Generating Private Synthetic Data: Presentation 2

Size: px
Start display at page:

Download "Generating Private Synthetic Data: Presentation 2"

Transcription

1 Generating Private Synthetic Data: Presentation 2 Mentor: Dr. Anand Sarwate July 17, 2015

2 Overview 1 Project Overview (Revisited) 2 Sensitivity of Mutual Information 3 Simulation 4 Results with Real Data 5 Future Work

3 Recall the process Our goal is to publish synthetic data: we learn patterns and correlations in the population in a privacy-preserving way and then generate fake individuals/records so that the population statistics are similar. Given a dataset, study the patterns and correlations in the population. Build a probabilistic graphical model. Generate synthetic data that yields similar population stats. Preserve Privacy!

4 Chow-Liu Algorithm Variables of interest X 1, X 2,..., X m with dataset of size n. Create a complete graph using X 1, X 2,..., X m as vertices. For each pair of X i, X j calculate the mutual information I (X i : X j ), then use mutual information as edge weights. Find the maximum spanning tree

5 CLNode Python Class Iˆp (X i ; X j ) = a,b ˆP(X i = a, X j = b) log ˆP(X i = a, X j = b) ˆP(X i = a) ˆP(X j = b) CLNode.py Input: Range, Data Output: Empirical Distribution, Joint Empirical Distribution, Mutual Information

6 Differential Privacy Let M be a randomized data release algorithm. We say that M is ɛ differentially private if for all D 1, D 2 that differ in only one element and any event S, Pr(M(D 1 ) S) e ɛ Pr(M(D 2 ) S)

7 Differential Privacy Let M be a randomized data release algorithm. We say that M is ɛ differentially private if for all D 1, D 2 that differ in only one element and any event S, Pr(M(D 1 ) S) e ɛ Pr(M(D 2 ) S) Differential privacy ensures that any sequence of outputs (responses to queries) is essentially equally likely to occur, independent of the presence or absence of any individual.

8 Sensitivity Let f : D R be a function. The sensitivity of f is defined as, S(f ) = max f (D) f D,D D (D ) where D and D only differ by 1 element.

9 Sensitivity of Mutual Information Let X, Y be discrete random variables with dataset of size n then S n (I (X ; Y )) 2( 1+1/n 2 log( 1+1/n 2 ) 1 1/n 2 log( 1 1/n 2 ) 1 n log( 1 n ))

10 Sensitivity of Mutual Information Let X, Y be discrete random variables with dataset of size n then S n (I (X ; Y )) 2( 1+1/n 2 log( 1+1/n 2 ) 1 1/n 2 log( 1 1/n 2 ) 1 n log( 1 n )) worst case

11 Sensitivity of Mutual Information

12 The Laplace Mechanism Given any function f : D R the Laplace mechanism is defined as: M L (D, f ( ), ɛ) = f (D) + Z where Z Lap(S(f )/ɛ) Theorem: The Laplace mechanism preserves ɛ differential privacy.

13 Doubly Symmetric Binary Source Let X 1, X 2 be binary variables, if p X1,X 2 (x 1, x 2 ) is given by, 1 a 2 a 2 a 2 1 a 2 then X 1, X 2 form a doubly symmetric binary source. X 1 Bernoulli(0.5) X 2 = (X 1 + Z 12 ) mod2, where Z 12 Bernoulli(a) X1 z12 z13 z14 X3 X2 X4 z47 z25 z26 X7 X5 X6 simulation tree

14 Simulation Results No noise added, non-private

15 Simulation Results No noise added, non-private Noise added, ɛ = 0.3

16 Simulation Results Fraction of correctly recovering the tree

17 Simulation Results Average number of edges missed

18 Adult Data Set Sample Size: (after deleting entries with missing values) 9 Variables Selected: Age, Workclass, Education, Marital Status, Occupation, Race, Gender Annual Income >50K, Working hours per week.

