Intense Slow Positron Source

Size: px
Start display at page:

Download "Intense Slow Positron Source"

Transcription

1 Intense Slow Positron Source Introduction Science & Frontier Technology Production of e + Competition Proposal Request to EPAC ~ 14 m 10 MeV rhodotron target - collector moderator - buffer gas - trap e+ P. Pérez & A. Rosowsky 1

2 Introduction Our motivation: detect deviation from gravity in P s or Hbar free-fall make a beam of anti-atoms ( CERN expts.) use few pbar (expensive) use manye + E C ~ ev, D E C ~ 1.5 mev e + factory : today s proposal New applications outside this field for Ne + > 10 9 s -1 P. Pérez & A. Rosowsky 2

3 Making anti atoms Radiative Recombination (RR) ne 10 8 cm 3 p + + e H p + e + Hbar Laser Induced Radiative Recombination (LIRR) p + + e + hν H + 2hν p + e + + hν Hbar + 2hν 3 Body reactions (3BDY) ne 10 9 cm 3 p + + e + e ± H * + e ± p + e + + e ± Hbar * + e ± e + + e + e ± P s * + e ± Charge exchange with Positronium (CXPS) p + + P s H + e + p + P s Hbar + e H + P s H + e + Hbar + P s Hbar + + e SLAC CERN Matter Anti-matter P. Pérez & A. Rosowsky 3

4 N.Yamanaka & Y. Kino, Phys. Rev. A 65, P.K. Biswas, J.Phys. B: At. Mol. Opt. Phys. 34 (2001) 4831 p + + Ps H + e + H + Ps H + e + C.M. 20 KeV p (lab) cm Ps at/cm Hbar + per incident antiproton 20 KeV p (lab) cm 2 P. Pérez & A. Rosowsky 4

5 Transform all e + into P s in less than 1 ns via 3 body reaction: e + + e + e ± P s * + e ± 20 KeV p ± + P s target H/p = Hbar/p = 0.1 In same P s target H + P s H + e + Hbar + P s Hbar + + e H /H = Hbar + /Hbar = Ps at/cm Hbar + per incident antiproton Lifetime (s) e + lifetime in plasma (s) ATHENA cm -3 5 mev 20 mev 1 mev direct annihilation Plasma temperature we will be here! plasma density (cm -3 ) density (cm-3) P. Pérez & A. Rosowsky 5 1 ns 0.1 ns

6 Layout scheme Greaves-Surko traps Target : aerogel / Si cristal e + trap ( ~ ev ) p + or p trap ( ~20 kev ) S = 1 mm 2 «= 1200 mm L = 1 cm H, H or Hbar, Hbar + ï Free fall expt. Positronium target : e trap ( ~ ev ) Few e ± inside 10-2 cm 3 => P s density ~ cm -3 several minutes to fill e+ trap P. Pérez & A. Rosowsky 6

7 Greaves-Surko trap Ne moderator: Ec < 1 MeV ev N 2 buffer gas : ev mev Penning Malmberg trap Rotating wall UC San Diego (7K) ATHENA : 10 8 e + Project to store within 3 years e + P. Pérez & A. Rosowsky 7

8 Fundamental Physics expts Gravity experiment possible with Ps only High Rydberg states of Ps can live ~ 1ms produce thermal Ps atoms (3 km/s max speed) then excited with Doppler-free two photon techniques Ps atoms focused by mirror and converge on 1 mm spot deflection expected from gravity is 50 mm on a 10 m scale rate of slow positrons needed in order to achieve a 5 s measurement in a week of run is ~ 10 9 s -1 BEC Ps A. P. Mills & P.M. Platzman publications 511 KeV g ray laser 3D imaging of molecules P. Pérez & A. Rosowsky 8

9 Other research & Applications e + e plasmas Astrophysics Feed stellarator for low energy neutral plasma study Relativistic plasmas study on ms to s time scales Cold & bright e + beams materials study High speed electronics and chips (PALS) Positron microscopy Filling of portable trap with e + commercial use (UCSD design) «advanced futuristic» projects : energy storage, USAF shuttle propulsion P. Pérez & A. Rosowsky 9

10 e + Production and Collection Beam energy/intensity : 10 MeV 2~10 ma Target geometry : thin foil at grazing incidence ( 3 degrees) Probability of first interaction (e + & Xrays) Thermal effects : Xrays leak + IR slab effect Large angle collection and selection < 1 MeV P. Pérez & A. Rosowsky 10

11 Target (2) Study energy deposit as a function of incidence angle Y e beam section 1 mm x 20 mm LINAC 10 MeV e 3 degree Thickness = D equivalent thickness: D = D / sin 3 0 e+ 3 0 D Z e+ e+ e+ X D Tungsten target 20 mm x 20 mm x 50 µm P. Pérez & A. Rosowsky 11

12 Kinetic energy at target exit positrons electrons Energy (GeV) Energy (GeV) P. Pérez & A. Rosowsky 12

13 Energy versus angle Production point At target exit angle Kinetic energy (GeV) Kinetic energy (GeV) P. Pérez & A. Rosowsky 13

14 Magnetic Bulb B target e + e + e - B B dump x target e + P. Pérez & A. Rosowsky 14

15 Collection Setup WALL SHIELD MAGNET H1 QUADRUPOLE TARGET DUMP MAGNET H2 HELMOLTZ GUIDING TUBE cm 50 cm 40 cm 1 m count e + here P. Pérez & A. Rosowsky 15

16 Simulation and engineering x x 10 cm 10 cm z 10 cm P. Pérez & A. Rosowsky 16 z

17 Positrons y z x P. Pérez & A. Rosowsky 17

18 electrons x z 10 cm P. Pérez & A. Rosowsky 18

19 3D view P. Pérez & A. Rosowsky 19

20 e+ position in (y, z) planes Before 4-poles X = 3 cm X = 200 cm P. Pérez & A. Rosowsky 20

