Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009.

Size: px
Start display at page:

Download "Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009."

Transcription

1 Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, Solutions (1) Let Γ be a discrete group acting on a manifold M. (a) Define what it means for Γ to act freely. Solution: Γ acts freely on M if and only if for any x M, γ x = x implies γ = e the identity map. (b) Define what it means for Γ to act properly discontinuously. Solution: Γ acts properly discontinuously on M if and only if the two following conditions are met: Each x M has a neighborhood U so that {γ Γ : γu U = } is finite. If x, y M and y / Γx, there are neighborhoods U x and V y which satisfy U ΓV =. (c) Let V be a finite-dimensional real vector space equipped with the usual topology. Let v 1, v 2 V. Let Γ be the group Z 2 with addition as the group law. If γ = (n 1, n 2 ) Γ, define the action of γ on V by γ x = n 1 v 1 + n 2 v 2 + x. Find necessary and sufficient conditions on {v 1, v 2 } for the action of Γ on V to be free and properly discontinuous. Solution: Γ acts freely and properly discontinuously on V if and only if {v 1, v 2 } are linearly independent. To prove =, we prove the contrapositive. If {v 1, v 2 } are linearly dependent, we may assume v 1 = λv 2 for λ R. Then there are two cases: λ = p/q is rational. Then qv 1 pv 2 = 0 and Γ cannot act freely. λ is irrational. The Γ-orbit of 0 is contained in the line spanned by v 2. Consider the quotient map π : R R/Z. Then the map φ : Z R/Z given by φ(n) = π(nλ) is injective. Since R/Z is compact, there is an accumulation point lim i φ(n i ) = x R/Z. In other words, if we consider x [0, 1), there are integers n i, m i so that lim i n iλ + m i = x. 1

2 2 Then for p = xv 2 V, we have n i v 1 + m i v 2 = n i λv 2 + m i v 2 p. There are two cases now: If p Γ0, then infinitely many (n i, m i ) p are contained in any neighborhood of p, which violates the first condition of properly discontinuous. On the other hand, if p / Γ0, then 0 and p cannot have neighborhoods U and V so that U ΓV =. To prove =, if v 1, v 2 are linearly independent, they can be extended to a basis {v 1, v 2,..., v n } of V, where n is the dimension. In terms of this basis, introduce the standard Euclidean metric on V (so that v 1 = v 2 = 1 in particular). It is easy to see that the action of Γ is free. To see it is properly discontinuous, note that Γ acts by isometries. For the first condition, take x V and let U be the open ball of radius 1/2 around x. Then {γ Γ : ΓU U = } consists only of the identity element. Secondly, if x, y V and x / Γy, then it is not hard to see that d = min dist(x, γ y) > 0. γ Γ Now choose open balls U, V around x, y respectively, each of radius d/2. Then U ΓV =. So Γ acts freely and properly discontinuously when v 1, v 2 are linearly independent. (2) (a) If U is a manifold and F = U R r is the trivial vector bundle, write down an explicit connection on F. Solution: A section of F is equivalent to an r-tuple of functions e 1,..., e r on U. Define, for s = s α e α and X a vector field on U, X s = (Xs α )e α. It is straightforward to check this is a connection (b) Let M be a smooth manifold of dimension n, and let E be a vector bundle of rank r over M. Use a partition of unity argument to construct a connection over E. Solution: Choose an open cover {U α } of M so E can be locally trivialized over each U α. Choose a local trivialization over each U α and part (a) shows that there is a connection α of E restricted to U α. Now let ρ α be a partition of

3 3 unity subordinate to {U α }. Define on all of M via X s = α ρ α α Xs. Now check is a connection. is C -linear in X, since each α is. is R-linear in s, since each α is. For the Leibniz rule, compute X (fs) = α = α ρ α α X(fs) ρ α (f α Xs + (Xf)s) = f α ρ α α Xs + (Xf)s α ρ α = f X s + (Xf)s since α ρ α = 1. (3) (a) Let M n (C) denote the set of n n complex-valued matrices. Show M n (C) is a manifold of (real) dimension 2n 2. Solution: M n (C) is a complex vector space of dimension n 2, and so by taking real and imaginary parts, is a real vector space of dimension 2n 2. (b) Let f : M n (C) V be defined by f(a) = AĀ, and V = {B M n (C) : B = B }. Show f is a submersion at each A U(n), where U(n) = {A M n (C) : AĀ = I}. Solution: We first check this at A = I: In this case, compute f (C) = d dɛ f(i + ɛc) = C + C. ɛ=0 Therefore, if B V, f ( 1B) = B. Therefore f 2 is onto, and so f is an immersion at A = I. In the more general case of A U(n), compute f (C) = d dɛ f(a + ɛc) = CĀ + A C. ɛ=0 If B V, f ( 1 2 BA) = 1 2 BAĀ A(BA) = 1 2 B B = B since AĀ = I and B = B. Therefore, f is onto at any A U(n) and f is a submersion.