19 Results Hours per Week Age Occupation Race Marital Status Workclass Education Gender Income50K No noise added, non-private

20 Results Hours per Week Hours per Week Age Occupation Race Age Occupation Race Marital Status Workclass Education Marital Status Workclass Education Gender Income50K Gender Income50K No noise added, non-private Noise added, ɛ = 1, 100%

21 Results Hours per Week Hours per Week Age Occupation Race Age Occupation Race Marital Status Workclass Education Marital Status Workclass Education Gender Income50K Gender Income50K No noise added, non-private Noise added, ɛ = 0.75, 90%

22 Results Hours per Week Hours per Week Age Occupation Race Age Occupation Race Marital Status Workclass Education Marital Status Workclass Education Gender Income50K Gender Income50K No noise added, non-private Noise added, ɛ = 0.5, 60%

23 Results Hours per Week Hours per Week Age Occupation Race Age Occupation Marital Status Workclass Education Marital Status Workclass Education Gender Income50K Gender Income50K Race No noise added, non-private Noise added, ɛ = 0.25, 25%

24 Results Hours per Week Hours per Week Age Occupation Race Age Occupation Marital Status Workclass Education Marital Status Workclass Education Race Gender Income50K Gender Income50K No noise added, non-private Noise added, ɛ = 0.1, 30%

25 Retrospect Race Age Workclass Education Marital-Status Occupation Gender Income>50K Hours per Week Mutual information btw Race and others

26 Retrospect Race Age Workclass Education Marital-Status Occupation Gender Income>50K Hours per Week Mutual information btw Race and others Education Age Workclass Marital-Status Occupation Race Gender Income>50K Hours per Week Mutual information btw Education and others

27 The Next Step Generate Synthetic Data from the tree structure Use empirical conditional distributions Logistic regression Measure the performance of data generated Extend the scope into continuous data

28 Thank You

t-closeness: Privacy beyond k-anonymity and l-diversity

t-closeness: Privacy beyond k-anonymity and l-diversity t-closeness: Privacy beyond k-anonymity and l-diversity paper by Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian presentation by Caitlin Lustig for CS 295D Definitions Attributes: explicit identifiers,

More information

[Title removed for anonymity]

[Title removed for anonymity] [Title removed for anonymity] Graham Cormode graham@research.att.com Magda Procopiuc(AT&T) Divesh Srivastava(AT&T) Thanh Tran (UMass Amherst) 1 Introduction Privacy is a common theme in public discourse

More information

Differentially Private Linear Regression

Differentially Private Linear Regression Differentially Private Linear Regression Christian Baehr August 5, 2017 Your abstract. Abstract 1 Introduction My research involved testing and implementing tools into the Harvard Privacy Tools Project

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 14, 2014 Today s Schedule Course Project Introduction Linear Regression Model Decision Tree 2 Methods

More information

IEOR165 Discussion Week 5

IEOR165 Discussion Week 5 IEOR165 Discussion Week 5 Sheng Liu University of California, Berkeley Feb 19, 2016 Outline 1 1st Homework 2 Revisit Maximum A Posterior 3 Regularization IEOR165 Discussion Sheng Liu 2 About 1st Homework

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

ECON Interactions and Dummies

ECON Interactions and Dummies ECON 351 - Interactions and Dummies Maggie Jones 1 / 25 Readings Chapter 6: Section on Models with Interaction Terms Chapter 7: Full Chapter 2 / 25 Interaction Terms with Continuous Variables In some regressions

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 21, 2015 Announcements TA Monisha s office hour has changed to Thursdays 10-12pm, 462WVH (the same

More information

A Deep Interpretation of Classifier Chains

A Deep Interpretation of Classifier Chains A Deep Interpretation of Classifier Chains Jesse Read and Jaakko Holmén http://users.ics.aalto.fi/{jesse,jhollmen}/ Aalto University School of Science, Department of Information and Computer Science and

More information

An Analysis. Jane Doe Department of Biostatistics Vanderbilt University School of Medicine. March 19, Descriptive Statistics 1

An Analysis. Jane Doe Department of Biostatistics Vanderbilt University School of Medicine. March 19, Descriptive Statistics 1 An Analysis Jane Doe Department of Biostatistics Vanderbilt University School of Medicine March 19, 211 Contents 1 Descriptive Statistics 1 2 Redundancy Analysis and Variable Interrelationships 2 3 Logistic

More information

Least Squares Regression

Least Squares Regression E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

More information

Scalable robust hypothesis tests using graphical models

Scalable robust hypothesis tests using graphical models Scalable robust hypothesis tests using graphical models Umamahesh Srinivas ipal Group Meeting October 22, 2010 Binary hypothesis testing problem Random vector x = (x 1,...,x n ) R n generated from either

More information

Combining Non-probability and Probability Survey Samples Through Mass Imputation

Combining Non-probability and Probability Survey Samples Through Mass Imputation Combining Non-probability and Probability Survey Samples Through Mass Imputation Jae-Kwang Kim 1 Iowa State University & KAIST October 27, 2018 1 Joint work with Seho Park, Yilin Chen, and Changbao Wu