21 energy versus radius at x = 200 cm positrons Radius (cm) electrons Energy (GeV) Energy (GeV) P. Pérez & A. Rosowsky 21

22 Positrons radius at x = 200 cm Kinetic energy < 1 MeV All kinetic energies Radius (cm) Radius (cm) P. Pérez & A. Rosowsky 22

23 Target e - soldering test on Tungsten 50 mm 40 kv / 20 ma on 20 mm 2 not perforated at 15 ma Working hypothesis: 1 k W / cm K Test with high intensity beam from IBA foreseen T rise, evaporation P. Pérez & A. Rosowsky 23

24 Target (2) Study energy deposit as a function of incidence angle Y e beam section 1 mm x 20 mm LINAC 10 MeV e 3 degree Thickness = D equivalent thickness: D = D / sin 3 0 e+ 3 0 D Z e+ e+ e+ X D Tungsten target 20 mm x 20 mm x 50 µm P. Pérez & A. Rosowsky 24

25 Target (3) 10 4 e - track length inside targets of 1mm equivalent thickness <L> ( cm) ( cm) rms track length (cm) P. Pérez & A. Rosowsky 25

26 Energy Deposit in 1cm 2 Target E(e - ) = 10 MeV Simulation with GEANT/EGS Power (W) E=10MeV puissance deposee pour 1mA de e Deposited power for 1 ma Current (ma) E=10MeV courant d e - pour 1kW puissance deposee I MAX for 1 kw deposited kw/ma 1.7 kw/ma ma 0.22 ma D (mm) D (m m) 90 0 P. Pérez & A. Rosowsky

27 Production Rate (1) 10 7 electrons on 1 cm 2 target Ne E=10MeV nombre de e + a l avant pour 10 7 e - sur la cible e + forward 3 0 Ne E=10MeV nombre de e + de moins de 1 MeV a l avant pour 10 7 e - sur la cible Ee + <1 MeV ~ / 10 7 = ~ 3500 / 10 7 = D (m m) D (m m) P. Pérez & A. Rosowsky 27

28 Production Rate (2) X 10 9 Ne + (s -1 ) x Power deposited in 1 cm 2 target = 1 kw E=10MeV taux de e + a l avant pour 1kW depose dans la cible e + forward Ne + (s -1 ) X x E=10MeV taux de e + de moins de 1 MeV a l avant pour 1kW depose dans la cible Ee + <1 MeV D (m m) D (m m) P. Pérez & A. Rosowsky 28

29 Production For 1 cm 2 of target D = 1mm Limit 1 kw / cm Normalization to same number of e - generated 90 0 in units of s Imax Ne + Ne + (<1MeV) ma ma ma 2.3 ma for 4 cm x Ee+ (MeV) P. Pérez & A. Rosowsky 29

30 Collection efficiency Fraction of e + at exit plane inside circle of radius 5 or 2 cm centered on axis 1 r = 5 cm 1 r = 2 cm 0.9 E < 600 KeV with quad 0.8 e e slit shaped beam E < 1 MeV no quad x 4 cm x 2 cm transverse radius of e + source at target level (cm) P. Pérez & A. Rosowsky 30

31 Collected Positron Rates (2m from target) e+ produced as much as possible near axis is best for production and collection (e + rates in units of s -1 ) R e e + coll = 5 cm rate 5 50 all e + at exit plane forward E <1 MeV 20% 52% E < 600 KeV 60% R < 2 cm R < 5 cm E (MeV) R coll = 2 cm forward E <1 MeV E < 600 KeV 8% 20% 30% e + rate P. Pérez & A. Rosowsky 31 e 2

32 Electron and photon fluxes Two possible setups with same e + output Beam and coils on same axis e - Target and downstream coils on same axis e - P. Pérez & A. Rosowsky 32

33 Fluxes of electrons and photons I = 2.3 ma Setup 1 Setup 2 R = 1 cm 5 W 10 W R = 2 cm 140 W 45 W R = 3 cm 450 W 80 W R = 4 cm 1.5 kw 110 W at exit plane Power (kw) Power (kw) plots for 1 ma Setup 1 Setup X (along coils axis) (cm) X (along coils axis) (cm) P. Pérez & A. Rosowsky

34 A very first design of a 2D expander/uniformizer F. Meot and T. Daniel, NIM, A 379 (1996) b (m) Postprocessor/Zgoubi NoDate... Z (m) vs. Y Z (m) Y (m) x (m) P. Pérez & A. Rosowsky 34

35 Design differences (1) Rossendorf / Aarhus converter e - extraction lenses trap EPOS design + trap MeV e + W moderator E(decel.) dump 1.5 ev e + E (2-5 kv) converter Proposed design MeV e + e - efficiency Tungsten Neon trap temperature room 7K Ne moderator 1.5 ev e + P. Pérez & A. Rosowsky 35

36 Design differences (2) Original EPOS design: 40 MeV, 0.25 ma, ~CW Linac Pt or W moderator, 3.5 mm Pt target Neutron activation Collection efficiency before trap 20% Expected Rate before trap s -1 At 10 MeV, 2.5 ma 1mm target = s -1 Proposed design: 10 MeV, 2.5 ma, CW Ne Moderator, thin W target Collection efficiency before trap 20% Expected rate before trap s -1 E (MeV) I(mA) Mod. Activ. L wall Rate Pt yes 30m 3m W no 3m 2m Ne no 3m 2m P. Pérez & A. Rosowsky 36

37 Other designs Thermal neutron capture: 113 Cd(n,g) 114 Cd s = barn!! By nuclear research reactor FRM2 in Munich (Germany) can reach s -1 Building size: 40 m x 40 m x 30 m P. Pérez & A. Rosowsky 37

38 Scientific Goals Gravity and spectroscopy with P s H Hbar Astrophysics in vitro 3D molecule imaging P s BEC and 511 KeV Laser Applied technology : positron microscope P. Pérez & A. Rosowsky 38

