Intense Slow Positron Source

Size: px
Start display at page:

Download "Intense Slow Positron Source"

Transcription

1 Intense Slow Positron Source Nucl. Inst. Meth. A 532 (2004) ~ 14 m 10 MeV Linac 10 MeV rhodotron beam dump target - collector target - collector moderator - buffer gas - trap e+ 18/03/2005 P. Pérez & A. Rosowsky 1

2 Intense Slow Positron Source Introduction Geometry, heat inside target, e + production rate Collection e - spread, e - dump e - beam, e + e - separation, rotating coils 18/03/2005 P. Pérez & A. Rosowsky 2

3 e + Production and Collection Beam energy/intensity : 10 MeV 2~10 ma Target geometry : thin foil at grazing incidence ( 3 degrees) Probability of first interaction (e + & Xrays) Thermal effects : Xrays + e - leak Large angle collection and selection < 1 MeV 18/03/2005 P. Pérez & A. Rosowsky 3

4 Thin Target at Grazing Angle Study energy deposit as a function of incidence angle Y e beam section 1 mm x 20 mm LINAC 10 MeV e 3 degree Thickness = D equivalent thickness: D = D / sin 3 0 e+ 3 0 D Z e+ e+ e+ X D Tungsten target 20 mm x 20 mm x 50 µm 18/03/2005 P. Pérez & A. Rosowsky 4

5 Track Length inside Target 10 4 e - track length inside targets of 1mm equivalent thickness <L> rms ( cm) ( cm) track length (cm) 18/03/2005 P. Pérez & A. Rosowsky 5

6 Kinetic energy at target exit positrons electrons Energy (GeV) 2004 Energy (GeV) 18/03/2005 P. Pérez & A. Rosowsky 6

7 Target e - soldering test on Tungsten 50 μm 40 kv / 20 ma on 20 mm 2 not perforated at 15 ma Melting limit: 4 kw / cm 2 Working hypothesis: 2 kw / cm 2 Study hypothesis: 1 kw / cm 2 Test with high intensity beam from IBA foreseen T rise, evaporation 18/03/2005 P. Pérez & A. Rosowsky 7

8 Electron welding tests Illuminated area = 0.2 cm KV μm MAX (ma) I Power (W) I MAX (ma) Power (W) I MAX Power Thickness (mm) Voltage (KV) 18/03/2005 P. Pérez & A. Rosowsky 8

9 Input e - energy comparisons Rule of the game: Target sustains 1 KW continuous deposited power per cm 2 Goal: optimize rate of e + with E e+ < 1 MeV Input variables: E = e - energy, I = e - current, θ = e - incidence angle on target, D = target equivalent thickness Generate e - Power deposited in target & e + Production rate = f (E, I, D, θ) Limit current I Optimal production rate Here try 2 values for E (10 and 100 MeV) and θ (3 and 90 degrees) 18/03/2005 P. Pérez & A. Rosowsky 9

10 Energy Deposit in 1cm 2 Target Simulation with GEANT Power (W) E(e - ) = 10 MeV E=10MeV puissance deposee pour 1mA de e Deposited power for 1 ma E(e - ) = 100 MeV E=100MeV puissance deposee pour 1mA de e Deposited power for 1 ma kw/ma kw/ma D (μm) D (μm) 18/03/2005 P. Pérez & A. Rosowsky kw/ma 3 0

11 Maximum input current Simulation with GEANT Current (ma) E(e - ) = 10 MeV E=10MeV courant d e - pour 1kW puissance deposee I MAX for 1 kw deposited Current (ma) 10 1 E(e - ) = 100 MeV E=100MeV courant d e - pour 1kW puissance deposee I MAX for 1 kw deposited 0.3 ma ma ma D (μm) D (μm) 18/03/2005 P. Pérez & A. Rosowsky 11

12 Production Rate (forward) 10 7 electrons on 1 cm 2 target Ne E(e - ) = 10 MeV e + forward E=10MeV nombre de e + a l avant pour 10 7 e - sur la cible 3 0 Ne + X x E(e - ) = 100 MeV e + forward E=100MeV nombre de e + a l avant pour 10 7 e - sur la cible ~ / 10 7 = ~ / 10 7 = D (μm) D (μm) 18/03/2005 P. Pérez & A. Rosowsky 12

13 Production Rate (E e+ <1 MeV) 10 7 electrons on 1 cm 2 target Ne E(e - ) = 10 MeV Ee + <1 MeV E=10MeV nombre de e + de moins de 1 MeV a l avant pour 10 7 e - sur la cible 3 0 Ne + X 10 2 x E(e - ) = 100 MeV E=100MeV nombre de e + de moins de 1 MeV a l avant pour 10 7 e - sur la cible Ee + <1 MeV ~ 3500 / 10 7 = ~ / 10 7 = D (μm) D (μm) 18/03/2005 P. Pérez & A. Rosowsky 13

14 Optimal Production Rates (forward) Power deposited in 1 cm 2 target = 1 kw Ne + (s -1 ) X 10 9 x E(e - ) = 10 MeV E=10MeV taux de e + a l avant pour 1kW depose dans la cible e + forward Ne + (s -1 ) X x E(e - ) = 100 MeV E=100MeV taux de e + a l avant pour 1kW depose dans la cible e + forward D (μ m) D (μ m) 18/03/2005 P. Pérez & A. Rosowsky 14

15 Optimal Production Rates (E e+ <1 MeV) Power deposited in 1 cm 2 target = 1 kw Ne + (s -1 ) X 10 9 x E(e - ) = 10 MeV E=10MeV taux de e + de moins de 1 MeV a l avant pour 1kW depose dans la cible Ee + <1 MeV Ne + (s -1 ) X 10 9 x E(e - ) = 100 MeV E=100MeV taux de e + de moins de 1 MeV a l avant pour 1kW depose dans la cible Ee + <1 MeV D (μ m) D (μ m) 18/03/2005 P. Pérez & A. Rosowsky μm at 3 0 /10MeV 2mm at 90 0 /100MeV

16 Production For 1 cm 2 of target Normalization to same number of e - generated D = 1mm Limit 1 kw / cm in units of s -1 Imax Ne + Ne + (<1MeV) ma ma E c (MeV) ma 2.3 ma for 4 cm Ee+ (MeV) 18/03/2005 P. Pérez & A. Rosowsky 16