More information

1 Differential Privacy and Statistical Query Learning

1 Differential Privacy and Statistical Query Learning 10-806 Foundations of Machine Learning and Data Science Lecturer: Maria-Florina Balcan Lecture 5: December 07, 015 1 Differential Privacy and Statistical Query Learning 1.1 Differential Privacy Suppose

More information

Jun Tu. Department of Geography and Anthropology Kennesaw State University

Jun Tu. Department of Geography and Anthropology Kennesaw State University Examining Spatially Varying Relationships between Preterm Births and Ambient Air Pollution in Georgia using Geographically Weighted Logistic Regression Jun Tu Department of Geography and Anthropology Kennesaw

More information

Accuracy First: Selecting a Differential Privacy Level for Accuracy-Constrained Empirical Risk Minimization

Accuracy First: Selecting a Differential Privacy Level for Accuracy-Constrained Empirical Risk Minimization Accuracy First: Selecting a Differential Privacy Level for Accuracy-Constrained Empirical Risk Minimization Katrina Ligett HUJI & Caltech joint with Seth Neel, Aaron Roth, Bo Waggoner, Steven Wu NIPS 2017

More information

Introduction to Machine Learning Fall 2017 Note 5. 1 Overview. 2 Metric

Introduction to Machine Learning Fall 2017 Note 5. 1 Overview. 2 Metric CS 189 Introduction to Machine Learning Fall 2017 Note 5 1 Overview Recall from our previous note that for a fixed input x, our measurement Y is a noisy measurement of the true underlying response f x):

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 5, 06 Reading: See class website Eric Xing @ CMU, 005-06

More information

Plausible Deniability for Privacy-Preserving Data Synthesis

Plausible Deniability for Privacy-Preserving Data Synthesis Plausible Deniability for Privacy-Preserving Data Synthesis Vincent Bindschaedler UIUC bindsch2@illinois.edu Reza Shokri Cornell Tech shokri@cornell.edu Carl A. Gunter UIUC cgunter@illinois.edu ABSTRACT

More information

Enabling Accurate Analysis of Private Network Data

Enabling Accurate Analysis of Private Network Data Enabling Accurate Analysis of Private Network Data Michael Hay Joint work with Gerome Miklau, David Jensen, Chao Li, Don Towsley University of Massachusetts, Amherst Vibhor Rastogi, Dan Suciu University

More information

Ecological inference with distribution regression

Ecological inference with distribution regression Ecological inference with distribution regression Seth Flaxman 10 May 2017 Department of Politics and International Relations Ecological inference I How to draw conclusions about individuals from aggregate-level

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

PolyanNA, a Novel, Prediction-Oriented R

PolyanNA, a Novel, Prediction-Oriented R PolyanNA, a BARUG, at Databricks, SF November 13, 2018 (updated Nov. 14) coauthor: Pete Mohanty, Stanford University Overview values (MVs): A perennial headache. Vast, VAST literature. Major R packages,

More information

Quiz 1 Date: Monday, October 17, 2016

Quiz 1 Date: Monday, October 17, 2016 10-704 Information Processing and Learning Fall 016 Quiz 1 Date: Monday, October 17, 016 Name: Andrew ID: Department: Guidelines: 1. PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED.. Write your name, Andrew

More information

15.1 The Regression Model: Analysis of Residuals

15.1 The Regression Model: Analysis of Residuals 15.1 The Regression Model: Analysis of Residuals Tom Lewis Fall Term 2009 Tom Lewis () 15.1 The Regression Model: Analysis of Residuals Fall Term 2009 1 / 12 Outline 1 The regression model 2 Estimating

More information

SYMMETRIC MATRIX PERTURBATION FOR DIFFERENTIALLY-PRIVATE PRINCIPAL COMPONENT ANALYSIS. Hafiz Imtiaz and Anand D. Sarwate

SYMMETRIC MATRIX PERTURBATION FOR DIFFERENTIALLY-PRIVATE PRINCIPAL COMPONENT ANALYSIS. Hafiz Imtiaz and Anand D. Sarwate SYMMETRIC MATRIX PERTURBATION FOR DIFFERENTIALLY-PRIVATE PRINCIPAL COMPONENT ANALYSIS Hafiz Imtiaz and Anand D. Sarwate Rutgers, The State University of New Jersey ABSTRACT Differential privacy is a strong,