39 Proposal: best ingredients.. e + facility : Ne + > 10 9 s -1 ~ 14 m fundamental interaction physics : HEP lab e beam expertise and beam research 10 MeV rhodotron SR radiation control infrastructure Interdisciplinary lab Location near trap development target - collector moderator - buffer gas - trap e+ P. Pérez & A. Rosowsky 39

40 Ressource Impacts Building : new ~ 2.5 M$ refurbished ~ x00 k$ Target-collection Injection ~ 400 k$ e- machine : Rhodotron ~ 2.5 M$ Linac ~ 300 k$ Infrastructure : 250 kw Water cooling Radiation control, safety Parallel project UC San Diego Moderator Buffer gas trap ~ 500 k$ P. Pérez & A. Rosowsky 40

41 Requests Winter workshop: Start interdisciplinary community Start SLAC - Saclay project collaboration Trigger other institutes interest EPAC feed back: encourage TDR for june 2004 EPAC P. Pérez & A. Rosowsky 41

Intense Slow Positron Source

Intense Slow Positron Source Intense Slow Positron Source Nucl. Inst. Meth. A 532 (2004) 523-532. ~ 14 m 10 MeV Linac 10 MeV rhodotron beam dump target - collector target - collector moderator - buffer gas - trap e+ 18/03/2005 P.

More information

Intense Source of Slow Positrons

Intense Source of Slow Positrons SLAC LOI-2003-3 October 22, 2003 Intense Source of Slow Positrons P.Perez, A. Rosowsky C.E.A. Saclay, France Executive Summary We propose to build an intense source of slow positrons which could be the

More information

GBAR Project Gravitational Behavior of Antihydrogen at Rest

GBAR Project Gravitational Behavior of Antihydrogen at Rest GBAR Project Gravitational Behavior of Antihydrogen at Rest Pierre Dupré CEA Saclay, FRANCE 1 Contents Motivation Scheme Schedule 2 Motivation A direct test of the Equivalence Principle with antimatter

More information

POSITRON ACCUMULATOR SCHEME for AEGIS

POSITRON ACCUMULATOR SCHEME for AEGIS POSITRON ACCUMULATOR SCHEME for AEGIS A. S. Belov, S. N. Gninenko INR RAS, Moscow 1 What positron beam is requiered for AEGIS? Number of antihydrogen atoms produced with AEGIS scheme: N Hbar ~ ce n H-

More information

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN ATHENA / AD-1 First production and detection of cold antihydrogen atoms ATHENA Collaboration Rolf Landua CERN 1 LONG TERM PHYSICS GOALS Antihydrogen = Hydrogen? CPT Gravity But... 2 FIRST GOAL PRODUCTION

More information

Plans for a laboratory electron-positron plasma experiment

Plans for a laboratory electron-positron plasma experiment Plans for a laboratory electron-positron plasma experiment Thomas Sunn Pedersen, Xabier Sarasola Max-Planck Institute for Plasma Physics, Germany Lutz Schweikhard, Gerrit Marx Ernst-Moritz Arndt Universität

More information

Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser

Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser Allen Mills, Jr., University of California Riverside in collaboration with David Cassidy and Harry Tom (UCR) Rod Greaves

More information

positron source EPOS - general concept - timing system - digital lifetime measurement

positron source EPOS - general concept - timing system - digital lifetime measurement The pulsed high-brightness positron source EPOS R. Krause-Rehberg 1, G. Brauer 2, A. Krille 1, M. Jungmann 1, S. Sachert 1, A. Rogov 2, K. Nowak 2 1 Martin-Luther-University Halle, Germany 2 Research Center

More information

The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy

The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy R. Krause-Rehberg and many colleagues of Univ. Halle and HZDR Martin-Luther University

More information

EPOS an intense positron beam project at the Research Center Rossendorf

EPOS an intense positron beam project at the Research Center Rossendorf EPOS an intense positron beam project at the Research Center Rossendorf R. Krause-Rehberg 1, G. Brauer 2, S. Sachert 1, V. Bondarenko 1, A. Rogov 2, K. Noack 2 1 Martin-Luther-University Halle 2 Research

More information

? Physics with many Positrons

? Physics with many Positrons Varenna Summer School July 2009? Physics with many Positrons Positron Sources & Positron Beams Christoph Hugenschmidt Technische Universität München What is many? Galaxy: 1.5 10 43 e + /s! = 1 lake + 1

More information

The GBAR experiment. Dirk van der Werf

The GBAR experiment. Dirk van der Werf The GBAR experiment Dirk van der Werf principle detector Laser (t 0 ) gravity J.Walz & T. Hänsch" General Relativity and Gravitation, 36 (2004) 561 detector (t 1 ) 2 principle detector Laser (t 0 ) gravity

More information

Status of A Positron-Electron Experiment (APEX) towards the formation of pair plasmas

Status of A Positron-Electron Experiment (APEX) towards the formation of pair plasmas Status of A Positron-Electron Experiment (APEX) towards the formation of pair plasmas H. Saitoh 1,5, J. Stanja 1, T. Sunn Pedersen 1,3, U. Hergenhahn 1, E. V. Stenson 1, H. Niemann 1,3, N. Paschkowski

More information

Department of Physics, Techno India Batanagar (Techno India Group), Kolkata , West Bengal, India.

