III. Derivatives. IV. Taylor s Theorem. V. Differential Geometry. VI. Applications. 1. Best affine approximations.

More information

Lecture 13 - Wednesday April 29th

Lecture 13 - Wednesday April 29th Lecture 13 - Wednesday April 29th jacques@ucsdedu Key words: Systems of equations, Implicit differentiation Know how to do implicit differentiation, how to use implicit and inverse function theorems 131

More information

CALCULUS: Math 21C, Fall 2010 Final Exam: Solutions. 1. [25 pts] Do the following series converge or diverge? State clearly which test you use.

CALCULUS: Math 21C, Fall 2010 Final Exam: Solutions. 1. [25 pts] Do the following series converge or diverge? State clearly which test you use. CALCULUS: Math 2C, Fall 200 Final Exam: Solutions. [25 pts] Do the following series converge or diverge? State clearly which test you use. (a) (d) n(n + ) ( ) cos n n= n= (e) (b) n= n= [ cos ( ) n n (c)

More information

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w.

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w. Math, Final Exam, Spring Problem Solution. Consider three position vectors (tails are the origin): u,, v 4,, w,, (a) Find an equation of the plane passing through the tips of u, v, and w. (b) Find an equation

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

Math Topology II: Smooth Manifolds. Spring Homework 2 Solution Submit solutions to the following problems:

Math Topology II: Smooth Manifolds. Spring Homework 2 Solution Submit solutions to the following problems: Math 132 - Topology II: Smooth Manifolds. Spring 2017. Homework 2 Solution Submit solutions to the following problems: 1. Let H = {a + bi + cj + dk (a, b, c, d) R 4 }, where i 2 = j 2 = k 2 = 1, ij = k,

More information

Tangent spaces, normals and extrema

Tangent spaces, normals and extrema Chapter 3 Tangent spaces, normals and extrema If S is a surface in 3-space, with a point a S where S looks smooth, i.e., without any fold or cusp or self-crossing, we can intuitively define the tangent

More information

Solutions to old Exam 3 problems

Solutions to old Exam 3 problems Solutions to old Exam 3 problems Hi students! I am putting this version of my review for the Final exam review here on the web site, place and time to be announced. Enjoy!! Best, Bill Meeks PS. There are

More information

Pullbacks, Isometries & Conformal Maps

Pullbacks, Isometries & Conformal Maps Pullbacks, Isometries & Conformal Maps Outline 1. Pullbacks Let V and W be vector spaces, and let T : V W be an injective linear transformation. Given an inner product, on W, the pullback of, is the inner

More information

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere. MATH 4 FINAL EXAM REVIEW QUESTIONS Problem. a) The points,, ) and,, 4) are the endpoints of a diameter of a sphere. i) Determine the center and radius of the sphere. ii) Find an equation for the sphere.

More information

LB 220 Homework 4 Solutions

LB 220 Homework 4 Solutions LB 220 Homework 4 Solutions Section 11.4, # 40: This problem was solved in class on Feb. 03. Section 11.4, # 42: This problem was also solved in class on Feb. 03. Section 11.4, # 43: Also solved in class

More information

0 Sets and Induction. Sets

0 Sets and Induction. Sets 0 Sets and Induction Sets A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a A to denote that a is an element of the set

More information

3. Minimization with constraints Problem III. Minimize f(x) in R n given that x satisfies the equality constraints. g j (x) = c j, j = 1,...

3. Minimization with constraints Problem III. Minimize f(x) in R n given that x satisfies the equality constraints. g j (x) = c j, j = 1,... 3. Minimization with constraints Problem III. Minimize f(x) in R n given that x satisfies the equality constraints g j (x) = c j, j = 1,..., m < n, where c 1,..., c m are given numbers. Theorem 3.1. Let

More information

Transpose & Dot Product

Transpose & Dot Product Transpose & Dot Product Def: The transpose of an m n matrix A is the n m matrix A T whose columns are the rows of A. So: The columns of A T are the rows of A. The rows of A T are the columns of A. Example:

More information

Review for the Final Exam

Review for the Final Exam Calculus 3 Lia Vas Review for the Final Exam. Sequences. Determine whether the following sequences are convergent or divergent. If they are convergent, find their limits. (a) a n = ( 2 ) n (b) a n = n+

More information

Partial Derivatives. w = f(x, y, z).