More information

Quiz 2 Date: Monday, November 21, 2016

Quiz 2 Date: Monday, November 21, 2016 10-704 Information Processing and Learning Fall 2016 Quiz 2 Date: Monday, November 21, 2016 Name: Andrew ID: Department: Guidelines: 1. PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED. 2. Write your name,

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 23. Decision Trees Barnabás Póczos Contents Decision Trees: Definition + Motivation Algorithm for Learning Decision Trees Entropy, Mutual Information, Information

More information

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010 Linear Regression Aarti Singh Machine Learning 10-701/15-781 Sept 27, 2010 Discrete to Continuous Labels Classification Sports Science News Anemic cell Healthy cell Regression X = Document Y = Topic X

More information

h=1 exp (X : J h=1 Even the direction of the e ect is not determined by jk. A simpler interpretation of j is given by the odds-ratio

h=1 exp (X : J h=1 Even the direction of the e ect is not determined by jk. A simpler interpretation of j is given by the odds-ratio Multivariate Response Models The response variable is unordered and takes more than two values. The term unordered refers to the fact that response 3 is not more favored than response 2. One choice from

More information

Chapter 11. Regression with a Binary Dependent Variable

Chapter 11. Regression with a Binary Dependent Variable Chapter 11 Regression with a Binary Dependent Variable 2 Regression with a Binary Dependent Variable (SW Chapter 11) So far the dependent variable (Y) has been continuous: district-wide average test score

More information

ECON 482 / WH Hong Binary or Dummy Variables 1. Qualitative Information

ECON 482 / WH Hong Binary or Dummy Variables 1. Qualitative Information 1. Qualitative Information Qualitative Information Up to now, we assume that all the variables has quantitative meaning. But often in empirical work, we must incorporate qualitative factor into regression

More information

SYMMETRIC MATRIX PERTURBATION FOR DIFFERENTIALLY-PRIVATE PRINCIPAL COMPONENT ANALYSIS. Hafiz Imtiaz and Anand D. Sarwate

SYMMETRIC MATRIX PERTURBATION FOR DIFFERENTIALLY-PRIVATE PRINCIPAL COMPONENT ANALYSIS. Hafiz Imtiaz and Anand D. Sarwate SYMMETRIC MATRIX PERTURBATION FOR DIFFERENTIALLY-PRIVATE PRINCIPAL COMPONENT ANALYSIS Hafiz Imtiaz and Anand D. Sarwate Rutgers, The State University of New Jersey ABSTRACT Differential privacy is a strong,

More information

Statistical Analysis of List Experiments

Statistical Analysis of List Experiments Statistical Analysis of List Experiments Graeme Blair Kosuke Imai Princeton University December 17, 2010 Blair and Imai (Princeton) List Experiments Political Methodology Seminar 1 / 32 Motivation Surveys

More information

Differential Privacy in an RKHS

Differential Privacy in an RKHS Differential Privacy in an RKHS Rob Hall (with Larry Wasserman and Alessandro Rinaldo) 2/20/2012 rjhall@cs.cmu.edu http://www.cs.cmu.edu/~rjhall 1 Overview Why care about privacy? Differential Privacy

More information

Lecture 11- Differential Privacy

Lecture 11- Differential Privacy 6.889 New Developments in Cryptography May 3, 2011 Lecture 11- Differential Privacy Lecturer: Salil Vadhan Scribes: Alan Deckelbaum and Emily Shen 1 Introduction In class today (and the next two lectures)

More information

Lab 10 - Binary Variables

Lab 10 - Binary Variables Lab 10 - Binary Variables Spring 2017 Contents 1 Introduction 1 2 SLR on a Dummy 2 3 MLR with binary independent variables 3 3.1 MLR with a Dummy: different intercepts, same slope................. 4 3.2

More information

Introduction to Probabilistic Graphical Models

Introduction to Probabilistic Graphical Models Introduction to Probabilistic Graphical Models Sargur Srihari srihari@cedar.buffalo.edu 1 Topics 1. What are probabilistic graphical models (PGMs) 2. Use of PGMs Engineering and AI 3. Directionality in

More information

Calibrating Noise to Sensitivity in Private Data Analysis

Calibrating Noise to Sensitivity in Private Data Analysis Calibrating Noise to Sensitivity in Private Data Analysis Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith Mamadou H. Diallo 1 Overview Issues: preserving privacy in statistical databases Assumption:

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 4 Learning Bayesian Networks CS/CNS/EE 155 Andreas Krause Announcements Another TA: Hongchao Zhou Please fill out the questionnaire about recitations Homework 1 out.