Department of Physics, Techno India Batanagar (Techno India Group), Kolkata , West Bengal, India. Department of Physics, Techno India Batanagar (Techno India Group), Kolkata 700141, West Bengal, India. Visiting Scientists @ SINP, @VECC, @ IIEST Kolkata, India. nn.mondal2011@gmail.com, nagendra.n.mondal@biemsindia.org

More information

Positron and positronium for the GBAR experiment

Positron and positronium for the GBAR experiment Positron and positronium for the GBAR experiment László Liszkay CEA, IRFU, Centre de Saclay, France and the GBAR collaboration Outline The GBAR (GravitaConal Behaviour of AnCmaEer in Rest) experiment Linac-

More information

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf The EPOS Team and R. Krause-Rehberg Martin-Luther University, Halle-Wittenberg, Dept. of Physics, 06099 Halle / Germany

More information

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09 Experimental production of many- positron systems David B. Cassidy Department of Physics and Astronomy, University of California, Riverside, USA cassidy@physics.ucr.edu Varenna, July 09 Allen P. Mills,

More information

Antimatter. Jan Meier. Seminar: Experimental Methods in Atomic Physics May, 8th 2007

Antimatter. Jan Meier. Seminar: Experimental Methods in Atomic Physics May, 8th 2007 Antimatter Jan Meier Seminar: Experimental Methods in Atomic Physics May, 8th 27 Overview Antimatter and CPT theorie what is antimatter? what physics does it follow to? First observations of antimatter

More information

Fundamental physics with antihydrogen and antiprotons at the AD. Michael Doser CERN

Fundamental physics with antihydrogen and antiprotons at the AD. Michael Doser CERN Fundamental physics with antihydrogen and antiprotons at the AD Michael Doser CERN What measurements are we talking about? 1) Precise spectroscopic comparison between H and H tests of fundamental symmetry

More information

13th International Workshop on Slow Positron Beam Techniques and Applications

13th International Workshop on Slow Positron Beam Techniques and Applications Positronium and positronium negative ion emission from alkali-metal coated tungsten surfaces Y Nagashima 1, K Michishio 1, H Terabe 1, R H Suzuki 1, S Iida 1, T Yamashita 1, R Kimura 1, T Tachibana 2,

More information

Positronium: Old Dog, New Tricks

Positronium: Old Dog, New Tricks Positronium: Old Dog, New Tricks David B. Cassidy Department of Physics and Astronomy, University College London, UK d.cassidy@ucl.ac.uk Ps production further improved using beams (1972) which can interact

More information

Analysis of design, verification and optimization of High intensity positron source (HIPOS) at HFR Petten

Analysis of design, verification and optimization of High intensity positron source (HIPOS) at HFR Petten Analysis of design, verification and optimization of High intensity positron source (HIPOS) at HFR Petten 1,2, K.Tuček 2, G.Daquino 2, L.Debarberis 2, A. Hogenbirk 3 1 International Atomic Energy Agency,

More information

The intense positron source EPOS at Research Center Rossendorf

The intense positron source EPOS at Research Center Rossendorf The intense positron source EPOS at Research Center Rossendorf R. Krause-Rehberg 1, G. Brauer 2, S. Sachert 1, A. Krille 1, V. Bondarenko 1 1 -Wittenberg 2 FZ Rossendorf Martin-Luther-Universität RK Halle

More information

The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf

The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf R. Krause-Rehberg 1, G. Brauer 2, 1 Martin-Luther-University Halle 2 Research Center Rossendorf Martin-Luther-Universität

More information

GBAR principle: cool H + to get ultra- slow H

GBAR principle: cool H + to get ultra- slow H GBAR principle: cool H + to get ultra- slow H - H + = p e + e + - Sympathetic cooling with Be + à 10 µk - Photodetachment of e + gravity detector H + detector (t 1 ) Cooling 10 µk Laser (t 0 ) h = 1/2

More information

Emerging science and technology of antimatter plasmas and trap-based beams a

Emerging science and technology of antimatter plasmas and trap-based beams a PHYSICS OF PLASMAS VOLUME 11, NUMBER 5 MAY 2004 Emerging science and technology of antimatter plasmas and trap-based beams a C. M. Surko b) Department of Physics, University of California, San Diego, 9500

More information

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS)

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS) Progress of the EPOS Project: Gamma Induced Positron Spectroscopy (GiPS) R. Krause-Rehberg 1,*,W.Anwand 2,G.Brauer 2, M. Butterling 1,T.Cowan 2,M. Jungmann 1, A. Krille 1, R. Schwengner 2, A. Wagner 2

More information

Research Center Dresden Rossendorf

Research Center Dresden Rossendorf News of the EPOS Project at the ELBE Radiation Source in the Research Center Dresden Rossendorf EPOS-Team & R. Krause-Rehberg Extended Concept of EPOS Progress of the mono-energetic Positron Beam (MePS)

More information

The High-Power-Target System of a Muon Collider or Neutrino Factory

The High-Power-Target System of a Muon Collider or Neutrino Factory The High-Power-Target System of a Muon Collider or Neutrino Factory K. McDonald Princeton U. (August 29, 2014) NuFact 14 U Glasgow KT McDonald NuFact 14 (U Glasgow) August 29, 2014 1 The Target System

More information

Antimatter plasmas and antihydrogen*

Antimatter plasmas and antihydrogen* Antimatter plasmas and antihydrogen* R. G. Greaves and C. M. Surko,a) Department of Physics, University of California, San Diego, California 92093-0319 Received 15 November 1996; accepted 15 January 1997

More information

Trap-based positron beams

Trap-based positron beams Applied Surface Science 194 (2002) 56 60 Trap-based positron beams R.G. Greaves a,*, S.J. Gilbert b, C.M. Surko b a First Point Scientific Inc., 5330 Derry Avenue, Suite J, Agoura Hills, CA 91301, USA

More information

Higgs Factory Magnet Protection and Machine-Detector Interface

Higgs Factory Magnet Protection and Machine-Detector Interface Higgs Factory Magnet Protection and Machine-Detector Interface Nikolai Mokhov Fermilab MAP Spring Workshop May 27-31, 2014 Outline MDI Efforts Building Higgs Factory Collider, Detector and MDI Unified

More information

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron mass ratio Fukuoka, August 2012 Masaki Hori Max Planck Institute of Quantum Optics A. Sótér, D. Barna, A.