4 (c) Show U(n) is a Lie group. Find its dimension. Solution: U(n) = f 1 (I) is a submanifold of M n (C), since f is a submersion for all A U(n). The dimension is equal to dim M n (C) dim V. To compute dim V, recall it consists of all Hermitian-symmetric matrices in M n (C). As such, we can write a general element of V as a 1 b 12 + ic 12 b 13 + ic b 1n + ic 1n b 12 ic 12 a 2 b 23 + ic b 2n + ic 2n b 13 ic 13 b 23 ic 23 a 3... a 3n + ic 3n b 1n ic 1n b 2n ic 2n b 3n ic 3n... a n This shows the dimension of V is n a j s plus n(n 1)/2 b jk s plus n(n 1)/2 c jk s to make the dimension n 2. Thus the dimension of U(n) = 2n 2 n 2 = n 2. To show U(n) is a group, let A, B U(n). Then compute (AB)(AB) = AB B Ā = AIĀ = AĀ = I. Therefore, AB U(n). Also, let A U(n). Compute (A 1 ) = ((Ā) 1 ) = (Ā ) 1 (note (C 1 ) = (C ) 1 ). This implies A 1 (A 1 ) = I and so A 1 U(n). It is standard that the group law and inverse operation are smooth on nonsingular matrices. (d) Calculate the tangent space T I U(n). Solution: Since U(n) = f 1 (I) for f a submersion, T I U(n) = ker f (I) = {C : C + C = 0} the set of skew-hermitian complex n n matrices. (4) Let (M, g) be a compact Riemannian manifold. If ω = ω i dx i is a one-form, define ω 2 g = g ij ω i ω j for g ij the inverse matrix of g ij. Let f be a function on M. Define E g (f) = df 2 g dv g M for dv g the volume density of the metric g. Let u be a positive smooth function. Assume the dimension of M is 2. Show that E ug (f) = E g (f). Solution: Recall that in local coordinates x 1, x 2, dv g = det g ij dv Eucl, where dv Eucl is the standard volume form on Euclidean space. 4

5 5 Therefore, dv ug = det(ug ij ) dv Eucl = u 2 det g ij dv Eucl = u dv g, since the dimension is 2. On the other hand, the inverse matrix of ug ij is u 1 g ij, and df 2 ug = u 1 g ij i f j f = u 1 df 2 g. Therefore, in any local coordinate chart, the integrands are df 2 g dv g = u 1 df 2 g u dv g = df 2 ug dv ug. So given a partition of unity ρ α subordinate to an atlas of M, we may compute E ug (f) = ρ α df 2 ug dv ug = ρ α df 2 g dv g = E g (f). α α (5) Recall a differential form η on a manifold M is called closed if dη = 0. (a) Let M be a simply connected manifold, let η be a closed one-form on M, and let p M. Show that f(q) = γ η, 1 0 [a,b] is well-defined independently of the interval [a, b] and the smooth path γ : [a, b] M from p to q. (Feel free to use any result proved in class.) Solution: We saw in class that if γ 1 and γ 2 are two homotopic paths from [0, 1] M from p to q, then f(q) is independent of γ 1 or γ 2. Therefore, we need only show f(q) is independent of the choice of interval [a, b]. It suffices to show that if s = s(t) is a diffeomorphism from [0, 1] to [a, b], γ η = f(t) dt, then γ η = 1 0 f(t) dt = b a f(s) ds dt dt = b a (γ s) η. (b) Under the assumptions of part (a), show that η = df. (Hint: In local coordinates, consider paths near q in each coordinate direction.) Solution: To show η = df, then we work in local coordinates {x i } near q. Then if we have η = η i dx i, we need only show that η i = f. Pick an i, and by part (a), we x i may choose a path γ with domain [ 1, 0] from p to q so

6 that near q, the path γ(t) = (c 1,..., t + c i,..., c n ) so that in our coordinates q = (c 1,..., c i,..., c n ). So, near q, γ η = η i dt. Then compute for t small and q t = q + (0,..., t,..., 0), f(q t ) = t 1 γ η, and at q t x f = d i dt f(q t) = d γ η = d η i dt = η i (0) dt 1 dt c for c a small negative constant (corresponding to the part of γ which is constant in the x i direction). (6) (a) Give, without proof, an example of a connected Riemannian manifold (M, g) and points p, q in M so that there is no path from p to q of length equal to the distance from p to q. Solution: Consider M = R 2 \ {(0, 0)}, equipped with the standard metric dx 2 + dy 2 on R 2. Then if p = (1, 0) and q = ( 1, 0), the distance from p to q is 2, but any path in M from p to q has length strictly greater than 2. (b) Give, without proof, an example of a complete Riemannian manifold (M, g) and points p, q M so that there is more than one geodesic from p to q. Solution: If x S n with the standard metric induced from R n+1, then there is an infinite family of geodesics from x to x corresponding to each great circle through x. (c) Give, without proof, an example of a Riemannian manifold (M, g) and a complete geodesic curve which is dense in M. Solution: Recall that geodesics on (R 2, δ) are straight lines. If Z 2 acts on R 2 by translation t (n 1, n 2 ) (x 1, x 2 ) = (n 1 + x 1, n 2 + x 2 ). All theses translations are isometries, and so the flat metric δ descends to the quotient T = R 2 /Z 2 (the standard flat torus). More specifically, let π : R 2 T be the quotient map. Then there is a metric g on T so that δ = π g. The geodesics of g are then all of the form π γ for γ a geodesic of δ on R 2. Recall that any line of irrational slope in R 2 projected to a curve in T with dense image. Any such curve is a dense geodesic in (T, g). 6

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim SOLUTIONS Dec 13, 218 Math 868 Final Exam In this exam, all manifolds, maps, vector fields, etc. are smooth. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each).