17 Energy versus angle Production point inside target At target exit angle Kinetic energy (GeV) 2004 Kinetic energy (GeV) 18/03/2005 P. Pérez & A. Rosowsky 17

18 Magnetic Bulb B target e + e + e - B B dump x target e + 18/03/2005 P. Pérez & A. Rosowsky 18

19 Collection Setup WALL SHIELD MAGNET H1 QUADRUPOLE TARGET DUMP MAGNET H2 HELMOLTZ GUIDING TUBE 20 cm 50 cm 40 cm 1 m count e + here 18/03/2005 P. Pérez & A. Rosowsky 19

20 Setup /03/2005 P. Pérez & A. Rosowsky 20

21 3D view 18/03/2005 P. Pérez & A. Rosowsky 21

22 Setup /03/2005 P. Pérez & A. Rosowsky 22

23 3D setup /03/2005 P. Pérez & A. Rosowsky 23

24 Positrons y z x 18/03/2005 P. Pérez & A. Rosowsky 24

25 Positrons in plane H /03/2005 P. Pérez & A. Rosowsky 25

26 energy versus radius at x = 200 cm positrons Radius (cm) electrons Energy (GeV) 2004 Energy (GeV) 18/03/2005 P. Pérez & A. Rosowsky 26

27 Positrons radius at x = 200 cm Kinetic energy < 1 MeV All kinetic energies Radius (cm) 2004 Radius (cm) 18/03/2005 P. Pérez & A. Rosowsky 27

28 Transversal cuts: positrons 18/03/2005 P. Pérez & A. Rosowsky 28

29 e+ position in (y, z) planes Before 4-poles X = 3 cm 2004 X = 200 cm 18/03/2005 P. Pérez & A. Rosowsky 29

30 Collection efficiency Fraction of e + at exit plane inside circle of radius 5 or 2 cm centered on axis 1 r = 5 cm 1 r = 2 cm 0.9 E < 600 KeV with quad slit shaped beam E < 1 MeV no quad x 4 cm x 2 cm transverse radius of e + source at target level (cm) 18/03/2005 P. Pérez & A. Rosowsky 30

31 Version 2004 I = 2.5 ma X = 200 cm X = 320 cm e + e R yield 5 e + coll = 5 cm + rate 5 yield xe12 all 24% 5.0E E <1 MeV 33% 2.4E E < 600 KeV 25% 1.0E I = 2.5 ma R coll = 10 cm all E <1 MeV E < 600 KeV 10 31% 36% 25% X = 200 cm e + yield 6.3E-4 2.6E-4 1.0E-4 e + rate xe % 4.87E % 23% 2.37E E E E E-4 e + rate xe12 18/03/2005 P. Pérez & A. Rosowsky X = 320 cm e + e yield + rate 10 xe12 29% 35% 25%

32 Electrons (2003) x z 10 cm 18/03/2005 P. Pérez & A. Rosowsky 32

33 Scattered electrons /03/2005 P. Pérez & A. Rosowsky 33

34 Scattered electrons 2004 Energy deposited into SC10 from 0 to 200 cm 18/03/2005 P. Pérez & A. Rosowsky 34

35 Scattered electrons inside 18/03/2005 P. Pérez & A. Rosowsky 35

36 Scattered electrons /03/2005 P. Pérez & A. Rosowsky 36

37 Scattered electrons /03/2005 P. Pérez & A. Rosowsky 37

38 Scattered electrons /03/2005 P. Pérez & A. Rosowsky 38

39 Energy deposited energy in % of total deposited beam energy de/dx magnet H1 HLM1 = de/dx magnet H2 HLM2 = de/dx magnet H4 HLM4 = de/dx dump SCR2 = de/dx magnet H3 HLM3 I = de/dx magnet H3 HLM3 I = de/dx magnet H3 HLM3 I = de/dx magnet H3 HLM3 I = de/dx magnet H3 HLM3 I = de/dx magnet H3 HLM3 I = de/dx magnet H3 HLM3 I = de/dx magnet H3 HLM3 I = de/dx magnet H3 HLM3 I = de/dx magnet H3 HLM3 I = de/dx magnet H3 HLM3 I = de/dx magnet H3 HLM3 I = de/dx rod H3 ROD3 I = de/dx rod H3 ROD3 I = de/dx rod H3 ROD3 I = de/dx rod H3 ROD3 I = de/dx SCR4 = 0. de/dx SCR5 = 0. de/dx SCR6 = 0. de/dx SCR7 = de/dx SCR8 = E-05 de/dx SCR9 = E-05 de/dx SC10 = de/dx SC11 = de/dx SC12 = E-05 de/dx SC4P = de/dx ROD2 = de/dx RDUP = de/dx LIK3 = de/dx RAIL = de/dx deflector H2 = de/dx deflector H3 = de/dx deflector DFDU = de/dx deflector SC11 = de/dx deposited in moderator = total de/dx inside target-selector cylinder = /03/2005 P. Pérez & A. Rosowsky 39

40 Electron and photon fluxes Two possible setups with same e + output Beam and coils on same axis e - Target and downstream coils on same axis e - 18/03/2005 P. Pérez & A. Rosowsky 40

41 Fluxes of electrons and photons I = 2.3 ma R = 1 cm R = 2 cm R = 3 cm R = 4 cm Setup 1 5 W 140 W 450 W 1.5 kw Setup 2 10 W 45 W 80 W 110 W at exit plane Power (kw) Power (kw) plots for 1 ma Setup 1 4 Setup X (along coils axis) (cm) X (along coils axis) (cm) 18/03/2005 P. Pérez & A. Rosowsky 41

42 No target No dump ( setup 2) Exit tube 18/03/2005 P. Pérez & A. Rosowsky 42

43 No target (2004) 18/03/2005 P. Pérez & A. Rosowsky 43

44 Selector field map 18/03/2005 P. Pérez & A. Rosowsky 44

45 electrons positrons 18/03/2005 P. Pérez & A. Rosowsky 45

46 Selector: electrons electrons 18/03/2005 P. Pérez & A. Rosowsky 46

47 Selector: positrons 0.5~0.2 positrons selected 18/03/2005 P. Pérez & A. Rosowsky 47

48 Separation e+ e- Target Collector e- from pairs e+ below 1 MeV Selector e- not from pairs e+ above 1 MeV e+ below 1 MeV 2 steps e+ isolation priority to e+ << 1 MeV!!! 18/03/2005 P. Pérez & A. Rosowsky 48