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

Analysis of a Privacy-preserving PCA Algorithm using Random Matrix Theory

Analysis of a Privacy-preserving PCA Algorithm using Random Matrix Theory Analysis of a Privacy-preserving PCA Algorithm using Random Matrix Theory Lu Wei, Anand D. Sarwate, Jukka Corander, Alfred Hero, and Vahid Tarokh Department of Electrical and Computer Engineering, University

More information

11. Learning graphical models

11. Learning graphical models Learning graphical models 11-1 11. Learning graphical models Maximum likelihood Parameter learning Structural learning Learning partially observed graphical models Learning graphical models 11-2 statistical

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy September 29, Lecture 6. The Net Mechanism: A Partial Converse

CIS 800/002 The Algorithmic Foundations of Data Privacy September 29, Lecture 6. The Net Mechanism: A Partial Converse CIS 800/002 The Algorithmic Foundations of Data Privacy September 29, 20 Lecturer: Aaron Roth Lecture 6 Scribe: Aaron Roth Finishing up from last time. Last time we showed: The Net Mechanism: A Partial

More information

Statistical Analysis of the Item Count Technique

Statistical Analysis of the Item Count Technique Statistical Analysis of the Item Count Technique Kosuke Imai Department of Politics Princeton University Joint work with Graeme Blair May 4, 2011 Kosuke Imai (Princeton) Item Count Technique UCI (Statistics)

More information

Selective Inference for Effect Modification

Selective Inference for Effect Modification Inference for Modification (Joint work with Dylan Small and Ashkan Ertefaie) Department of Statistics, University of Pennsylvania May 24, ACIC 2017 Manuscript and slides are available at http://www-stat.wharton.upenn.edu/~qyzhao/.

More information

Data Privacy in Biomedicine. Lecture 11b: Performance Measures for System Evaluation

Data Privacy in Biomedicine. Lecture 11b: Performance Measures for System Evaluation Data Privacy in Biomedicine Lecture 11b: Performance Measures for System Evaluation Bradley Malin, PhD (b.malin@vanderbilt.edu) Professor of Biomedical Informatics, Biostatistics, & Computer Science Vanderbilt

More information

Sociology 593 Exam 1 February 14, 1997

Sociology 593 Exam 1 February 14, 1997 Sociology 9 Exam February, 997 I. True-False. ( points) Indicate whether the following statements are true or false. If false, briefly explain why.. There are IVs in a multiple regression model. If the

More information

Wishart Mechanism for Differentially Private Principal Components Analysis

Wishart Mechanism for Differentially Private Principal Components Analysis Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-6) Wishart Mechanism for Differentially Private Principal Components Analysis Wuxuan Jiang, Cong Xie and Zhihua Zhang Department

More information

Causal Inference in Observational Studies with Non-Binary Treatments. David A. van Dyk

Causal Inference in Observational Studies with Non-Binary Treatments. David A. van Dyk Causal Inference in Observational Studies with Non-Binary reatments Statistics Section, Imperial College London Joint work with Shandong Zhao and Kosuke Imai Cass Business School, October 2013 Outline

More information

CSC2515 Assignment #2

CSC2515 Assignment #2 CSC2515 Assignment #2 Due: Nov.4, 2pm at the START of class Worth: 18% Late assignments not accepted. 1 Pseudo-Bayesian Linear Regression (3%) In this question you will dabble in Bayesian statistics and

More information

Differential Privacy and its Application in Aggregation

Differential Privacy and its Application in Aggregation Differential Privacy and its Application in Aggregation Part 1 Differential Privacy presenter: Le Chen Nanyang Technological University lechen0213@gmail.com October 5, 2013 Introduction Outline Introduction

More information

Can a Pseudo Panel be a Substitute for a Genuine Panel?

Can a Pseudo Panel be a Substitute for a Genuine Panel? Can a Pseudo Panel be a Substitute for a Genuine Panel? Min Hee Seo Washington University in St. Louis minheeseo@wustl.edu February 16th 1 / 20 Outline Motivation: gauging mechanism of changes Introduce

More information

Classification Part 2. Overview

Classification Part 2. Overview Classification Part 2 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville Overview Rule based Classifiers Nearest-neighbor Classifiers Data Mining

More information

1-Bit Matrix Completion

1-Bit Matrix Completion 1-Bit Matrix Completion Mark A. Davenport School of Electrical and Computer Engineering Georgia Institute of Technology Yaniv Plan Mary Wootters Ewout van den Berg Matrix Completion d When is it possible