More information

Differential Topology Solution Set #2

Differential Topology Solution Set #2 Differential Topology Solution Set #2 Select Solutions 1. Show that X compact implies that any smooth map f : X Y is proper. Recall that a space is called compact if, for every cover {U } by open sets

More information

Changing coordinates to adapt to a map of constant rank

Changing coordinates to adapt to a map of constant rank Introduction to Submanifolds Most manifolds of interest appear as submanifolds of others e.g. of R n. For instance S 2 is a submanifold of R 3. It can be obtained in two ways: 1 as the image of a map into

More information

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X. Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

More information

M4P52 Manifolds, 2016 Problem Sheet 1

M4P52 Manifolds, 2016 Problem Sheet 1 Problem Sheet. Let X and Y be n-dimensional topological manifolds. Prove that the disjoint union X Y is an n-dimensional topological manifold. Is S S 2 a topological manifold? 2. Recall that that the discrete

More information

Good Problems. Math 641

Good Problems. Math 641 Math 641 Good Problems Questions get two ratings: A number which is relevance to the course material, a measure of how much I expect you to be prepared to do such a problem on the exam. 3 means of course

More information

Geometry 2: Manifolds and sheaves

Geometry 2: Manifolds and sheaves Rules:Exam problems would be similar to ones marked with! sign. It is recommended to solve all unmarked and!-problems or to find the solution online. It s better to do it in order starting from the beginning,

More information

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015 DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES MAGGIE MILLER September 25, 2015 1. 09/16/2015 1.1. Textbooks. Textbooks relevant to this class are Riemannian Geometry by do Carmo Riemannian Geometry

More information

Master Algèbre géométrie et théorie des nombres Final exam of differential geometry Lecture notes allowed

Master Algèbre géométrie et théorie des nombres Final exam of differential geometry Lecture notes allowed Université de Bordeaux U.F. Mathématiques et Interactions Master Algèbre géométrie et théorie des nombres Final exam of differential geometry 2018-2019 Lecture notes allowed Exercise 1 We call H (like

More information

Math 205C - Topology Midterm

Math 205C - Topology Midterm Math 205C - Topology Midterm Erin Pearse 1. a) State the definition of an n-dimensional topological (differentiable) manifold. An n-dimensional topological manifold is a topological space that is Hausdorff,

More information

Qualifying Exams I, 2014 Spring

Qualifying Exams I, 2014 Spring Qualifying Exams I, 2014 Spring 1. (Algebra) Let k = F q be a finite field with q elements. Count the number of monic irreducible polynomials of degree 12 over k. 2. (Algebraic Geometry) (a) Show that

More information

Transport Continuity Property

Transport Continuity Property On Riemannian manifolds satisfying the Transport Continuity Property Université de Nice - Sophia Antipolis (Joint work with A. Figalli and C. Villani) I. Statement of the problem Optimal transport on Riemannian

More information

Principles of Riemannian Geometry in Neural Networks

Principles of Riemannian Geometry in Neural Networks Principles of Riemannian Geometry in Neural Networks Michael Hauser, Asok Ray Pennsylvania State University Presented by Chenyang Tao Nov 16, 2018 Brief Summary Goal This study deals with neural networks

More information

Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds

Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds John Douglas Moore Department of Mathematics University of California Santa Barbara, CA, USA 93106 e-mail: moore@math.ucsb.edu

More information

April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v.

April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v. April 3, 005 - Hyperbolic Sets We now extend the structure of the horseshoe to more general kinds of invariant sets. Let r, and let f D r (M) where M is a Riemannian manifold. A compact f invariant set

More information

LECTURE 15-16: PROPER ACTIONS AND ORBIT SPACES

LECTURE 15-16: PROPER ACTIONS AND ORBIT SPACES LECTURE 15-16: PROPER ACTIONS AND ORBIT SPACES 1. Proper actions Suppose G acts on M smoothly, and m M. Then the orbit of G through m is G m = {g m g G}. If m, m lies in the same orbit, i.e. m = g m for

More information

Lecture Notes a posteriori for Math 201

Lecture Notes a posteriori for Math 201 Lecture Notes a posteriori for Math 201 Jeremy Kahn September 22, 2011 1 Tuesday, September 13 We defined the tangent space T p M of a manifold at a point p, and the tangent bundle T M. Zev Choroles gave

More information

Math Topology II: Smooth Manifolds. Spring Homework 2 Solution Submit solutions to the following problems:

Math Topology II: Smooth Manifolds. Spring Homework 2 Solution Submit solutions to the following problems: Math 132 - Topology II: Smooth Manifolds. Spring 2017. Homework 2 Solution Submit solutions to the following problems: 1. Let H = {a + bi + cj + dk (a, b, c, d) R 4 }, where i 2 = j 2 = k 2 = 1, ij = k,

More information

Lecture 4 - The Basic Examples of Collapse

Lecture 4 - The Basic Examples of Collapse Lecture 4 - The Basic Examples of Collapse July 29, 2009 1 Berger Spheres Let X, Y, and Z be the left-invariant vector fields on S 3 that restrict to i, j, and k at the identity. This is a global frame

More information

Differential Geometry qualifying exam 562 January 2019 Show all your work for full credit

Differential Geometry qualifying exam 562 January 2019 Show all your work for full credit Differential Geometry qualifying exam 562 January 2019 Show all your work for full credit 1. (a) Show that the set M R 3 defined by the equation (1 z 2 )(x 2 + y 2 ) = 1 is a smooth submanifold of R 3.

More information

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1 Assistant: Saskia Voss Sheet 1 1. Conformal change of Riemannian metrics [3 points] Let (M, g) be a Riemannian manifold. A conformal change is a nonnegative function λ : M (0, ). Such a function defines

More information

Differential Geometry Exercises

Differential Geometry Exercises Differential Geometry Exercises Isaac Chavel Spring 2006 Jordan curve theorem We think of a regular C 2 simply closed path in the plane as a C 2 imbedding of the circle ω : S 1 R 2. Theorem. Given the

More information

DEVELOPMENT OF MORSE THEORY

DEVELOPMENT OF MORSE THEORY DEVELOPMENT OF MORSE THEORY MATTHEW STEED Abstract. In this paper, we develop Morse theory, which allows us to determine topological information about manifolds using certain real-valued functions defined

More information

satisfying the following condition: If T : V V is any linear map, then µ(x 1,,X n )= det T µ(x 1,,X n ).

satisfying the following condition: If T : V V is any linear map, then µ(x 1,,X n )= det T µ(x 1,,X n ). ensities Although differential forms are natural objects to integrate on manifolds, and are essential for use in Stoke s theorem, they have the disadvantage of requiring oriented manifolds in order for

More information

4 Riemannian geometry

4 Riemannian geometry Classnotes for Introduction to Differential Geometry. Matthias Kawski. April 18, 2003 83 4 Riemannian geometry 4.1 Introduction A natural first step towards a general concept of curvature is to develop

More information

DIFFERENTIAL GEOMETRY. LECTURE 12-13,

DIFFERENTIAL GEOMETRY. LECTURE 12-13, DIFFERENTIAL GEOMETRY. LECTURE 12-13, 3.07.08 5. Riemannian metrics. Examples. Connections 5.1. Length of a curve. Let γ : [a, b] R n be a parametried curve. Its length can be calculated as the limit of

More information

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD () Instanton (definition) (2) ADHM construction (3) Compactification. Instantons.. Notation. Throughout this talk, we will use the following notation:

More information

Math 225B: Differential Geometry, Final

Math 225B: Differential Geometry, Final Math 225B: Differential Geometry, Final Ian Coley March 5, 204 Problem Spring 20,. Show that if X is a smooth vector field on a (smooth) manifold of dimension n and if X p is nonzero for some point of

More information

LECTURE 15: COMPLETENESS AND CONVEXITY

LECTURE 15: COMPLETENESS AND CONVEXITY LECTURE 15: COMPLETENESS AND CONVEXITY 1. The Hopf-Rinow Theorem Recall that a Riemannian manifold (M, g) is called geodesically complete if the maximal defining interval of any geodesic is R. On the other

More information

Complex line bundles. Chapter Connections of line bundle. Consider a complex line bundle L M. For any integer k N, let

Complex line bundles. Chapter Connections of line bundle. Consider a complex line bundle L M. For any integer k N, let Chapter 1 Complex line bundles 1.1 Connections of line bundle Consider a complex line bundle L M. For any integer k N, let be the space of k-forms with values in L. Ω k (M, L) = C (M, L k (T M)) Definition

More information

Stratification of 3 3 Matrices

Stratification of 3 3 Matrices Stratification of 3 3 Matrices Meesue Yoo & Clay Shonkwiler March 2, 2006 1 Warmup with 2 2 Matrices { Best matrices of rank 2} = O(2) S 3 ( 2) { Best matrices of rank 1} S 3 (1) 1.1 Viewing O(2) S 3 (

More information

Lecture 8. Connections

Lecture 8. Connections Lecture 8. Connections This lecture introduces connections, which are the machinery required to allow differentiation of vector fields. 8.1 Differentiating vector fields. The idea of differentiating vector

More information

Chapter 1. Smooth Manifolds

Chapter 1. Smooth Manifolds Chapter 1. Smooth Manifolds Theorem 1. [Exercise 1.18] Let M be a topological manifold. Then any two smooth atlases for M determine the same smooth structure if and only if their union is a smooth atlas.