More information

M. Werner, E. Altstadt, M. Jungmann, G. Brauer, K. Noack, A. Rogov, R. Krause-Rehberg. Thermal Analysis of EPOS components

M. Werner, E. Altstadt, M. Jungmann, G. Brauer, K. Noack, A. Rogov, R. Krause-Rehberg. Thermal Analysis of EPOS components M. Werner, E. Altstadt, M. Jungmann, G. Brauer, K. Noack, A. Rogov, R. Krause-Rehberg Thermal Analysis of EPOS components Dresden, June 27, 2008 Page 2 FZD Abstract: We present a simulation study of the

More information

OVERVIEW OF RECENT WORK ON LASER EXCITATION OF POSITRONIUM FOR THE FORMATION OF ANTIHYDROGEN

OVERVIEW OF RECENT WORK ON LASER EXCITATION OF POSITRONIUM FOR THE FORMATION OF ANTIHYDROGEN OVERVIEW OF RECENT WORK ON LASER EXCITATION OF POSITRONIUM FOR THE FORMATION OF ANTIHYDROGEN Anti-Apple g? g? Pauline Yzombard (1), on behalf of the AEgIS (2) collaboration (1) Laboratoire Aimé Cotton,

More information

Two-stage Rydberg charge exchange in a strong magnetic field

Two-stage Rydberg charge exchange in a strong magnetic field Two-stage Rydberg charge exchange in a strong magnetic field M. L. Wall, C. S. Norton, and F. Robicheaux Department of Physics, Auburn University, Auburn, Alabama 36849-5311, USA Received 21 June 2005;

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History -

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History - Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics - Accelerator Techniques: Introduction and History - Karsten Heeger heeger@wisc.edu Homework #8 Karsten Heeger, Univ. of Wisconsin

More information

A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator

A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator * A. Caliskan 1, H. F. Kisoglu 2, S. Sultansoy 3,4, M. Yilmaz 5 1 Department of Engineering Physics, Gumushane University, Gumushane,

More information

Experiments with low energy antimatter

Experiments with low energy antimatter Experiments with low energy antimatter Giovanni Consolati, on behalf of the AEGIS collaboration Politecnico di Milano and Istituto Nazionale Fisica Nucleare - Milano Introduction to cold antimatter Experiments

More information

Outlook: Application of Positron Annihilation for defects investigations in thin films. Introduction to Positron Annihilation Methods

Outlook: Application of Positron Annihilation for defects investigations in thin films. Introduction to Positron Annihilation Methods Application of Positron Annihilation for defects investigations in thin films V. Bondarenko, R. Krause-Rehberg Martin-Luther-University Halle-Wittenberg, Halle, Germany Outlook: Introduction to Positron

More information

E. EROGLU, E. PILICER, I. TAPAN Department of Physics, Faculty of Arts and Sciences, Uludag University, Gorukle, Bursa, TURKEY.

E. EROGLU, E. PILICER, I. TAPAN Department of Physics, Faculty of Arts and Sciences, Uludag University, Gorukle, Bursa, TURKEY. BALKAN PHYSICS LETTERS c Bogazici University Press 10 February 2010 BPL, 18, 181010, pp. 73-78 (2010) POSITRON PRODUCTION AND ENERGY DEPOSITION STUDIES WITH FLUKA E. EROGLU, E. PILICER, I. TAPAN Department

More information

Plenary review talk, APS Plasma Physics Division, Chicago IL, Nov. 9, Plasmas as Drivers for Science with Antimatter.

Plenary review talk, APS Plasma Physics Division, Chicago IL, Nov. 9, Plasmas as Drivers for Science with Antimatter. Plenary review talk, APS Plasma Physics Division, Chicago IL, Nov. 9, 2010 Plasmas as Drivers for Science with Antimatter Cliff Surko* University of California San Diego * Supported by the U. S. DoE, NSF

More information

Shielding calculations for the design of new Beamlines at ALBA Synchrotron

Shielding calculations for the design of new Beamlines at ALBA Synchrotron Shielding calculations for the design of new Beamlines at ALBA Synchrotron A. Devienne 1, M.J. García-Fusté 1 1 Health & Safety Department, ALBA Synchrotron, Carrer de la Llum -6, 0890 Cerdanyola del Vallès,

More information

Positron Source using Channelling for the Baseline of the CLIC study

Positron Source using Channelling for the Baseline of the CLIC study CLIC = Compact Linear Collider Positron Source using Channelling for the Baseline of the CLIC study Louis Rinolfi With contributions from: X. Artru 2, R. Chehab 2, O. Dadoun 3, E. Eroglu 4, K. Furukawa

More information

CPT ALPHA CPT 2.1 CPT , CERN. TRIUMF Canada s National Laboratory for Particle and Nuclear Physics

CPT ALPHA CPT 2.1 CPT , CERN. TRIUMF Canada s National Laboratory for Particle and Nuclear Physics 258 501 ALPHA (CERN) CPT, CERN ishida@icepp.s.u-tokyo.ac.jp TRIUMF Canada s National Laboratory for Particle and Nuclear Physics Makoto.Fujiwara@triumf.ca 2015 2 26 ( H ) (p ) ( e + ) CPT ( ) CERN (AD;

More information

2. X-ray Sources 2.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission

2. X-ray Sources 2.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission . X-ray Sources.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission. Synchrotron Radiation Sources - Introduction - Characteristics of Bending Magnet

More information

ASPECTS OF THE MCMASTER INTENSE POSITRON BEAM FACILITY

ASPECTS OF THE MCMASTER INTENSE POSITRON BEAM FACILITY ASPECTS OF THE MCMASTER INTENSE POSITRON BEAM FACILITY ASPECTS OF THE MCMASTER INTENSE POSITRON BEAM FACILITY (MIPBF) By PEIHAI LI M.Eng., B.Sc. A Thesis Submitted to the School of Graduate Studies in

More information

The Turkish Accelerator Center (TAC) Project. Bora Ketenoğlu. Department of Engineering Physics Ankara University / TURKEY