Partial Derivatives. w = f(x, y, z). Partial Derivatives 1 Functions of Several Variables So far we have focused our attention of functions of one variable. These functions model situations in which a variable depends on another independent

More information

Calculus 2 A collection of solved exercises

Calculus 2 A collection of solved exercises Czech Technical University in Prague Calculus A collection of solved exercises Miroslav Korbelář Paola Vivi Department of Mathematics Faculty of Electrical Engineering Prague 16 Contents 1 Sets in R n

More information

Faculty of Engineering, Mathematics and Science School of Mathematics

Faculty of Engineering, Mathematics and Science School of Mathematics Faculty of Engineering, Mathematics and Science School of Mathematics GROUPS Trinity Term 06 MA3: Advanced Calculus SAMPLE EXAM, Solutions DAY PLACE TIME Prof. Larry Rolen Instructions to Candidates: Attempt

More information

Math 265H: Calculus III Practice Midterm II: Fall 2014

Math 265H: Calculus III Practice Midterm II: Fall 2014 Name: Section #: Math 65H: alculus III Practice Midterm II: Fall 14 Instructions: This exam has 7 problems. The number of points awarded for each question is indicated in the problem. Answer each question

More information

Section 3.5 The Implicit Function Theorem

Section 3.5 The Implicit Function Theorem Section 3.5 The Implicit Function Theorem THEOREM 11 (Special Implicit Function Theorem): Suppose that F : R n+1 R has continuous partial derivatives. Denoting points in R n+1 by (x, z), where x R n and

More information

Transpose & Dot Product

Transpose & Dot Product Transpose & Dot Product Def: The transpose of an m n matrix A is the n m matrix A T whose columns are the rows of A. So: The columns of A T are the rows of A. The rows of A T are the columns of A. Example:

More information

0, otherwise. Find each of the following limits, or explain that the limit does not exist.

0, otherwise. Find each of the following limits, or explain that the limit does not exist. Midterm Solutions 1, y x 4 1. Let f(x, y) = 1, y 0 0, otherwise. Find each of the following limits, or explain that the limit does not exist. (a) (b) (c) lim f(x, y) (x,y) (0,1) lim f(x, y) (x,y) (2,3)

More information

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AB Fall Final Exam Review 200-20 Name Date Period MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) The position of a particle

More information

EC /11. Math for Microeconomics September Course, Part II Lecture Notes. Course Outline

EC /11. Math for Microeconomics September Course, Part II Lecture Notes. Course Outline LONDON SCHOOL OF ECONOMICS Professor Leonardo Felli Department of Economics S.478; x7525 EC400 20010/11 Math for Microeconomics September Course, Part II Lecture Notes Course Outline Lecture 1: Tools for

More information

Math Advanced Calculus II

Math Advanced Calculus II Math 452 - Advanced Calculus II Manifolds and Lagrange Multipliers In this section, we will investigate the structure of critical points of differentiable functions. In practice, one often is trying to

More information

REVIEW OF DIFFERENTIAL CALCULUS

REVIEW OF DIFFERENTIAL CALCULUS REVIEW OF DIFFERENTIAL CALCULUS DONU ARAPURA 1. Limits and continuity To simplify the statements, we will often stick to two variables, but everything holds with any number of variables. Let f(x, y) be

More information

Differential Geometry qualifying exam 562 January 2019 Show all your work for full credit

Differential Geometry qualifying exam 562 January 2019 Show all your work for full credit Differential Geometry qualifying exam 562 January 2019 Show all your work for full credit 1. (a) Show that the set M R 3 defined by the equation (1 z 2 )(x 2 + y 2 ) = 1 is a smooth submanifold of R 3.