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

LECTURE 26: THE CHERN-WEIL THEORY

LECTURE 26: THE CHERN-WEIL THEORY LECTURE 26: THE CHERN-WEIL THEORY 1. Invariant Polynomials We start with some necessary backgrounds on invariant polynomials. Let V be a vector space. Recall that a k-tensor T k V is called symmetric if

More information

A crash course the geometry of hyperbolic surfaces

A crash course the geometry of hyperbolic surfaces Lecture 7 A crash course the geometry of hyperbolic surfaces 7.1 The hyperbolic plane Hyperbolic geometry originally developed in the early 19 th century to prove that the parallel postulate in Euclidean

More information

Defn 3.1: An n-manifold, M, is a topological space with the following properties:

Defn 3.1: An n-manifold, M, is a topological space with the following properties: Chapter 1 all sections 1.3 Defn: M is locally Euclidean of dimension n if for all p M, there exists an open set U p such that p U p and there exists a homeomorphism f p : U p V p where V p R n. (U p, f)

More information

PICARD S THEOREM STEFAN FRIEDL

PICARD S THEOREM STEFAN FRIEDL PICARD S THEOREM STEFAN FRIEDL Abstract. We give a summary for the proof of Picard s Theorem. The proof is for the most part an excerpt of [F]. 1. Introduction Definition. Let U C be an open subset. A

More information

DIFFERENTIAL GEOMETRY HW 12

DIFFERENTIAL GEOMETRY HW 12 DIFFERENTIAL GEOMETRY HW 1 CLAY SHONKWILER 3 Find the Lie algebra so(n) of the special orthogonal group SO(n), and the explicit formula for the Lie bracket there. Proof. Since SO(n) is a subgroup of GL(n),

More information

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE JOHANNES EBERT 1.1. October 11th. 1. Recapitulation from differential topology Definition 1.1. Let M m, N n, be two smooth manifolds

More information

An Invitation to Geometric Quantization

An Invitation to Geometric Quantization An Invitation to Geometric Quantization Alex Fok Department of Mathematics, Cornell University April 2012 What is quantization? Quantization is a process of associating a classical mechanical system to

More information

Analysis Qualifying Exam

Analysis Qualifying Exam Analysis Qualifying Exam Spring 2017 Problem 1: Let f be differentiable on R. Suppose that there exists M > 0 such that f(k) M for each integer k, and f (x) M for all x R. Show that f is bounded, i.e.,

More information

1. Simplify the following. Solution: = {0} Hint: glossary: there is for all : such that & and

1. Simplify the following. Solution: = {0} Hint: glossary: there is for all : such that & and Topology MT434P Problems/Homework Recommended Reading: Munkres, J.R. Topology Hatcher, A. Algebraic Topology, http://www.math.cornell.edu/ hatcher/at/atpage.html For those who have a lot of outstanding

More information

MATH 263: PROBLEM SET 1: BUNDLES, SHEAVES AND HODGE THEORY

MATH 263: PROBLEM SET 1: BUNDLES, SHEAVES AND HODGE THEORY MATH 263: PROBLEM SET 1: BUNDLES, SHEAVES AND HODGE THEORY 0.1. Vector Bundles and Connection 1-forms. Let E X be a complex vector bundle of rank r over a smooth manifold. Recall the following abstract

More information

HOMEWORK 2 - RIEMANNIAN GEOMETRY. 1. Problems In what follows (M, g) will always denote a Riemannian manifold with a Levi-Civita connection.

HOMEWORK 2 - RIEMANNIAN GEOMETRY. 1. Problems In what follows (M, g) will always denote a Riemannian manifold with a Levi-Civita connection. HOMEWORK 2 - RIEMANNIAN GEOMETRY ANDRÉ NEVES 1. Problems In what follows (M, g will always denote a Riemannian manifold with a Levi-Civita connection. 1 Let X, Y, Z be vector fields on M so that X(p Z(p

More information

Math 141 Final Exam December 18, 2014

Math 141 Final Exam December 18, 2014 Math 141 Final Exam December 18, 2014 Name: Complete the following problems. In order to receive full credit, please provide rigorous proofs and show all of your work and justify your answers. Unless stated

More information

NOTES ON MANIFOLDS ALBERTO S. CATTANEO

NOTES ON MANIFOLDS ALBERTO S. CATTANEO NOTES ON MANIFOLDS ALBERTO S. CATTANEO Contents 1. Introduction 2 2. Manifolds 2 2.1. Coordinates 6 2.2. Dimension 7 2.3. The implicit function theorem 7 3. Maps 8 3.1. The pullback 10 3.2. Submanifolds

More information

Geometry Qualifying Exam Notes

Geometry Qualifying Exam Notes Geometry Qualifying Exam Notes F 1 F 1 x 1 x n Definition: The Jacobian matrix of a map f : N M is.. F m F m x 1 x n square matrix, its determinant is called the Jacobian determinant.. When this is a Definition:

More information

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f))

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f)) 1. Basic algebra of vector fields Let V be a finite dimensional vector space over R. Recall that V = {L : V R} is defined to be the set of all linear maps to R. V is isomorphic to V, but there is no canonical

More information

Theorem 3.11 (Equidimensional Sard). Let f : M N be a C 1 map of n-manifolds, and let C M be the set of critical points. Then f (C) has measure zero.