More information

Modeling Data Correlations in Private Data Mining with Markov Model and Markov Networks. Yang Cao Emory University

Modeling Data Correlations in Private Data Mining with Markov Model and Markov Networks. Yang Cao Emory University Modeling Data Correlations in Private Data Mining with Markov Model and Markov Networks Yang Cao Emory University 207..5 Outline Data Mining with Differential Privacy (DP) Scenario: Spatiotemporal Data

More information

BN Semantics 3 Now it s personal! Parameter Learning 1

BN Semantics 3 Now it s personal! Parameter Learning 1 Readings: K&F: 3.4, 14.1, 14.2 BN Semantics 3 Now it s personal! Parameter Learning 1 Graphical Models 10708 Carlos Guestrin Carnegie Mellon University September 22 nd, 2006 1 Building BNs from independence

More information

Variations of Logistic Regression with Stochastic Gradient Descent

Variations of Logistic Regression with Stochastic Gradient Descent Variations of Logistic Regression with Stochastic Gradient Descent Panqu Wang(pawang@ucsd.edu) Phuc Xuan Nguyen(pxn002@ucsd.edu) January 26, 2012 Abstract In this paper, we extend the traditional logistic

More information

Machine Learning, Fall 2009: Midterm

Machine Learning, Fall 2009: Midterm 10-601 Machine Learning, Fall 009: Midterm Monday, November nd hours 1. Personal info: Name: Andrew account: E-mail address:. You are permitted two pages of notes and a calculator. Please turn off all

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 7, 04 Reading: See class website Eric Xing @ CMU, 005-04

More information

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 206 Jonathan Pillow Homework 8: Logistic Regression & Information Theory Due: Tuesday, April 26, 9:59am Optimization Toolbox One

More information

y response variable x 1, x 2,, x k -- a set of explanatory variables

y response variable x 1, x 2,, x k -- a set of explanatory variables 11. Multiple Regression and Correlation y response variable x 1, x 2,, x k -- a set of explanatory variables In this chapter, all variables are assumed to be quantitative. Chapters 12-14 show how to incorporate

More information

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE Data Provided: None DEPARTMENT OF COMPUTER SCIENCE Autumn Semester 203 204 MACHINE LEARNING AND ADAPTIVE INTELLIGENCE 2 hours Answer THREE of the four questions. All questions carry equal weight. Figures

More information

Computational Genomics

Computational Genomics Computational Genomics http://www.cs.cmu.edu/~02710 Introduction to probability, statistics and algorithms (brief) intro to probability Basic notations Random variable - referring to an element / event

More information

Introduction to Machine Learning Midterm Exam Solutions

Introduction to Machine Learning Midterm Exam Solutions 10-701 Introduction to Machine Learning Midterm Exam Solutions Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes,

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

Achieving Optimal Covariate Balance Under General Treatment Regimes

Achieving Optimal Covariate Balance Under General Treatment Regimes Achieving Under General Treatment Regimes Marc Ratkovic Princeton University May 24, 2012 Motivation For many questions of interest in the social sciences, experiments are not possible Possible bias in

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

STAT 5500/6500 Conditional Logistic Regression for Matched Pairs

STAT 5500/6500 Conditional Logistic Regression for Matched Pairs STAT 5500/6500 Conditional Logistic Regression for Matched Pairs Motivating Example: The data we will be using comes from a subset of data taken from the Los Angeles Study of the Endometrial Cancer Data

More information

ECE521 Tutorial 2. Regression, GPs, Assignment 1. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel for the slides.

ECE521 Tutorial 2. Regression, GPs, Assignment 1. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel for the slides. ECE521 Tutorial 2 Regression, GPs, Assignment 1 ECE521 Winter 2016 Credits to Alireza Makhzani, Alex Schwing, Rich Zemel for the slides. ECE521 Tutorial 2 ECE521 Winter 2016 Credits to Alireza / 3 Outline

More information

Differential Privacy via Wavelet Transforms

Differential Privacy via Wavelet Transforms Differential Privacy via Wavelet Transforms Xiaokui Xiao Guozhang Wang, Johannes Gehrke Nanyang Technological University Cornell University Singapore Ithaca, USA xkxiao@ntu.edu.sg {guoz, johannes}@cs.cornell.edu