The Turkish Accelerator Center (TAC) Project. Bora Ketenoğlu. Department of Engineering Physics Ankara University / TURKEY The Turkish Accelerator Center (TAC) Project Bora Ketenoğlu Department of Engineering Physics Ankara University / TURKEY Contents The emblem & homepage Why do we want to build an accelerator complex? Where

More information

Positron Probe Microanalyzer (PPMA) facilities at AIST

Positron Probe Microanalyzer (PPMA) facilities at AIST Positron Probe Microanalyzer (PPMA) and other accelerator based slow positron facilities at AIST B. E. O Rourke, N. Oshima, A. Kinomura, T. Ohdaira and R. Suzuki National Institute of Advanced Industrial

More information

Beam Extraction by the Laser Charge Exchange Method Using the 3-MeV LINAC in J-PARC )

Beam Extraction by the Laser Charge Exchange Method Using the 3-MeV LINAC in J-PARC ) Beam Extraction by the Laser Charge Exchange Method Using the 3-MeV LINAC in J-PARC ) Hayanori TAKEI, Koichiro HIRANO, Kazuyoshi TSUTSUMI 1) and Shin-ichiro MEIGO J-PARC Center, Japan Atomic Energy Agency,

More information

Study on Bose-Einstein Condensation of Positronium

Study on Bose-Einstein Condensation of Positronium Study on Bose-Einstein Condensation of Positronium K. Shu 1, T. Murayoshi 1, X. Fan 1, A. Ishida 1, T. Yamazaki 1,T. Namba 1,S. Asai 1, K. Yoshioka 2, M. Kuwata-Gonokami 1, N. Oshima 3, B. E. O Rourke

More information

O rion. The ORION Facility at SLAC. Bob Siemann AAC Workshop, June 15, 2000

O rion. The ORION Facility at SLAC. Bob Siemann AAC Workshop, June 15, 2000 The ORION Facility at SLAC Bob Siemann AAC Workshop, June 15, 2000 1. Introduction 2. The ORION Workshop 3. What s Next? 4. Concluding Remarks http://www-project.slac.stanford.edu/orion/ Introduction Advanced

More information

SPIRAL-2 FOR NEUTRON PRODUCTION

SPIRAL-2 FOR NEUTRON PRODUCTION SPIRAL-2 FOR NEUTRON PRODUCTION X. Ledoux and the NFS collaboration Outline The SPIRAL-2 facility The Neutrons For Science Facility OUTLINE SPIRAL-2 The Neutrons For Science facility The SPIRAL-2 project

More information

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Richard London rlondon@llnl.gov Workshop on Interaction of Free Electron Laser Radiation with Matter Hamburg This work

More information

II) Experimental Design

II) Experimental Design SLAC Experimental Advisory Committee --- September 12 th, 1997 II) Experimental Design Theory and simulations Great promise of significant scientific and technological achievements! How to realize this

More information

Plans for the creation of the first matter-antimatter (electron-positron) plasmas on Earth

Plans for the creation of the first matter-antimatter (electron-positron) plasmas on Earth Plans for the creation of the first matter-antimatter (electron-positron) plasmas on Earth Thomas Sunn Pedersen, Uwe Hergenhahn, Haruhiko Saitoh, Eve Stenson, Juliane Stanja, Holger Niemann, Norbert Paschkowski

More information

ERL FACILITY AT CERN FOR APPLICATIONS

ERL FACILITY AT CERN FOR APPLICATIONS ERL FACILITY AT CERN FOR APPLICATIONS Erk Jensen (CERN) Big thanks to contributors: A. Bogacz (JLAB), O. Brüning, R. Calaga, V. Chetvertkova, E. Cormier (CELIA), R. Jones, M. Klein, A. Valloni, D. Pellegrini,

More information

Positron program at the Idaho Accelerator Center. Giulio Stancari Idaho State University and Jefferson Lab

Positron program at the Idaho Accelerator Center. Giulio Stancari Idaho State University and Jefferson Lab Positron program at the Idaho Accelerator Center Giulio Stancari Idaho State University and Jefferson Lab International Workshop on Positrons at Jefferson Lab Newport News, Virginia (USA), 26 March 2009

More information

Physics at Accelerators

Physics at Accelerators Physics at Accelerators Course outline: The first 4 lectures covers the physics principles of accelerators. Preliminary plan: Lecture 1: Accelerators, an introduction. Acceleration principles. Lecture

More information

In-Flight Fragment Separator and ISOL Cyclotron for RISP

In-Flight Fragment Separator and ISOL Cyclotron for RISP In-Flight Fragment Separator and ISOL Cyclotron for RISP Jong-Won Kim Daejeon, May 9, 2012 Scope of Presentation in the RI Science Project Area of the IF Separator and ISOL cyclotron Two kinds of beam

More information

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus Small Angle Neutron Scattering in Different Fields of Research Henrich Frielinghaus Jülich Centre for Neutron Science Forschungszentrum Jülich GmbH Lichtenbergstrasse 1 85747 Garching (München) h.frielinghaus@fz-juelich.de

More information

New targets for enhancing pb nuclear fusion reaction at the PALS facility

New targets for enhancing pb nuclear fusion reaction at the PALS facility New targets for enhancing pb nuclear fusion reaction at the PALS facility Lorenzo Giuffrida Institute of Physics ASCR, v.v.i (FZU), ELI- Beamlines project, Prague, Czech Republic Summary pb history and

More information

Review of ISOL-type Radioactive Beam Facilities

Review of ISOL-type Radioactive Beam Facilities Review of ISOL-type Radioactive Beam Facilities, CERN Map of the nuclear landscape Outline The ISOL technique History and Geography Isotope Separation On-Line Existing facilities First generation facilities

More information

R&D ON FUTURE CIRCULAR COLLIDERS

R&D ON FUTURE CIRCULAR COLLIDERS R&D ON FUTURE CIRCULAR COLLIDERS Double Chooz ALICE Edelweiss HESS Herschel CMS Detecting radiations from the Universe. Conseil Scientifique de l Institut 2015 Antoine Chance and Maria Durante MOTIVATIONS