49 A very first design of a 2D expander/uniformizer F. Meot and T. Daniel, NIM, A 379 (1996) β (m) (m) G4 inverse, expander Linux version 8.23/06 02/11/ βx βy Postprocessor/Zgoubi NoDate... Z (m) vs. Y Z (m) s (m) δe/ p0c =0. Table name = TWISS G4 inverse, expander Linux version 8.23/06 02/11/ SIGX SIGY Y (m) s (m) δe/ p0c =0. Table name = TWISS x (m) 18/03/2005 P. Pérez & A. Rosowsky 49

50 Expander (2) 0.02 Z (m) vs X 0.02 Y (m) vs X X (m) X (m) 18/03/2005 P. Pérez & A. Rosowsky 50

51 Expander (3) q (rad) j (rad) Z (m) Y (m) 18/03/2005 P. Pérez & A. Rosowsky 51

52 Optimal Production Rates (E e+ <1 MeV) What next Finalize injection scheme (F. Meot/Saclay) Finalize engineering of collection system (SACM/Saclay) Shielding scheme: depends on location Study moderation a la DELFT hot or cold before trap 18/03/2005 P. Pérez & A. Rosowsky 52

53 Design differences (1) Rossendorf / Aarhus converter e - extraction lenses trap EPOS design + trap MeV e + W moderator E(decel.) dump 1.5 ev e + E (2-5 kv) converter Proposed design MeV e + e - efficiency trap temperature Tungsten 10-4 room Neon K Ne moderator 1.5 ev e + 18/03/2005 P. Pérez & A. Rosowsky 53

54 Design differences (2) Original EPOS design: 40 MeV, 0.25 ma, ~CW Linac Pt or W moderator, 3.5 mm Pt target Neutron activation Collection efficiency before trap 20% Expected Rate before trap s -1 At 10 MeV, 2.5 ma 1mm target = s -1 Proposed design: 10 MeV, 2.5 ma, CW Ne Moderator, thin W target Collection efficiency before trap 20% Expected rate before trap s -1 E (MeV) I(mA) Mod. Activ. L wall Rate Pt yes 30m 3m W no 3m 2m Ne no 3m 2m /03/2005 P. Pérez & A. Rosowsky 54

55 Other designs Thermal neutron capture: 113 Cd(n,) 114 Cd = barn!! By nuclear research reactor FRM2 in Munich (Germany) can reach s -1 Building size: 40 m x 40 m x 30 m 18/03/2005 P. Pérez & A. Rosowsky 55

56 IBA / Apr 1999

57 Operating principle (1) D E E G IBA / Apr 1999

58 Rhodotron Models - Basic Specifications TT100 TT200 TT300 Energy (MeV) 3-10 Power range at 10 MeV (kw) 1-35 Design value (kw)* > 200 Full (cavity) diameter (m) Full (cavity) height (m) Weight (T) 1.60 (1.05) 3.00 (2.00) 3.00 (2.00) 1.75 (0.75) 2.40 (1.80) 2.40 (1.80) MeV/pass Number of passes Stand-by kw used Full beam kw used <15 <15 <15 <210 <260 <370 IBA / Apr 1999

59 Our bias. Idea for e+ use since 10 ~ 20 years.. but 10 largest US Univ: how many have a source? off the shelves components No neutron safety required low maintnance : 1 engineer low running costs : < 500 kwatts 18/03/2005 P. Pérez & A. Rosowsky 59

60 Compact e+ factory Ne + below 1 MeV > s -1 Ne + at 1 ev > s -1 Beam energy/intensity : 10 MeV ~2.5 ma Interdisciplinary lab: HEP Plasma Condensed Matter SR radiation control and infrastructure 10 MeV Linac target - collector beam dump 18/03/2005 P. Pérez & A. Rosowsky 60

61 Engineering improvements Replace H1 and the 4-poles Use hight Tc supraconductor No field on the beam axis: stable injection New vaccum chamber with magnets outside 18/03/2005 P. Pérez & A. Rosowsky 61

62 Version 2004 I = 2.5 ma X = 200 cm X = 320 cm e + e R yield 5 e + coll = 5 cm + rate 5 yield xe12 all 24% 5.0E E <1 MeV 33% 2.4E E < 600 KeV 25% 1.0E I = 2.5 ma R coll = 10 cm all E <1 MeV E < 600 KeV 10 31% 36% 25% X = 200 cm e + yield 6.3E-4 2.6E-4 1.0E-4 e + rate xe % 4.87E % 23% 2.37E E E E E-4 e + rate xe12 18/03/2005 P. Pérez & A. Rosowsky X = 320 cm e + e yield + rate 10 xe12 29% 35% 25%

63 Positron energy spectrum Same number of electrons on target E(e - ) = 10 MeV E(e - ) = 100 MeV Ne Ne Low energy e + escape thin target mm μm μm mm E c (MeV) E e+ (MeV) E e+ (GeV) 10 MeV 18/03/2005 P. Pérez & A. Rosowsky MeV

Intense Slow Positron Source

Intense Slow Positron Source Intense Slow Positron Source Introduction Science & Frontier Technology Production of e + Competition Proposal Request to EPAC ~ 14 m 10 MeV rhodotron target - collector moderator - buffer gas - trap e+

More information

Intense Source of Slow Positrons

Intense Source of Slow Positrons SLAC LOI-2003-3 October 22, 2003 Intense Source of Slow Positrons P.Perez, A. Rosowsky C.E.A. Saclay, France Executive Summary We propose to build an intense source of slow positrons which could be the

More information

Analysis of design, verification and optimization of High intensity positron source (HIPOS) at HFR Petten

Analysis of design, verification and optimization of High intensity positron source (HIPOS) at HFR Petten Analysis of design, verification and optimization of High intensity positron source (HIPOS) at HFR Petten 1,2, K.Tuček 2, G.Daquino 2, L.Debarberis 2, A. Hogenbirk 3 1 International Atomic Energy Agency,