More information

Differential Geometry III, Solutions 6 (Week 6)

Differential Geometry III, Solutions 6 (Week 6) Durham University Pavel Tumarkin Michaelmas 016 Differential Geometry III, Solutions 6 Week 6 Surfaces - 1 6.1. Let U R be an open set. Show that the set {x, y, z R 3 z = 0 and x, y U} is a regular surface.

More information

Calculus 2502A - Advanced Calculus I Fall : Local minima and maxima

Calculus 2502A - Advanced Calculus I Fall : Local minima and maxima Calculus 50A - Advanced Calculus I Fall 014 14.7: Local minima and maxima Martin Frankland November 17, 014 In these notes, we discuss the problem of finding the local minima and maxima of a function.

More information

ENGI Partial Differentiation Page y f x

ENGI Partial Differentiation Page y f x ENGI 3424 4 Partial Differentiation Page 4-01 4. Partial Differentiation For functions of one variable, be found unambiguously by differentiation: y f x, the rate of change of the dependent variable can

More information

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. MATH 311-504 Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij

More information

Optimization and Calculus

Optimization and Calculus Optimization and Calculus To begin, there is a close relationship between finding the roots to a function and optimizing a function. In the former case, we solve for x. In the latter, we solve: g(x) =

More information

Lagrange Multipliers

Lagrange Multipliers Lagrange Multipliers (Com S 477/577 Notes) Yan-Bin Jia Nov 9, 2017 1 Introduction We turn now to the study of minimization with constraints. More specifically, we will tackle the following problem: minimize

More information

Review 1 Math 321: Linear Algebra Spring 2010

Review 1 Math 321: Linear Algebra Spring 2010 Department of Mathematics and Statistics University of New Mexico Review 1 Math 321: Linear Algebra Spring 2010 This is a review for Midterm 1 that will be on Thursday March 11th, 2010. The main topics

More information

1 Lagrange Multiplier Method

1 Lagrange Multiplier Method 1 Lagrange Multiplier Method Near a maximum the decrements on both sides are in the beginning only imperceptible. J. Kepler When a quantity is greatest or least, at that moment its flow neither increases

More information

Chapter 4. Inverse Function Theorem. 4.1 The Inverse Function Theorem

Chapter 4. Inverse Function Theorem. 4.1 The Inverse Function Theorem Chapter 4 Inverse Function Theorem d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d dd d d d d This chapter

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

Higher order derivative

Higher order derivative 2 Î 3 á Higher order derivative Î 1 Å Iterated partial derivative Iterated partial derivative Suppose f has f/ x, f/ y and ( f ) = 2 f x x x 2 ( f ) = 2 f x y x y ( f ) = 2 f y x y x ( f ) = 2 f y y y

More information

g(t) = f(x 1 (t),..., x n (t)).

g(t) = f(x 1 (t),..., x n (t)). Reading: [Simon] p. 313-333, 833-836. 0.1 The Chain Rule Partial derivatives describe how a function changes in directions parallel to the coordinate axes. Now we shall demonstrate how the partial derivatives

More information

MATH 174A: PROBLEM SET 3. Suggested Solution. det(a + tb) = (det A) det(i + ta 1 B)

MATH 174A: PROBLEM SET 3. Suggested Solution. det(a + tb) = (det A) det(i + ta 1 B) MATH 174A: PROBLEM SET 3 Suggested Solution Problem 1. (Cf. Taylor I.1.3.) Let M n n (C) denote the set of n n complex matrices. Suppose A M n n (C) is invertible. Using show that det(a + tb) = (det A)

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018 DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 208 Version A refers to the regular exam and Version B to the make-up. Version A. A particle

More information

Review for the First Midterm Exam

Review for the First Midterm Exam Review for the First Midterm Exam Thomas Morrell 5 pm, Sunday, 4 April 9 B9 Van Vleck Hall For the purpose of creating questions for this review session, I did not make an effort to make any of the numbers

More information

Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A

Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A Name: ID: Circle your instructor and lecture below: Jankowski-001 Jankowski-006 Ramakrishnan-013 Read all of the following information

More information

Workshop I The R n Vector Space. Linear Combinations

Workshop I The R n Vector Space. Linear Combinations Workshop I Workshop I The R n Vector Space. Linear Combinations Exercise 1. Given the vectors u = (1, 0, 3), v = ( 2, 1, 2), and w = (1, 2, 4) compute a) u + ( v + w) b) 2 u 3 v c) 2 v u + w Exercise 2.