More information

PrivBayes: Private Data Release via Bayesian Networks

PrivBayes: Private Data Release via Bayesian Networks PrivBayes: Private Data Release via Bayesian Networks JUN ZHANG, Google Inc., China GRAHAM CORMODE, University of Warwick, UK CECILIA M. PROCOPIUC, Google Inc., USA DIVESH SRIVASTAVA, AT&T Labs Research,

More information

SYSTEMATIC CONSTRUCTION OF ANOMALY DETECTION BENCHMARKS FROM REAL DATA. Outlier Detection And Description Workshop 2013

SYSTEMATIC CONSTRUCTION OF ANOMALY DETECTION BENCHMARKS FROM REAL DATA. Outlier Detection And Description Workshop 2013 SYSTEMATIC CONSTRUCTION OF ANOMALY DETECTION BENCHMARKS FROM REAL DATA Outlier Detection And Description Workshop 2013 Authors Andrew Emmott emmott@eecs.oregonstate.edu Thomas Dietterich tgd@eecs.oregonstate.edu

More information

y i s 2 X 1 n i 1 1. Show that the least squares estimators can be written as n xx i x i 1 ns 2 X i 1 n ` px xqx i x i 1 pδ ij 1 n px i xq x j x

y i s 2 X 1 n i 1 1. Show that the least squares estimators can be written as n xx i x i 1 ns 2 X i 1 n ` px xqx i x i 1 pδ ij 1 n px i xq x j x Question 1 Suppose that we have data Let x 1 n x i px 1, y 1 q,..., px n, y n q. ȳ 1 n y i s 2 X 1 n px i xq 2 Throughout this question, we assume that the simple linear model is correct. We also assume

More information

outline Nonlinear transformation Error measures Noisy targets Preambles to the theory

outline Nonlinear transformation Error measures Noisy targets Preambles to the theory Error and Noise outline Nonlinear transformation Error measures Noisy targets Preambles to the theory Linear is limited Data Hypothesis Linear in what? Linear regression implements Linear classification

More information

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed.

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. STAT 302 Introduction to Probability Learning Outcomes Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. Chapter 1: Combinatorial Analysis Demonstrate the ability to solve combinatorial

More information

Differential Privacy for Regularised Linear Regression

Differential Privacy for Regularised Linear Regression T H E N A T I O N A L U N I V E R S I T Y o f S I N G A P O R E S c h o o l of C o m p u t i n g Computing 1, 13 Computing Drive, Singapore 117417 TRB6/18 Differential Privacy for Regularised Linear Regression

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop Modeling Data with Linear Combinations of Basis Functions Read Chapter 3 in the text by Bishop A Type of Supervised Learning Problem We want to model data (x 1, t 1 ),..., (x N, t N ), where x i is a vector

More information

What Can We Learn Privately?

What Can We Learn Privately? What Can We Learn Privately? Sofya Raskhodnikova Penn State University Joint work with Shiva Kasiviswanathan Homin Lee Kobbi Nissim Adam Smith Los Alamos UT Austin Ben Gurion Penn State To appear in SICOMP

More information

Probabilistic Graphical Models. Guest Lecture by Narges Razavian Machine Learning Class April

Probabilistic Graphical Models. Guest Lecture by Narges Razavian Machine Learning Class April Probabilistic Graphical Models Guest Lecture by Narges Razavian Machine Learning Class April 14 2017 Today What is probabilistic graphical model and why it is useful? Bayesian Networks Basic Inference

More information

Lecture 20: Introduction to Differential Privacy

Lecture 20: Introduction to Differential Privacy 6.885: Advanced Topics in Data Processing Fall 2013 Stephen Tu Lecture 20: Introduction to Differential Privacy 1 Overview This lecture aims to provide a very broad introduction to the topic of differential

More information

Data Obfuscation. Bimal Kumar Roy. December 17, 2015

Data Obfuscation. Bimal Kumar Roy. December 17, 2015 December 17, 2015 Problem description (informal) Owner with large database. Lends the database for public use user is allowed to run restriced set of queries on data items. Goal is to prevent the user

More information

Personalized Social Recommendations Accurate or Private

Personalized Social Recommendations Accurate or Private Personalized Social Recommendations Accurate or Private Presented by: Lurye Jenny Paper by: Ashwin Machanavajjhala, Aleksandra Korolova, Atish Das Sarma Outline Introduction Motivation The model General

More information

Information Measure Estimation and Applications: Boosting the Effective Sample Size from n to n ln n