More information

In-Flight Fragment Separator and ISOL Cyclotron for RISP

In-Flight Fragment Separator and ISOL Cyclotron for RISP In-Flight Fragment Separator and ISOL Cyclotron for RISP Jong-Won Kim Daejeon, May 9, 2012 Scope of Presentation in the RI Science Project Area of the IF Separator and ISOL cyclotron Two kinds of beam

More information

PREX Background Simulation Update

PREX Background Simulation Update PREX Background Simulation Update Rakitha Beminiwattha Syracuse University rakithab@jlab.org 1 Outline PREX-II Collimator Plastic Shielding for Neutrons PREX-II Background Radiation Activation Studies

More information

? Physics with many Positrons

? Physics with many Positrons Varenna Summer School July 2009? Physics with many Positrons Positron Sources & Positron Beams Christoph Hugenschmidt Technische Universität München What is many? Galaxy: 1.5 10 43 e + /s! = 1 lake + 1

More information

PREX Simulation Update

PREX Simulation Update PREX Simulation Update Rakitha Beminiwattha Syracuse University rakithab@jlab.org 1 Outline PREX-II Collimator Plastic Shielding for Neutrons PREX-II Background Radiation Effects of Septum Magnet Fringe

More information

GBAR Project Gravitational Behavior of Antihydrogen at Rest

GBAR Project Gravitational Behavior of Antihydrogen at Rest GBAR Project Gravitational Behavior of Antihydrogen at Rest Pierre Dupré CEA Saclay, FRANCE 1 Contents Motivation Scheme Schedule 2 Motivation A direct test of the Equivalence Principle with antimatter

More information

positron source EPOS - general concept - timing system - digital lifetime measurement

positron source EPOS - general concept - timing system - digital lifetime measurement The pulsed high-brightness positron source EPOS R. Krause-Rehberg 1, G. Brauer 2, A. Krille 1, M. Jungmann 1, S. Sachert 1, A. Rogov 2, K. Nowak 2 1 Martin-Luther-University Halle, Germany 2 Research Center

More information

Reactor & Spallation Neutron Sources

Reactor & Spallation Neutron Sources Reactor & Spallation Neutron Sources Oxford School of Neutron Scattering Oxford, 2011-09-06 Ken Andersen ESS Instruments Division ISIS ILL Time evolution: Major neutron sources ILL BENSC (D) SINQ (CH)

More information

M. Werner, E. Altstadt, M. Jungmann, G. Brauer, K. Noack, A. Rogov, R. Krause-Rehberg. Thermal Analysis of EPOS components

M. Werner, E. Altstadt, M. Jungmann, G. Brauer, K. Noack, A. Rogov, R. Krause-Rehberg. Thermal Analysis of EPOS components M. Werner, E. Altstadt, M. Jungmann, G. Brauer, K. Noack, A. Rogov, R. Krause-Rehberg Thermal Analysis of EPOS components Dresden, June 27, 2008 Page 2 FZD Abstract: We present a simulation study of the

More information

EPOS an intense positron beam project at the Research Center Rossendorf

EPOS an intense positron beam project at the Research Center Rossendorf EPOS an intense positron beam project at the Research Center Rossendorf R. Krause-Rehberg 1, G. Brauer 2, S. Sachert 1, V. Bondarenko 1, A. Rogov 2, K. Noack 2 1 Martin-Luther-University Halle 2 Research

More information

Department of Physics, Techno India Batanagar (Techno India Group), Kolkata , West Bengal, India.

Department of Physics, Techno India Batanagar (Techno India Group), Kolkata , West Bengal, India. Department of Physics, Techno India Batanagar (Techno India Group), Kolkata 700141, West Bengal, India. Visiting Scientists @ SINP, @VECC, @ IIEST Kolkata, India. nn.mondal2011@gmail.com, nagendra.n.mondal@biemsindia.org

More information

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf The EPOS Team and R. Krause-Rehberg Martin-Luther University, Halle-Wittenberg, Dept. of Physics, 06099 Halle / Germany

More information

CW POSITRON SOURCE AT CEBAF

CW POSITRON SOURCE AT CEBAF CW POSITRON SOURCE AT CEBAF by Serkan Golge B.S. July 2002, Fatih University M.S. December 2005, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment

More information

Higgs Factory Magnet Protection and Machine-Detector Interface

Higgs Factory Magnet Protection and Machine-Detector Interface Higgs Factory Magnet Protection and Machine-Detector Interface Nikolai Mokhov Fermilab MAP Spring Workshop May 27-31, 2014 Outline MDI Efforts Building Higgs Factory Collider, Detector and MDI Unified

More information

The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy

The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy R. Krause-Rehberg and many colleagues of Univ. Halle and HZDR Martin-Luther University

More information

Radiation damage calculation in PHITS

Radiation damage calculation in PHITS Radiation Effects in Superconducting Magnet Materials (RESMM'12), 13 Feb. 15 Feb. 2012 Radiation damage calculation in PHITS Y. Iwamoto 1, K. Niita 2, T. Sawai 1, R.M. Ronningen 3, T. Baumann 3 1 JAEA,

More information

Neutronic Design on a Small Accelerator based 7 Li (p, n) Neutron Source for Neutron Scattering Experiments

Neutronic Design on a Small Accelerator based 7 Li (p, n) Neutron Source for Neutron Scattering Experiments 2010-08-16 Neutronic Design on a Small Accelerator based 7 Li (p, n) Neutron Source for Neutron Scattering Experiments Fujio Hiraga, Takanori Okazaki and Yoshiaki Kiyanagi Hokkaido University 1 Technical

More information

A Polarized Positron Source for CEBAF

A Polarized Positron Source for CEBAF A Polarized Positron Source for CEBAF J. Dumas a,b, J. Grames b, E. Voutier a a Laboratoire de Physique Subatomique et de Cosmologie IN2P3/CNRS Université Joseph Fourier - INP 53, rue des Martyrs, 38026

More information

Chapiter VII: Ionization chamber

Chapiter VII: Ionization chamber Chapiter VII: Ionization chamber 1 Types of ionization chambers Sensitive volume: gas (most often air direct measurement of exposure) ionization chamber Sensitive volume: semiconductor (silicon, germanium,