More information

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract This work was performed under the auspices of the U.S. Department of Energy by under contract DE-AC52-7NA27344. Lawrence Livermore National Security, LLC The ITER tokamak Tungsten (W) is attractive as

More information

Experimental neutron capture data of 58 Ni from the CERN n TOF facility

Experimental neutron capture data of 58 Ni from the CERN n TOF facility Introduction n TOF facility Data analysis Experimental neutron capture data of 58 Ni from the CERN n TOF facility Department of Physics, Faculty of Science, University of Zagreb 25. August 2014. Overview

More information

Question 11.1: Find the

Question 11.1: Find the Question 11.1: Find the (a) maximum frequency, and (b) minimum wavelength of X-rays produced by 30 kv electrons. Potential of the electrons, V = 30 kv = 3 10 4 V Hence, energy of the electrons, E = 3 10

More information

Production of HCI with an electron beam ion trap

Production of HCI with an electron beam ion trap Production of HCI with an electron beam ion trap I=450 ma E= 5 kev axially: electrodes radially: electron beam space charge total trap potential U trap 200 V (U trap ion charge) 10000 ev 15000 A/cm 2 n

More information

Introduction to Particle Accelerators & CESR-C

Introduction to Particle Accelerators & CESR-C Introduction to Particle Accelerators & CESR-C Michael Billing June 7, 2006 What Are the Uses for Particle Accelerators? Medical Accelerators Create isotopes tracers for Medical Diagnostics & Biological

More information

Study of semiconductors with positrons. Outlook:

Study of semiconductors with positrons. Outlook: Study of semiconductors with positrons V. Bondarenko, R. Krause-Rehberg Martin-Luther-University Halle-Wittenberg, Halle, Germany Introduction Positron trapping into defects Methods of positron annihilation

More information

Reminder : scenarios of light new physics

Reminder : scenarios of light new physics Reminder : scenarios of light new physics No new particle EW scale postulated Heavy neutral lepton AND well motivated! Neutrino masses Matter-antimatter asymmetry Dark matter Dark photon Muon g-2 anomaly

More information

Characterizations and Diagnostics of Compton Light Source

Characterizations and Diagnostics of Compton Light Source Characterizations and Diagnostics of Compton Light Source Advance Light Source (ALS) (LBNL) Ying K. Wu Duke Free Electron Laser Laboratory (DFELL) Acknowledgments: DFELL: B. Jia, G. Swift, H. Hao, J. Li,

More information

Motivation. g-spectroscopy deals with g-ray detection and is one of the most relevant methods to investigate excited states in nuclei.

Motivation. g-spectroscopy deals with g-ray detection and is one of the most relevant methods to investigate excited states in nuclei. Motivation Spins and excited states of double-magic nucleus 16 O Decay spectra are caused by electro-magnetic transitions. g-spectroscopy deals with g-ray detection and is one of the most relevant methods

More information

Photon Regeneration at Optical Frequencies

Photon Regeneration at Optical Frequencies Photon Regeneration at Optical Frequencies Andrei Afanasev Hampton University/Jefferson Lab 3 rd rd Joint ILIAS-CERN CERN-WIMPs Training workshop Patras,, Greece, June 22, 2007 Motivation for Axion Search

More information

meeting March 8, 2011

meeting March 8, 2011 meeting March 8, 2011 Yuri Kamyshkov / University of Tennessee email: kamyshkov@utk.edu 1 Neutron antineutron t transformation ti experiment would be an alternative way of searching for baryon number violation

More information

minimum wavelength of X-rays produced by 30 kv electrons.

minimum wavelength of X-rays produced by 30 kv electrons. Question 11.1: Find the maximum frequency, and minimum wavelength of X-rays produced by 30 kv electrons. Potential of the electrons, V = 30 kv = 3 10 4 V Hence, energy of the electrons, E = 3 10 4 ev Where,

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

Quadrupole Induced Resonant Particle Transport in a Pure Electron Plasma

Quadrupole Induced Resonant Particle Transport in a Pure Electron Plasma Quadrupole Induced Resonant Particle Transport in a Pure Electron Plasma E. Gilson 1 and J. Fajans 2 Department of Physics University of California, Berkeley Berkeley, California, 94720-7300 Abstract.

More information

E166: Polarized Positrons & Polarimetry

E166: Polarized Positrons & Polarimetry (DESY) - on behalf of the E166 Collaboration ILC: - why polarized positrons - e+ source options - undulator source scheme E166 - proof-of-principle demonstration of the undulator method - undulator basics

More information

Laser Ion Acceleration: Status and Perspectives for Fusion

Laser Ion Acceleration: Status and Perspectives for Fusion Laser Ion Acceleration: Status and Perspectives for Fusion Peter G. Thirolf, LMU Munich Outline: laser-particle acceleration fission-fusion mechanism: with ultra-dense ion beams towards r-process path

More information

novel DIagnostic Techniques for future particle Accelerators: A Marie Curie Initial Training NETwork

novel DIagnostic Techniques for future particle Accelerators: A Marie Curie Initial Training NETwork novel Iagnostic Techniques for future particle Accelerators: A Marie Curie Initial Training NETwork Carsten P. Welsch - On behalf of the ITANET Consortium - c.welsch@gsi.de Outline What is ITANET? Network

More information

ENERGY DEPOSITION EFFECTS OF THE X PHOTON BEAM ON THE MIRROR OF PLASMON-X EXPERIMENT AT LI2FE. Francesco Broggi, Luca Serafini

ENERGY DEPOSITION EFFECTS OF THE X PHOTON BEAM ON THE MIRROR OF PLASMON-X EXPERIMENT AT LI2FE. Francesco Broggi, Luca Serafini SPARC-EBD -10/01 21 Luglio 2010 ENERGY DEPOSITION EFFECTS OF THE X PHOTON BEAM ON THE MIRROR OF PLASMON-X EXPERIMENT AT LI2FE Francesco Broggi, Luca Serafini INFN-LASA-Sezione di Milano, Via F.ll icervi