Theorem 3.11 (Equidimensional Sard). Let f : M N be a C 1 map of n-manifolds, and let C M be the set of critical points. Then f (C) has measure zero. Now we investigate the measure of the critical values of a map f : M N where dim M = dim N. Of course the set of critical points need not have measure zero, but we shall see that because the values of

More information

Many of the exercises are taken from the books referred at the end of the document.

Many of the exercises are taken from the books referred at the end of the document. Exercises in Geometry I University of Bonn, Winter semester 2014/15 Prof. Christian Blohmann Assistant: Néstor León Delgado The collection of exercises here presented corresponds to the exercises for the

More information

Continued fractions and geodesics on the modular surface

Continued fractions and geodesics on the modular surface Continued fractions and geodesics on the modular surface Chris Johnson Clemson University September 8, 203 Outline The modular surface Continued fractions Symbolic coding References Some hyperbolic geometry

More information

THE EULER CHARACTERISTIC OF A LIE GROUP

THE EULER CHARACTERISTIC OF A LIE GROUP THE EULER CHARACTERISTIC OF A LIE GROUP JAY TAYLOR 1 Examples of Lie Groups The following is adapted from [2] We begin with the basic definition and some core examples Definition A Lie group is a smooth

More information

Math 396. Bijectivity vs. isomorphism

Math 396. Bijectivity vs. isomorphism Math 396. Bijectivity vs. isomorphism 1. Motivation Let f : X Y be a C p map between two C p -premanifolds with corners, with 1 p. Assuming f is bijective, we would like a criterion to tell us that f 1

More information

Solutions to Problem Set 5 for , Fall 2007

Solutions to Problem Set 5 for , Fall 2007 Solutions to Problem Set 5 for 18.101, Fall 2007 1 Exercise 1 Solution For the counterexample, let us consider M = (0, + ) and let us take V = on M. x Let W be the vector field on M that is identically

More information

LECTURE 22: THE CRITICAL POINT THEORY OF DISTANCE FUNCTIONS

LECTURE 22: THE CRITICAL POINT THEORY OF DISTANCE FUNCTIONS LECTURE : THE CRITICAL POINT THEORY OF DISTANCE FUNCTIONS 1. Critical Point Theory of Distance Functions Morse theory is a basic tool in differential topology which also has many applications in Riemannian

More information

Terse Notes on Riemannian Geometry

Terse Notes on Riemannian Geometry Terse Notes on Riemannian Geometry Tom Fletcher January 26, 2010 These notes cover the basics of Riemannian geometry, Lie groups, and symmetric spaces. This is just a listing of the basic definitions and

More information

Math 598 Feb 14, Geometry and Topology II Spring 2005, PSU

Math 598 Feb 14, Geometry and Topology II Spring 2005, PSU Math 598 Feb 14, 2005 1 Geometry and Topology II Spring 2005, PSU Lecture Notes 7 2.7 Smooth submanifolds Let N be a smooth manifold. We say that M N m is an n-dimensional smooth submanifold of N, provided

More information

SYMPLECTIC GEOMETRY: LECTURE 5

SYMPLECTIC GEOMETRY: LECTURE 5 SYMPLECTIC GEOMETRY: LECTURE 5 LIAT KESSLER Let (M, ω) be a connected compact symplectic manifold, T a torus, T M M a Hamiltonian action of T on M, and Φ: M t the assoaciated moment map. Theorem 0.1 (The

More information

UNIVERSITY OF DUBLIN

UNIVERSITY OF DUBLIN UNIVERSITY OF DUBLIN TRINITY COLLEGE JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Faculty of Engineering, Mathematics and Science school of mathematics Trinity Term 2015 Module MA3429

More information

Bredon, Introduction to compact transformation groups, Academic Press

Bredon, Introduction to compact transformation groups, Academic Press 1 Introduction Outline Section 3: Topology of 2-orbifolds: Compact group actions Compact group actions Orbit spaces. Tubes and slices. Path-lifting, covering homotopy Locally smooth actions Smooth actions

More information

Math 423 Course Notes

Math 423 Course Notes Math 423 Course Notes David Rose October 18, 2003 Contents 1 Smooth Manifolds 3 1.1 Definitions and Examples.................... 3 1.2 Morphisms of Manifolds..................... 5 1.3 Partitions of Unity........................