More information

The High-Power-Target System of a Muon Collider or Neutrino Factory

The High-Power-Target System of a Muon Collider or Neutrino Factory The High-Power-Target System of a Muon Collider or Neutrino Factory K. McDonald Princeton U. (August 29, 2014) NuFact 14 U Glasgow KT McDonald NuFact 14 (U Glasgow) August 29, 2014 1 The Target System

More information

The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf

The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf R. Krause-Rehberg 1, G. Brauer 2, 1 Martin-Luther-University Halle 2 Research Center Rossendorf Martin-Luther-Universität

More information

RCNP cyclotron facility

RCNP cyclotron facility 11th International Conference on HEAVY ION ACCELERATOR TECHNOLOGY RCNP cyclotron facility K. Hatanaka hatanaka@rcnp.osaka-u.ac.jp Research Center for Nuclear Physics Osaka University HIAT09 TU9 June 9,

More information

Neutral beam plasma heating

Neutral beam plasma heating Seminar I b 1 st year, 2 nd cycle program Neutral beam plasma heating Author: Gabrijela Ikovic Advisor: prof.dr. Tomaž Gyergyek Ljubljana, May 2014 Abstract For plasma to be ignited, external heating is

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09 Experimental production of many- positron systems David B. Cassidy Department of Physics and Astronomy, University of California, Riverside, USA cassidy@physics.ucr.edu Varenna, July 09 Allen P. Mills,

More information

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi HKUST Jockey Club Institute for Advanced Study CEPC Linac Injector HEP218 22 Jan, 218 Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi Institute of High Energy

More information

Radiological Issues at JLab

Radiological Issues at JLab Radiological Issues at JLab Lessons Learned from the PREX-I and Preparation for PREX-II/CREX (and MOLLER) Rakitha S. Beminiwattha Louisiana Tech University College of Science and Engineering Outline Radiation

More information

17 Neutron Life Cycle

17 Neutron Life Cycle 17 Neutron Life Cycle A typical neutron, from birth as a prompt fission neutron to absorption in the fuel, survives for about 0.001 s (the neutron lifetime) in a CANDU. During this short lifetime, it travels

More information

Positron program at the Idaho Accelerator Center. Giulio Stancari Idaho State University and Jefferson Lab

Positron program at the Idaho Accelerator Center. Giulio Stancari Idaho State University and Jefferson Lab Positron program at the Idaho Accelerator Center Giulio Stancari Idaho State University and Jefferson Lab International Workshop on Positrons at Jefferson Lab Newport News, Virginia (USA), 26 March 2009

More information

Research Center Dresden Rossendorf

Research Center Dresden Rossendorf News of the EPOS Project at the ELBE Radiation Source in the Research Center Dresden Rossendorf EPOS-Team & R. Krause-Rehberg Extended Concept of EPOS Progress of the mono-energetic Positron Beam (MePS)

More information

Photonuclear Reactions and Nuclear Transmutation. T. Tajima 1 and H. Ejiri 2

Photonuclear Reactions and Nuclear Transmutation. T. Tajima 1 and H. Ejiri 2 Draft Photonuclear Reactions and Nuclear Transmutation T. Tajima 1 and H. Ejiri 2 1) Kansai JAERI 2) JASRI/SPring-8, Mikazuki-cho, Sayou-gun, Hyougo, 679-5198 JAPAN Abstract Photonuclear reactions are

More information

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS)

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS) Progress of the EPOS Project: Gamma Induced Positron Spectroscopy (GiPS) R. Krause-Rehberg 1,*,W.Anwand 2,G.Brauer 2, M. Butterling 1,T.Cowan 2,M. Jungmann 1, A. Krille 1, R. Schwengner 2, A. Wagner 2

More information

2. Passage of Radiation Through Matter

2. Passage of Radiation Through Matter 2. Passage of Radiation Through Matter Passage of Radiation Through Matter: Contents Energy Loss of Heavy Charged Particles by Atomic Collision (addendum) Cherenkov Radiation Energy loss of Electrons and

More information

Chopping High-Intensity Ion Beams at FRANZ

Chopping High-Intensity Ion Beams at FRANZ Chopping High-Intensity Ion Beams at FRANZ C. Wiesner, M. Droba, O. Meusel, D. Noll, O. Payir, U. Ratzinger, P. Schneider IAP, Goethe-Universität Frankfurt am Main Outline 1) Introduction: The FRANZ facility

More information

Sample Examination Questions

Sample Examination Questions Sample Examination Questions Contents NB. Material covered by the AS papers may also appear in A2 papers. Question Question type Question focus number (section A or B) 1 A Ideal transformer 2 A Induced

More information

LITHIUM LENS FOR EFFECTIVE CAPTURE OF POSITRONS

LITHIUM LENS FOR EFFECTIVE CAPTURE OF POSITRONS CBN 07-5 LITHIUM LENS FOR EFFECTIVE CAPTURE OF POSITRONS Alexander Mikhailichenko Cornell University, LEPP, Ithaca, NY 14853 Positron Source Meeting, Jan30-Feb 007, Beijing Efficiency= N e+ /N gammas Angle

More information

Microtron for Smog Particles Photo Ionization

Microtron for Smog Particles Photo Ionization Abstract Microtron for Smog Particles Photo Ionization S. N. Dolya Joint Institute for Nuclear Research, Joliot - Curie 6, Dubna, Russia, 141980 The article discusses a possibility of removing smog particles

More information

PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements

PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements A. Shemyakin 1, M. Alvarez 1, R. Andrews 1, J.-P. Carneiro 1, A. Chen 1, R. D Arcy 2, B. Hanna 1, L. Prost 1, V.