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

Neutronic Design on a Small Accelerator based 7 Li (p, n) Neutron Source for Neutron Scattering Experiments

Neutronic Design on a Small Accelerator based 7 Li (p, n) Neutron Source for Neutron Scattering Experiments 2010-08-16 Neutronic Design on a Small Accelerator based 7 Li (p, n) Neutron Source for Neutron Scattering Experiments Fujio Hiraga, Takanori Okazaki and Yoshiaki Kiyanagi Hokkaido University 1 Technical

More information

Proton and neutron radiation facilities in the PS East hall at CERN

Proton and neutron radiation facilities in the PS East hall at CERN Proton and neutron radiation facilities in the PS East hall at CERN http://www.cern.ch/irradiation M. Glaser, CERN Division EP-TA1-SD Introduction CERN Accelerators CERN-PS East Hall Proton irradiation

More information

Modern Accelerators for High Energy Physics

Modern Accelerators for High Energy Physics Modern Accelerators for High Energy Physics 1. Types of collider beams 2. The Tevatron 3. HERA electron proton collider 4. The physics from colliders 5. Large Hadron Collider 6. Electron Colliders A.V.

More information

Positron Annihilation Spectroscopy - A non-destructive method for material testing -

Positron Annihilation Spectroscopy - A non-destructive method for material testing - Maik Butterling Institute of Radiation Physics http://www.hzdr.de Positron Annihilation Spectroscopy - A non-destructive method for material testing - Maik Butterling Positron Annihilation Spectroscopy

More information

POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER. Paul Coleman University of Bath

POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER. Paul Coleman University of Bath POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER Paul Coleman University of Bath THE FATE OF POSITRONS IN CONDENSED MATTER POSITRON-SURFACE INTERACTIONS positron backscattering BACKSCATTERED

More information

Interaction of charged particles and photons with matter

Interaction of charged particles and photons with matter Interaction of charged particles and photons with matter Robert Miyaoka, Ph.D. Old Fisheries Center, Room 200 rmiyaoka@u.washington.edu Passage of radiation through matter depends on Type of radiation

More information

Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital

Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital Rationale of proton therapy Dose deposition versus depth in

More information

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012 Introduction to accelerators for teachers (Korean program) Mariusz Sapiński (mariusz.sapinski@cern.ch) CERN, Beams Department August 9 th, 2012 Definition (Britannica) Particle accelerator: A device producing

More information

1.5 TeV Muon Collider background rejection in ILCroot Si VXD and Tracker (summary report)

1.5 TeV Muon Collider background rejection in ILCroot Si VXD and Tracker (summary report) 1.5 TeV Muon Collider background rejection in ILCroot Si VXD and Tracker (summary report) N. Terentiev* (Carnegie Mellon U./Fermilab) V. Di Benedetto, C. Gatto (INFN) A. Mazzacane, N. Mokhov, S. Striganov

More information

Slow-Positron-Beam Techniques

Slow-Positron-Beam Techniques Slow-Positron-Beam Techniques 1 Slow-Positron-Beam Techniques The main advantage of the conventional sample source sandwich arrangement is that the emitted positrons immediately penetrate the sample. A

More information

Positron Annihilation Lifetime Spectroscopy (PALS)

Positron Annihilation Lifetime Spectroscopy (PALS) Positron Annihilation Lifetime Spectroscopy (PALS) Javier Puertas 12/12/12 Contents 1. Introduction. 1.1. General idea of the process. 3. PALS: Experimental results. 1.2. What is a positron? 3.1. Math.

More information

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab)

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab) Electron Beam Polarimetry: Status and Prospects DIS 2005, Madison, April 2005 E. Chudakov (JLab) Motivation: what accuracy is required for various experiments Methods in use: Optical methods Mott scattering

More information

Development of the Positron Injector for LEPTA Facility

Development of the Positron Injector for LEPTA Facility Development of the Positron Injector for LEPTA Facility V.Bykovsky, M.Eseev *, A.Kobets, I.Meshkov, V.Pavlov, R. Pivin, A.Rudakov, G.Trubnikov, S.Yakovenko * - Lomonosov Pomor State Universitet, Arkhangelsk

More information

FACET-II Design Update

FACET-II Design Update FACET-II Design Update October 17-19, 2016, SLAC National Accelerator Laboratory Glen White FACET-II CD-2/3A Director s Review, August 9, 2016 Planning for FACET-II as a Community Resource FACET-II Photo

More information

The EPOS System (ELBE Positron Source) at Helmholtz Centre Dresden- Rossendorf and first experiments at photovoltaic CIGS layers

The EPOS System (ELBE Positron Source) at Helmholtz Centre Dresden- Rossendorf and first experiments at photovoltaic CIGS layers The EPOS System (ELBE Positron Source) at Helmholtz Centre Dresden- Rossendorf and first experiments at photovoltaic CIGS layers R. Krause-Rehberg 1, A. Wagner 2 and many colleagues of Univ. Halle and

More information

IPBI-TN June 30, 2004

IPBI-TN June 30, 2004 Spray Electron Beam for Tests of Linear Collider Forward Calorimeter Detectors in SLAC End Station A R. Arnold UMass Amherst, Amherst MA 01003 T. Fieguth Stanford Linear Accelerator Center Menlo Park,

More information

DESIGN AND CONSTRUCTION OF LOW ENERGY ELECTRON ACCELERATORS AT SINP MSU

DESIGN AND CONSTRUCTION OF LOW ENERGY ELECTRON ACCELERATORS AT SINP MSU DESIGN AND CONSTRUCTION OF LOW ENERGY ELECTRON ACCELERATORS AT SINP MSU V. Shvedunov Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University 26 November 2013 Betatron 1959-1985 Low intensity

More information