More information

3.2 Frobenius Theorem

3.2 Frobenius Theorem 62 CHAPTER 3. POINCARÉ, INTEGRABILITY, DEGREE 3.2 Frobenius Theorem 3.2.1 Distributions Definition 3.2.1 Let M be a n-dimensional manifold. A k-dimensional distribution (or a tangent subbundle) Δ : M Δ

More information

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves Chapter 3 Riemannian Manifolds - I The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves embedded in Riemannian manifolds. A Riemannian manifold is an abstraction

More information

Differential Topology Final Exam With Solutions

Differential Topology Final Exam With Solutions Differential Topology Final Exam With Solutions Instructor: W. D. Gillam Date: Friday, May 20, 2016, 13:00 (1) Let X be a subset of R n, Y a subset of R m. Give the definitions of... (a) smooth function

More information

The theory of manifolds Lecture 2

The theory of manifolds Lecture 2 The theory of manifolds Lecture 2 Let X be a subset of R N, Y a subset of R n and f : X Y a continuous map. We recall Definition 1. f is a C map if for every p X, there exists a neighborhood, U p, of p

More information

Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds

Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds John Douglas Moore Department of Mathematics University of California Santa Barbara, CA, USA 93106 e-mail: moore@math.ucsb.edu

More information

VOLUME GROWTH AND HOLONOMY IN NONNEGATIVE CURVATURE

VOLUME GROWTH AND HOLONOMY IN NONNEGATIVE CURVATURE VOLUME GROWTH AND HOLONOMY IN NONNEGATIVE CURVATURE KRISTOPHER TAPP Abstract. The volume growth of an open manifold of nonnegative sectional curvature is proven to be bounded above by the difference between

More information

Notes on quotients and group actions

Notes on quotients and group actions Notes on quotients and group actions Erik van den Ban Fall 2006 1 Quotients Let X be a topological space, and R an equivalence relation on X. The set of equivalence classes for this relation is denoted

More information

Robustly transitive diffeomorphisms

Robustly transitive diffeomorphisms Robustly transitive diffeomorphisms Todd Fisher tfisher@math.byu.edu Department of Mathematics, Brigham Young University Summer School, Chengdu, China 2009 Dynamical systems The setting for a dynamical

More information

Math 6455 Nov 1, Differential Geometry I Fall 2006, Georgia Tech

Math 6455 Nov 1, Differential Geometry I Fall 2006, Georgia Tech Math 6455 Nov 1, 26 1 Differential Geometry I Fall 26, Georgia Tech Lecture Notes 14 Connections Suppose that we have a vector field X on a Riemannian manifold M. How can we measure how much X is changing

More information

Subgroups of Lie groups. Definition 0.7. A Lie subgroup of a Lie group G is a subgroup which is also a submanifold.

Subgroups of Lie groups. Definition 0.7. A Lie subgroup of a Lie group G is a subgroup which is also a submanifold. Recollections from finite group theory. The notion of a group acting on a set is extremely useful. Indeed, the whole of group theory arose through this route. As an example of the abstract power of this

More information

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES 1. Vector Bundles In general, smooth manifolds are very non-linear. However, there exist many smooth manifolds which admit very nice partial linear structures.

More information

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5 MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5.. The Arzela-Ascoli Theorem.. The Riemann mapping theorem Let X be a metric space, and let F be a family of continuous complex-valued functions on X. We have

More information

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM Contents 1. The Atiyah-Guillemin-Sternberg Convexity Theorem 1 2. Proof of the Atiyah-Guillemin-Sternberg Convexity theorem 3 3. Morse theory

More information

Hyperbolic Geometry on Geometric Surfaces

Hyperbolic Geometry on Geometric Surfaces Mathematics Seminar, 15 September 2010 Outline Introduction Hyperbolic geometry Abstract surfaces The hemisphere model as a geometric surface The Poincaré disk model as a geometric surface Conclusion Introduction

More information

Let V, W be two finite-dimensional vector spaces over R. We are going to define a new vector space V W with two properties:

Let V, W be two finite-dimensional vector spaces over R. We are going to define a new vector space V W with two properties: 5 Tensor products We have so far encountered vector fields and the derivatives of smooth functions as analytical objects on manifolds. These are examples of a general class of objects called tensors which

More information

THE HODGE DECOMPOSITION

THE HODGE DECOMPOSITION THE HODGE DECOMPOSITION KELLER VANDEBOGERT 1. The Musical Isomorphisms and induced metrics Given a smooth Riemannian manifold (X, g), T X will denote the tangent bundle; T X the cotangent bundle. The additional

More information

1 Smooth manifolds and Lie groups

1 Smooth manifolds and Lie groups An undergraduate approach to Lie theory Slide 1 Andrew Baker, Glasgow Glasgow, 12/11/1999 1 Smooth manifolds and Lie groups A continuous g : V 1 V 2 with V k R m k open is called smooth if it is infinitely

More information

1. Geometry of the unit tangent bundle

1. Geometry of the unit tangent bundle 1 1. Geometry of the unit tangent bundle The main reference for this section is [8]. In the following, we consider (M, g) an n-dimensional smooth manifold endowed with a Riemannian metric g. 1.1. Notations

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Notes for Math 535 Differential Geometry Spring Francis Bonahon. Department of Mathematics, University of Southern California

Notes for Math 535 Differential Geometry Spring Francis Bonahon. Department of Mathematics, University of Southern California Notes for Math 535 Differential Geometry Spring 2016 Francis Bonahon Department of Mathematics, University of Southern California Date of this version: April 27, 2016 c Francis Bonahon 2016 CHAPTER 1 A