More information

Since the beam from the JNC linac is a very high current, low energy beam, energy loss induced in the material irradiated by the beam becomes very lar

Since the beam from the JNC linac is a very high current, low energy beam, energy loss induced in the material irradiated by the beam becomes very lar Proceedings of the Second International Workshop on EGS, 8.-12. August 2000, Tsukuba, Japan KEK Proceedings 200-20, pp.255-263 Beam Dump for High Current Electron Beam at JNC H. Takei and Y. Takeda 1 Japan

More information

Detekce a spektrometrie neutronů. neutron detection and spectroscopy

Detekce a spektrometrie neutronů. neutron detection and spectroscopy Detekce a spektrometrie neutronů neutron detection and spectroscopy 1. Slow neutrons 2. Fast neutrons 1 1. Slow neutrons neutron kinetic energy E a) charged particles are produced, protons, α particle,

More information

Electromagnetic Dipole Strength distribution in 124,128,134 Xe below the neutron separation energy

Electromagnetic Dipole Strength distribution in 124,128,134 Xe below the neutron separation energy Electromagnetic Dipole Strength distribution in 124,128,134 Xe below the neutron separation energy Ralph Massarczyk Helmholtz-Zentrum Dresden-Rossendorf 29.05.2013 R.Massarczyk (HZDR) dipole strength in

More information

Development status of the positron lifetime beam MePS and the first lifetime measurements of porous ultra-low-k dielectrics with MePS

Development status of the positron lifetime beam MePS and the first lifetime measurements of porous ultra-low-k dielectrics with MePS Development status of the positron lifetime beam MePS and the first lifetime measurements of porous ultra-low-k dielectrics with MePS Institut für Physik, Martin-Luther-Universität Halle-Wittenberg Table

More information

pp physics, RWTH, WS 2003/04, T.Hebbeker

pp physics, RWTH, WS 2003/04, T.Hebbeker 3. PP TH 03/04 Accelerators and Detectors 1 pp physics, RWTH, WS 2003/04, T.Hebbeker 2003-12-16 1.2.4. (Inner) tracking and vertexing As we will see, mainly three types of tracking detectors are used:

More information

Review of ISOL-type Radioactive Beam Facilities

Review of ISOL-type Radioactive Beam Facilities Review of ISOL-type Radioactive Beam Facilities, CERN Map of the nuclear landscape Outline The ISOL technique History and Geography Isotope Separation On-Line Existing facilities First generation facilities

More information

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus Small Angle Neutron Scattering in Different Fields of Research Henrich Frielinghaus Jülich Centre for Neutron Science Forschungszentrum Jülich GmbH Lichtenbergstrasse 1 85747 Garching (München) h.frielinghaus@fz-juelich.de

More information

10 GeV Synchrotron Longitudinal Dynamics

10 GeV Synchrotron Longitudinal Dynamics 0 GeV Synchrotron Longitudinal Dynamics G. Dugan Laboratory of Nuclear Studies Cornell University Ithaca, NY 483 In this note, I provide some estimates of the parameters of longitudinal dynamics in the

More information

Interaction of charged particles and photons with matter

Interaction of charged particles and photons with matter Interaction of charged particles and photons with matter Robert Miyaoka, Ph.D. Old Fisheries Center, Room 200 rmiyaoka@u.washington.edu Passage of radiation through matter depends on Type of radiation

More information

Ion Implanter Cyclotron Apparatus System

Ion Implanter Cyclotron Apparatus System Ion Implanter Cyclotron Apparatus System A. Latuszyñski, K. Pyszniak, A. DroŸdziel, D. M¹czka Institute of Physics, Maria Curie-Sk³odowska University, Lublin, Poland Abstract In this paper the authors

More information

Transition Radiation Detector for GlueX

Transition Radiation Detector for GlueX Transition Radiation Detector for GlueX Test with Argon S.Furletov, L. Pentchev Jefferson Lab GlueX Collaboration Meeting Feb 19, 2016 Outline Test setup in Hall D Monte Carlo simulation First results

More information

The intense positron source EPOS at Research Center Rossendorf

The intense positron source EPOS at Research Center Rossendorf The intense positron source EPOS at Research Center Rossendorf R. Krause-Rehberg 1, G. Brauer 2, S. Sachert 1, A. Krille 1, V. Bondarenko 1 1 -Wittenberg 2 FZ Rossendorf Martin-Luther-Universität RK Halle

More information

Polarimetry in Hall A

Polarimetry in Hall A Outline E.Chudakov Moller-12 Workshop, Aug 2008 Polarimetry in Hall A 1 Polarimetry in Hall A E.Chudakov 1 1 Hall A, JLab Moller-12 Workshop, Aug 2008 Outline E.Chudakov Moller-12 Workshop, Aug 2008 Polarimetry

More information

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CLIC Note - 819 THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC A. Vivoli 1, I. Chaikovska 2, R. Chehab 3, O. Dadoun 2, P. Lepercq 2, F.

More information

Low-Energy Accelerators for High Precision Measurements Sebastian Baunack

Low-Energy Accelerators for High Precision Measurements Sebastian Baunack Low-Energy Accelerators for High Precision Measurements Sebastian Baunack Johannes Gutenberg-Universität Mainz EINN 2017, Oct. 31 - Nov 4, 2017 Paphos, Cyprus 1 Outline New type of accelerators: ERL High

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

Investigation of the Effect of Space Charge in the compact-energy Recovery Linac

Investigation of the Effect of Space Charge in the compact-energy Recovery Linac Investigation of the Effect of Space Charge in the compact-energy Recovery Linac Ji-Gwang Hwang and Eun-San Kim, Kyungpook National University. 1370 Sankyok-dong, Buk-ku, Daegu, 702-701, Korea Tsukasa

More information

Positron Source using Channelling for the Baseline of the CLIC study

Positron Source using Channelling for the Baseline of the CLIC study CLIC = Compact Linear Collider Positron Source using Channelling for the Baseline of the CLIC study Louis Rinolfi With contributions from: X. Artru 2, R. Chehab 2, O. Dadoun 3, E. Eroglu 4, K. Furukawa

More information

PHYSICS B (ADVANCING PHYSICS) 2864/01 Field and Particle Pictures

PHYSICS B (ADVANCING PHYSICS) 2864/01 Field and Particle Pictures THIS IS A LEGACY SPECIFICATION ADVANCED GCE PHYSICS B (ADVANCING PHYSICS) 2864/01 Field and Particle Pictures *CUP/T52879* Candidates answer on the question paper OCR Supplied Materials: Data, Formulae

More information

Positron and positronium for the GBAR experiment

Positron and positronium for the GBAR experiment Positron and positronium for the GBAR experiment László Liszkay CEA, IRFU, Centre de Saclay, France and the GBAR collaboration Outline The GBAR (GravitaConal Behaviour of AnCmaEer in Rest) experiment Linac-

More information

A Pure Photon Source for use with Solid Polarized Targets Progress Report UVa Option

A Pure Photon Source for use with Solid Polarized Targets Progress Report UVa Option A Pure Photon Source for use with Solid Polarized Targets Progress Report UVa Option Donal Day, Dustin Keller, Darshana Perera, Jixie Zhang and friends NPS Collaboration Meeting January 19, 2017 Jefferson

More information

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection R. Kreuger, C. W. E. van Eijk, Member, IEEE, F. A. F. Fraga, M. M. Fraga, S. T. G. Fetal, R. W. Hollander, Member, IEEE, L. M.