More information

Multivariable Calculus

Multivariable Calculus 2 Multivariable Calculus 2.1 Limits and Continuity Problem 2.1.1 (Fa94) Let the function f : R n R n satisfy the following two conditions: (i) f (K ) is compact whenever K is a compact subset of R n. (ii)

More information

Differential Topology Solution Set #3

Differential Topology Solution Set #3 Differential Topology Solution Set #3 Select Solutions 1. Chapter 1, Section 4, #7 2. Chapter 1, Section 4, #8 3. Chapter 1, Section 4, #11(a)-(b) #11(a) The n n matrices with determinant 1 form a group

More information

Math 291-2: Final Exam Solutions Northwestern University, Winter 2016

Math 291-2: Final Exam Solutions Northwestern University, Winter 2016 Math 29-2: Final Exam Solutions Northwestern University, Winter 206 Determine whether each of the following statements is true or false f it is true, explain why; if it is false, give a counterexample

More information

Bi. lkent Calculus II Exams

Bi. lkent Calculus II Exams Bi. lkent Calculus II Exams 988-208 Spring 208 Midterm I........ Spring 208 Midterm II....... 2 Spring 207 Midterm I........ 4 Spring 207 Midterm II....... 5 Spring 207 Final........... 7 Spring 206 Midterm

More information

Math 147, Homework 5 Solutions Due: May 15, 2012

Math 147, Homework 5 Solutions Due: May 15, 2012 Math 147, Homework 5 Solutions Due: May 15, 2012 1 Let f : R 3 R 6 and φ : R 3 R 3 be the smooth maps defined by: f(x, y, z) = (x 2, y 2, z 2, xy, xz, yz) and φ(x, y, z) = ( x, y, z) (a) Show that f is

More information

FINAL REVIEW Answers and hints Math 311 Fall 2017

FINAL REVIEW Answers and hints Math 311 Fall 2017 FINAL RVIW Answers and hints Math 3 Fall 7. Let R be a Jordan region and let f : R be integrable. Prove that the graph of f, as a subset of R 3, has zero volume. Let R be a rectangle with R. Since f is

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

Let f(x) = x, but the domain of f is the interval 0 x 1. Note

Let f(x) = x, but the domain of f is the interval 0 x 1. Note I.g Maximum and Minimum. Lagrange Multipliers Recall: Suppose we are given y = f(x). We recall that the maximum/minimum points occur at the following points: (1) where f = 0; (2) where f does not exist;

More information

MATH 3B (Butler) Practice for Final (I, Solutions)

MATH 3B (Butler) Practice for Final (I, Solutions) MATH 3B (Butler) Practice for Final (I, Solutions). Gabriel s horn is a mathematical object taken by rotating the curve y = x around the x-axis for x

More information

The University of British Columbia Midterm 1 Solutions - February 3, 2012 Mathematics 105, 2011W T2 Sections 204, 205, 206, 211.

The University of British Columbia Midterm 1 Solutions - February 3, 2012 Mathematics 105, 2011W T2 Sections 204, 205, 206, 211. 1. a) Let The University of British Columbia Midterm 1 Solutions - February 3, 2012 Mathematics 105, 2011W T2 Sections 204, 205, 206, 211 fx, y) = x siny). If the value of x, y) changes from 0, π) to 0.1,

More information

Differentiation. f(x + h) f(x) Lh = L.