More information

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups A Lie group is a special smooth manifold on which there is a group structure, and moreover, the two structures are compatible. Lie groups are

More information

Introduction to Differential Geometry

Introduction to Differential Geometry More about Introduction to Differential Geometry Lecture 7 of 10: Dominic Joyce, Oxford University October 2018 EPSRC CDT in Partial Differential Equations foundation module. These slides available at

More information

KUIPER S THEOREM ON CONFORMALLY FLAT MANIFOLDS

KUIPER S THEOREM ON CONFORMALLY FLAT MANIFOLDS KUIPER S THEOREM ON CONFORMALLY FLAT MANIFOLDS RALPH HOWARD DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTH CAROLINA COLUMBIA, S.C. 29208, USA HOWARD@MATH.SC.EDU 1. Introduction These are notes to that show

More information

Math 215B: Solutions 3

Math 215B: Solutions 3 Math 215B: Solutions 3 (1) For this problem you may assume the classification of smooth one-dimensional manifolds: Any compact smooth one-dimensional manifold is diffeomorphic to a finite disjoint union

More information

INTEGRATION ON MANIFOLDS and GAUSS-GREEN THEOREM

INTEGRATION ON MANIFOLDS and GAUSS-GREEN THEOREM INTEGRATION ON MANIFOLS and GAUSS-GREEN THEOREM 1. Schwarz s paradox. Recall that for curves one defines length via polygonal approximation by line segments: a continuous curve γ : [a, b] R n is rectifiable

More information

THE JORDAN-BROUWER SEPARATION THEOREM

THE JORDAN-BROUWER SEPARATION THEOREM THE JORDAN-BROUWER SEPARATION THEOREM WOLFGANG SCHMALTZ Abstract. The Classical Jordan Curve Theorem says that every simple closed curve in R 2 divides the plane into two pieces, an inside and an outside

More information

1 )(y 0) {1}. Thus, the total count of points in (F 1 (y)) is equal to deg y0

1 )(y 0) {1}. Thus, the total count of points in (F 1 (y)) is equal to deg y0 1. Classification of 1-manifolds Theorem 1.1. Let M be a connected 1 manifold. Then M is diffeomorphic either to [0, 1], [0, 1), (0, 1), or S 1. We know that none of these four manifolds are not diffeomorphic

More information

LECTURE 3: SMOOTH FUNCTIONS

LECTURE 3: SMOOTH FUNCTIONS LECTURE 3: SMOOTH FUNCTIONS Let M be a smooth manifold. 1. Smooth Functions Definition 1.1. We say a function f : M R is smooth if for any chart {ϕ α, U α, V α } in A that defines the smooth structure

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday August 31, 2010 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday August 31, 2010 (Day 1) QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday August 31, 21 (Day 1) 1. (CA) Evaluate sin 2 x x 2 dx Solution. Let C be the curve on the complex plane from to +, which is along

More information

Symplectic and Poisson Manifolds

Symplectic and Poisson Manifolds Symplectic and Poisson Manifolds Harry Smith In this survey we look at the basic definitions relating to symplectic manifolds and Poisson manifolds and consider different examples of these. We go on to

More information

Metrics and Holonomy

Metrics and Holonomy Metrics and Holonomy Jonathan Herman The goal of this paper is to understand the following definitions of Kähler and Calabi-Yau manifolds: Definition. A Riemannian manifold is Kähler if and only if it

More information

The Geometrization Theorem

The Geometrization Theorem The Geometrization Theorem Matthew D. Brown Wednesday, December 19, 2012 In this paper, we discuss the Geometrization Theorem, formerly Thurston s Geometrization Conjecture, which is essentially the statement

More information

TEST CODE: PMB SYLLABUS

TEST CODE: PMB SYLLABUS TEST CODE: PMB SYLLABUS Convergence and divergence of sequence and series; Cauchy sequence and completeness; Bolzano-Weierstrass theorem; continuity, uniform continuity, differentiability; directional

More information

We have the following immediate corollary. 1

We have the following immediate corollary. 1 1. Thom Spaces and Transversality Definition 1.1. Let π : E B be a real k vector bundle with a Euclidean metric and let E 1 be the set of elements of norm 1. The Thom space T (E) of E is the quotient E/E

More information

REPRESENTATION THEORY WEEK 7

REPRESENTATION THEORY WEEK 7 REPRESENTATION THEORY WEEK 7 1. Characters of L k and S n A character of an irreducible representation of L k is a polynomial function constant on every conjugacy class. Since the set of diagonalizable

More information

GEOMETRIC QUANTIZATION

GEOMETRIC QUANTIZATION GEOMETRIC QUANTIZATION 1. The basic idea The setting of the Hamiltonian version of classical (Newtonian) mechanics is the phase space (position and momentum), which is a symplectic manifold. The typical

More information

Notes on Spivak, Differential Geometry, vol 1.

Notes on Spivak, Differential Geometry, vol 1. Notes on Spivak, Differential Geometry, vol 1. Chapter 1. Chapter 1 deals with topological manifolds. There is some discussion about more subtle topological aspects (pp. 2 7) which we can gloss over. A

More information