More information

The GDT-based fusion neutron source as a driver of subcritical nuclear fuel systems

The GDT-based fusion neutron source as a driver of subcritical nuclear fuel systems The GDT-based fusion neutron source as a driver of subcritical nuclear fuel systems Presented by A.A.Ivanov Budker Institute, FZD Rossendorf, Joint Institute for Nuclear,, VNIITF, Snejinsk Layout of the

More information

SPIRAL-2 FOR NEUTRON PRODUCTION

SPIRAL-2 FOR NEUTRON PRODUCTION SPIRAL-2 FOR NEUTRON PRODUCTION X. Ledoux and the NFS collaboration Outline The SPIRAL-2 facility The Neutrons For Science Facility OUTLINE SPIRAL-2 The Neutrons For Science facility The SPIRAL-2 project

More information

SC QUADRUPOLE AND DIPOLE

SC QUADRUPOLE AND DIPOLE Feb. 18, 009-Feb. 5, 010 CBN 10-1 SC QUADRUPOLE AND DIPOLE A.Mikhailichenko, Cornell University, LEPP, Ithaca, NY 14853 We are describing an SC quadrupole where the field is created not only by the poles

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

II) Experimental Design

II) Experimental Design SLAC Experimental Advisory Committee --- September 12 th, 1997 II) Experimental Design Theory and simulations Great promise of significant scientific and technological achievements! How to realize this

More information

Beam losses versus BLM locations at the LHC

Beam losses versus BLM locations at the LHC Geneva, 12 April 25 LHC Machine Protection Review Beam losses versus BLM locations at the LHC R. Assmann, S. Redaelli, G. Robert-Demolaize AB - ABP Acknowledgements: B. Dehning Motivation - Are the proposed

More information

Compact Wideband THz Source

Compact Wideband THz Source Compact Wideband THz Source G. A. Krafft Center for Advanced Studies of Accelerators Jefferson Lab Newport News, VA 3608 Previously, I have published a paper describing compact THz radiation sources based

More information

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* E. Panofski #, A. Jankowiak, T. Kamps, Helmholtz-Zentrum Berlin, Berlin, Germany P.N. Lu, J. Teichert, Helmholtz-Zentrum Dresden-Rossendorf,

More information

Progress Report on Chamber Dynamics and Clearing

Progress Report on Chamber Dynamics and Clearing Progress Report on Chamber Dynamics and Clearing Farrokh Najmabadi, Rene Raffray, Mark S. Tillack, John Pulsifer, Zoran Dragovlovic (UCSD) Ahmed Hassanein (ANL) Laser-IFE Program Workshop May31-June 1,

More information

1.E Neutron Energy (MeV)

1.E Neutron Energy (MeV) Proceedings of the Second International Workshop on EGS, 8.-12. August 2000, Tsukuba, Japan KEK Proceedings 200-20, pp.130-134 Measurements of Photoneutron Spectra from Thick Pb Target Bombarded by 1.2

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton and ion beams. High in

Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton and ion beams. High in 2009/12/16 Proton Linac for the Frankfurt Neutron Source Christoph Wiesner Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

Simulations and Measurements of Secondary Electron Emission Beam Loss Monitors for LHC

Simulations and Measurements of Secondary Electron Emission Beam Loss Monitors for LHC Simulations and Measurements of Secondary Electron Emission Beam Loss Monitors for LHC Daniel Kramer,, Eva Barbara Holzer,, Bernd Dehning, Gianfranco Ferioli, Markus Stockner CERN AB-BI BI 4.10.2006 IPRD06,

More information

A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator

A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator * A. Caliskan 1, H. F. Kisoglu 2, S. Sultansoy 3,4, M. Yilmaz 5 1 Department of Engineering Physics, Gumushane University, Gumushane,

More information

New irradiation zones at the CERN-PS

New irradiation zones at the CERN-PS Nuclear Instruments and Methods in Physics Research A 426 (1999) 72 77 New irradiation zones at the CERN-PS M. Glaser, L. Durieu, F. Lemeilleur *, M. Tavlet, C. Leroy, P. Roy ROSE/RD48 Collaboration CERN,

More information

Neutron facilities and generation. Rob McQueeney, Ames Laboratory and Iowa State University

Neutron facilities and generation. Rob McQueeney, Ames Laboratory and Iowa State University Neutron facilities and generation Rob McQueeney, Ames Laboratory and Iowa State University September 12, 2018 19-Sep-18 Physics 502 2 Neutrons compared to other probes of matter Bulk probe Interacts with

More information

Beam Extraction by the Laser Charge Exchange Method Using the 3-MeV LINAC in J-PARC )

Beam Extraction by the Laser Charge Exchange Method Using the 3-MeV LINAC in J-PARC ) Beam Extraction by the Laser Charge Exchange Method Using the 3-MeV LINAC in J-PARC ) Hayanori TAKEI, Koichiro HIRANO, Kazuyoshi TSUTSUMI 1) and Shin-ichiro MEIGO J-PARC Center, Japan Atomic Energy Agency,

More information

Chapter 2 Problem Solutions

Chapter 2 Problem Solutions Chapter Problem Solutions 1. If Planck's constant were smaller than it is, would quantum phenomena be more or less conspicuous than they are now? Planck s constant gives a measure of the energy at which

More information

High Energy Photons at HI S

High Energy Photons at HI S High Energy Photons at HIS Rob Pywell High Intensity Gamma Source Duke University Thanks to Dr. Ying Wu, Duke University, for supplying some of the information in this talk. Precision Photo-Reaction Measurements

More information

LET! (de / dx) 1 Gy= 1 J/kG 1Gy=100 rad. m(kg) dose rate

LET! (de / dx) 1 Gy= 1 J/kG 1Gy=100 rad. m(kg) dose rate Basics of Radiation Dosimetry for the Physicist http://en.wikipedia.org/wiki/ionizing_radiation I. Ionizing radiation consists of subatomic particles or electromagnetic waves that ionize electrons along