Differentiation. f(x + h) f(x) Lh = L. Analysis in R n Math 204, Section 30 Winter Quarter 2008 Paul Sally, e-mail: sally@math.uchicago.edu John Boller, e-mail: boller@math.uchicago.edu website: http://www.math.uchicago.edu/ boller/m203 Differentiation

More information

OR MSc Maths Revision Course

OR MSc Maths Revision Course OR MSc Maths Revision Course Tom Byrne School of Mathematics University of Edinburgh t.m.byrne@sms.ed.ac.uk 15 September 2017 General Information Today JCMB Lecture Theatre A, 09:30-12:30 Mathematics revision

More information

Practice Problems for the Final Exam

Practice Problems for the Final Exam Math 114 Spring 2017 Practice Problems for the Final Exam 1. The planes 3x + 2y + z = 6 and x + y = 2 intersect in a line l. Find the distance from the origin to l. (Answer: 24 3 ) 2. Find the area of

More information

Examination paper for TMA4180 Optimization I

Examination paper for TMA4180 Optimization I Department of Mathematical Sciences Examination paper for TMA4180 Optimization I Academic contact during examination: Phone: Examination date: 26th May 2016 Examination time (from to): 09:00 13:00 Permitted

More information

Differential Topology Final Exam With Solutions

Differential Topology Final Exam With Solutions Differential Topology Final Exam With Solutions Instructor: W. D. Gillam Date: Friday, May 20, 2016, 13:00 (1) Let X be a subset of R n, Y a subset of R m. Give the definitions of... (a) smooth function

More information

Linear Algebra 1 Exam 2 Solutions 7/14/3

Linear Algebra 1 Exam 2 Solutions 7/14/3 Linear Algebra 1 Exam Solutions 7/14/3 Question 1 The line L has the symmetric equation: x 1 = y + 3 The line M has the parametric equation: = z 4. [x, y, z] = [ 4, 10, 5] + s[10, 7, ]. The line N is perpendicular

More information

MATH2070 Optimisation

MATH2070 Optimisation MATH2070 Optimisation Nonlinear optimisation with constraints Semester 2, 2012 Lecturer: I.W. Guo Lecture slides courtesy of J.R. Wishart Review The full nonlinear optimisation problem with equality constraints

More information

Optimization: Problem Set Solutions

Optimization: Problem Set Solutions Optimization: Problem Set Solutions Annalisa Molino University of Rome Tor Vergata annalisa.molino@uniroma2.it Fall 20 Compute the maxima minima or saddle points of the following functions a. f(x y) =

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

MATH 31CH SPRING 2017 MIDTERM 2 SOLUTIONS

MATH 31CH SPRING 2017 MIDTERM 2 SOLUTIONS MATH 3CH SPRING 207 MIDTERM 2 SOLUTIONS (20 pts). Let C be a smooth curve in R 2, in other words, a -dimensional manifold. Suppose that for each x C we choose a vector n( x) R 2 such that (i) 0 n( x) for

More information

MAT 211 Final Exam. Fall Jennings.

MAT 211 Final Exam. Fall Jennings. MAT 211 Final Exam. Fall 218. Jennings. Useful formulas polar coordinates spherical coordinates: SHOW YOUR WORK! x = rcos(θ) y = rsin(θ) da = r dr dθ x = ρcos(θ)cos(φ) y = ρsin(θ)cos(φ) z = ρsin(φ) dv

More information

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents MATHEMATICAL ECONOMICS: OPTIMIZATION JOÃO LOPES DIAS Contents 1. Introduction 2 1.1. Preliminaries 2 1.2. Optimal points and values 2 1.3. The optimization problems 3 1.4. Existence of optimal points 4

More information

Math 307: Problems for section 2.1

Math 307: Problems for section 2.1 Math 37: Problems for section 2. October 9 26 2. Are the vectors 2 2 3 2 2 4 9 linearly independent? You may use MAT- 7 3 LAB/Octave to perform calculations but explain your answer. Put the vectors in

More information