Information Measure Estimation and Applications: Boosting the Effective Sample Size from n to n ln n Information Measure Estimation and Applications: Boosting the Effective Sample Size from n to n ln n Jiantao Jiao (Stanford EE) Joint work with: Kartik Venkat Yanjun Han Tsachy Weissman Stanford EE Tsinghua

More information

Econometrics Problem Set 3

Econometrics Problem Set 3 Econometrics Problem Set 3 Conceptual Questions 1. This question refers to the estimated regressions in table 1 computed using data for 1988 from the U.S. Current Population Survey. The data set consists

More information

Introduction. Chapter 1

Introduction. Chapter 1 Chapter 1 Introduction In this book we will be concerned with supervised learning, which is the problem of learning input-output mappings from empirical data (the training dataset). Depending on the characteristics

More information

Machine Learning A Geometric Approach

Machine Learning A Geometric Approach Machine Learning A Geometric Approach Linear Classification: Perceptron Professor Liang Huang some slides from Alex Smola (CMU) Perceptron Frank Rosenblatt deep learning multilayer perceptron linear regression

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

Applied Economics. Regression with a Binary Dependent Variable. Department of Economics Universidad Carlos III de Madrid

Applied Economics. Regression with a Binary Dependent Variable. Department of Economics Universidad Carlos III de Madrid Applied Economics Regression with a Binary Dependent Variable Department of Economics Universidad Carlos III de Madrid See Stock and Watson (chapter 11) 1 / 28 Binary Dependent Variables: What is Different?

More information

Bridging the two cultures: Latent variable statistical modeling with boosted regression trees

Bridging the two cultures: Latent variable statistical modeling with boosted regression trees Bridging the two cultures: Latent variable statistical modeling with boosted regression trees Thomas G. Dietterich and Rebecca Hutchinson Oregon State University Corvallis, Oregon, USA 1 A Species Distribution

More information

Bayesian regression tree models for causal inference: regularization, confounding and heterogeneity

Bayesian regression tree models for causal inference: regularization, confounding and heterogeneity Bayesian regression tree models for causal inference: regularization, confounding and heterogeneity P. Richard Hahn, Jared Murray, and Carlos Carvalho June 22, 2017 The problem setting We want to estimate

More information

Section on Survey Research Methods JSM 2010 STATISTICAL GRAPHICS OF PEARSON RESIDUALS IN SURVEY LOGISTIC REGRESSION DIAGNOSIS

Section on Survey Research Methods JSM 2010 STATISTICAL GRAPHICS OF PEARSON RESIDUALS IN SURVEY LOGISTIC REGRESSION DIAGNOSIS STATISTICAL GRAPHICS OF PEARSON RESIDUALS IN SURVEY LOGISTIC REGRESSION DIAGNOSIS Stanley Weng, National Agricultural Statistics Service, U.S. Department of Agriculture 3251 Old Lee Hwy, Fairfax, VA 22030,

More information

Overview. Overview. Overview. Specific Examples. General Examples. Bivariate Regression & Correlation

Overview. Overview. Overview. Specific Examples. General Examples. Bivariate Regression & Correlation Bivariate Regression & Correlation Overview The Scatter Diagram Two Examples: Education & Prestige Correlation Coefficient Bivariate Linear Regression Line SPSS Output Interpretation Covariance ou already

More information

Sources of Inequality: Additive Decomposition of the Gini Coefficient.

Sources of Inequality: Additive Decomposition of the Gini Coefficient. Sources of Inequality: Additive Decomposition of the Gini Coefficient. Carlos Hurtado Econometrics Seminar Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Feb 24th,

More information

Privacy-Preserving Data Mining

Privacy-Preserving Data Mining CS 380S Privacy-Preserving Data Mining Vitaly Shmatikov slide 1 Reading Assignment Evfimievski, Gehrke, Srikant. Limiting Privacy Breaches in Privacy-Preserving Data Mining (PODS 2003). Blum, Dwork, McSherry,

More information

Privacy in Statistical Databases

Privacy in Statistical Databases Privacy in Statistical Databases Individuals x 1 x 2 x n Server/agency ) answers. A queries Users Government, researchers, businesses or) Malicious adversary What information can be released? Two conflicting

More information

Outline. Supervised Learning. Hong Chang. Institute of Computing Technology, Chinese Academy of Sciences. Machine Learning Methods (Fall 2012)

Outline. Supervised Learning. Hong Chang. Institute of Computing Technology, Chinese Academy of Sciences. Machine Learning Methods (Fall 2012) Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Linear Models for Regression Linear Regression Probabilistic Interpretation

More information