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

The accelerators at LNS - INFN and diagnostics aspects of the radioactive beams

The accelerators at LNS - INFN and diagnostics aspects of the radioactive beams The accelerators at LNS - INFN and diagnostics aspects of the radioactive beams L. Cosentino, P. Finocchiaro, A. Pappalardo LNS INFN Catania J. Harasimowicz Univ. of Liverpool Cockroft Institute LNS INFN

More information

2. THE HIGS FACILITY 2.1 The Free-Electron Laser Source

2. THE HIGS FACILITY 2.1 The Free-Electron Laser Source 2. THE HIGS FACILITY 2.1 The Free-Electron Laser Source In recent years the development of intense, short-wavelength storage ring FELs has created an opportunity for the development of intense high-energy

More information

PARTICLE ACCELERATORS

PARTICLE ACCELERATORS VISUAL PHYSICS ONLINE PARTICLE ACCELERATORS Particle accelerators are used to accelerate elementary particles to very high energies for: Production of radioisotopes Probing the structure of matter There

More information

Chapter 7.1. Q4 (a) In 1 s the energy is 500 MJ or (i) 5.0! 10 J, (ii) 5.0! 10 kw! hr " 140 kwh or (iii) MWh. (b) In one year the energy is

Chapter 7.1. Q4 (a) In 1 s the energy is 500 MJ or (i) 5.0! 10 J, (ii) 5.0! 10 kw! hr  140 kwh or (iii) MWh. (b) In one year the energy is Chapter 7.1 Q1 The thermal energy discarded must be returned to a reservoir that has a lower temperature from where the energy was extracted. In this case the temperatures are the same and so this will

More information

The SARAF 40 MeV Proton/Deuteron Accelerator

The SARAF 40 MeV Proton/Deuteron Accelerator The SARAF 40 MeV Proton/Deuteron Accelerator I. Mardor, D. Berkovits, I. Gertz, A. Grin, S. Halfon, G. Lempert, A. Nagler, A. Perry, J. Rodnizki, L. Weissman Soreq NRC, Yavne, Israel K. Dunkel, M. Pekeler,

More information

FACET-II Design Update

FACET-II Design Update FACET-II Design Update October 17-19, 2016, SLAC National Accelerator Laboratory Glen White FACET-II CD-2/3A Director s Review, August 9, 2016 Planning for FACET-II as a Community Resource FACET-II Photo

More information

Application of Carbon Nanotube Wire for Beam Profile Measurement of Negative Hydrogen Ion Beam

Application of Carbon Nanotube Wire for Beam Profile Measurement of Negative Hydrogen Ion Beam FRXGBD3 Application of Carbon Nanotube Wire for Beam Profile Measurement of Negative Hydrogen Ion Beam 4 th, May, 2018 Akihiko Miura, J-PARC, JAEA Tomoaki Miyao, J-PARC, KEK Katsuhiro Moriya, J-PARC, JAEA

More information

Linear Collider Collaboration Tech Notes. Design Studies of Positron Collection for the NLC

Linear Collider Collaboration Tech Notes. Design Studies of Positron Collection for the NLC LCC-7 August 21 Linear Collider Collaboration Tech Notes Design Studies of Positron Collection for the NLC Yuri K. Batygin, Ninod K. Bharadwaj, David C. Schultz,John C. Sheppard Stanford Linear Accelerator

More information

Simulation of the Beam Dump for a High Intensity Electron gun

Simulation of the Beam Dump for a High Intensity Electron gun EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN BEAMS DEPARTMENT CERN-BE-2014-007 BI Simulation of the Beam Dump for a High Intensity Electron gun S. Doebert; T. Lefèvre; A, Jeff; CERN Geneva/CH K. Pepitone

More information

6 Bunch Compressor and Transfer to Main Linac

6 Bunch Compressor and Transfer to Main Linac II-159 6 Bunch Compressor and Transfer to Main Linac 6.1 Introduction The equilibrium bunch length in the damping ring (DR) is 6 mm, too long by an order of magnitude for optimum collider performance (σ

More information

Studies of Charge Separation Characteristics for Higher Density Plasma. in a Direct Energy Converter Using Slanted Cusp Magnetic Field

Studies of Charge Separation Characteristics for Higher Density Plasma. in a Direct Energy Converter Using Slanted Cusp Magnetic Field J. Plasma Fusion Res. SERES, Vol. 9 (1) Studies of Charge Separation Characteristics for Higher Density Plasma in a Direct Energy Converter Using Slanted Cusp Magnetic Field Akio TANGUCH, Norifumi SOTAN,

More information

Chap. 19 Miscellaneous Detectors

Chap. 19 Miscellaneous Detectors Chap. 19 Miscellaneous Detectors Up to this point: Gas-filled detectors ion chambers, proportional counters, GM counters Scintillators organic, inorganic Semiconductor-based detectors Si or Ge Other possibilities:

More information

TEST MEASUREMENTS WITH THE REX-ISOLDE LINAC STRUCTURES*

TEST MEASUREMENTS WITH THE REX-ISOLDE LINAC STRUCTURES* TEST MEASUREMENTS WITH THE REX-ISOLDE LINAC STRUCTURES* O. Kester, D. Habs, T. Sieber, S. Emhofer, K. Rudolph, LMU München, Garching Germany R. von Hahn, H. Podlech, R. Repnow, D. Schwalm, MPI- K, Heidelberg,

More information

Status of A Positron-Electron Experiment (APEX) towards the formation of pair plasmas

Status of A Positron-Electron Experiment (APEX) towards the formation of pair plasmas Status of A Positron-Electron Experiment (APEX) towards the formation of pair plasmas H. Saitoh 1,5, J. Stanja 1, T. Sunn Pedersen 1,3, U. Hergenhahn 1, E. V. Stenson 1, H. Niemann 1,3, N. Paschkowski

More information

1.4 The Tools of the Trade!

1.4 The Tools of the Trade! 1.4 The Tools of the Trade! Two things are required for material analysis: excitation mechanism for originating characteristic signature (radiation) radiation detection and identification system (spectroscopy)

More information