Modeling Data Correlations in Private Data Mining with Markov Model and Markov Networks. Yang Cao Emory University

Size: px
Start display at page:

Download "Modeling Data Correlations in Private Data Mining with Markov Model and Markov Networks. Yang Cao Emory University"

Transcription

1 Modeling Data Correlations in Private Data Mining with Markov Model and Markov Networks Yang Cao Emory University

2 Outline Data Mining with Differential Privacy (DP) Scenario: Spatiotemporal Data Mining using DP Markov Chain for temporal correlations Gaussian Random Markov Field for user-user correlations Summary and open problems

3 Outline Data Mining with Differential Privacy Scenario: Spatiotemporal Data Mining using DP Markov Chain for temporal correlations Gaussian Random Markov Field for user-user correlations Summary and open problems

4 Data Mining Company Institute sensitive database*! attack Public Attacker

5 Privacy-Preserving Data Mining (PPDM)* How? ε-differential Privacy! Institute Or Sensitive data X noisy data attack Adversary

6

7

8 What is Differential Privacy Privacy: the right to be forgotten. DP: output of an algorithm should NOT be significantly affected by individual s data. D M( Q( 0 )) M( Q( 0 )) Formally, M satisfies ε-dp if log Pr(M Q ( D ) Pr(M Q ( D ) ( ) = r) ( ) = r) ε e.g., Laplace mechanism: add Lap(/ε) noise to Q(D) D Sequential Composition. e.g., run M twice 2ε-DP 0 ε, privacy. e.g. 2ε-DP means more privacy loss than ε-dp.

9 An open problem of DP on Correlation Data When data are independent: D M( Q( 0 )) M( Q( 0 )) D 0 ε-dp When data are correlated (e.g. u and u3 always same): D M( Q( 0 )) / M( Q( 0 )) D 0 0?-DP It is still controversial [*][**] about the guarantee of DP [*] Differential Privacy as a Causal Property, [**]

10 Quantifying DP on Correlated Data A few recent papers [Cao7][Yang5][Song7] use a Quantification approach to achieve ε-dp (protecting each user private data value) Traditional approach (if attacker knows correlations, ε-dp may not hold): sensitive data Laplace Mechanism Lap(/ε) ε-dp data Quantification approach (protect against attackers with knowledge of correlation): sensitive data model data correlations attacker inference Laplace Mechanism Lap(/ε ) ε-dp data [Cao7]: Markov Chain [Yang5]: Gaussian Markov Random Field (GMRF) [Song7]: Bayesian Network

11 Outline Data Mining with Differential Privacy Scenario: Spatiotemporal Data Mining using DP Markov Chain for temporal correlations Gaussian Random Markov Field for user-user correlations Summary and open problems

12 Spatiotemporal Data Mining with DP Sensitive data Private data D D 2 D 3 ε-dp ε-dp ε-dp r r 2 r 3 t= 2 3 u loc3 loc loc u2 loc2 loc4 loc5 u3 loc2 loc4 loc5 u4 loc4 loc5 loc3 Count Query t= loc loc loc3 0.. loc loc Laplace Noise Lap(/ε) t= loc loc loc3 0.. loc loc (a) Location Data (b) True Counts (c) Private Counts

13 What types of data correlations? loc3 loc5 colleague u2 couple loc4 u u3 (a) Road Network (b) Social Ties temporal correlation for single user spatial correlation for user-user D D 2 D 3 7:00 8:00 9:00 u loc3 loc loc u2 loc2 loc loc u3 loc2 loc4 loc5 u4 loc4 loc5 loc3 (a) Location Data

14 Outline Data Mining with Differential Privacy Scenario: Spatiotemporal Data Mining using DP Markov Chain for temporal correlations - what is MC - how can (attacker) learn MC from data - how can (attacker) infer private data using MC Gaussian Random Markov Field for user-user correlations Summary and open problems

15 What is Markov Chain A Markov chain is a stochastic process with the Markov property. -order Markov property: the state at time t only depends on the state at time t- Pr(x_t x_t-)=pr(x_t x_t-,,x_) Time-homogeneous: the transition matrix is the same after each step t>0, Pr(x_t+ x_t)=pr(x_t+2 x_t+) 7:00 8:00 9:00 u loc loc3 loc2 u2 loc2 loc2 loc2 u3 loc3 loc loc u4 loc loc2 loc2 Raw Trajectories t loc loc2 loc3 t+ loc loc2 loc Transition Matrix

16 How can (attacker) learn MC If attacker knows partial user trajectory, he can directly learn transition matrix by Maximum Likelihood estimation If attacker knows road network, he may learn MC using google-like model [*] [*] E. Crisostomi, S. Kirkland, and R. Shorten, A Google-like model of road network dynamics and its application to regulation and control, International Journal of Control, vol. 84, no. 3, pp , Mar. 20.

17 How can (attacker) infer private data using MC Model Attacker Define TPL Find structure of TPL Model temporal correlations using Markov Chain e.g., user i : loc loc3 loc2 (a) Transition Matrix Pr(l i t l i t ) (b) Transition Matrix Pr(l i t l i t ) time t- time t loc loc2 loc3 loc loc2 loc3 time t loc loc2 0 0 time t- loc loc loc loc Backward Temporal Correlation P i B Forward Temporal Correlation P i F

18 How can (attacker) infer private data using MC Model Attacker Define TPL Find structure of TPL DP can protect against the attacker with knowledge of all tuples except the one of victim + Temporal Correlation? D t= u loc3 u2 loc2 u3 loc2 u4 loc4? li } D K A i (D K ) A i T (D K,P i B,P i F ) (i) A T i (D K,P B i, ) (ii) A T i (D K,,P F i ) (iii) A T i (D K,P B i,p F i )

19 How can (attacker) infer private data using MC Model Attacker Define TPL Find structure of TPL Recall the definition of DP: if PL 0 (M) ε, then M satisfies ε-dp. Definition of TPL:

20 How can (attacker) infer private data using MC Model Attacker Define TPL Find structure of TPL Definition of TPL: If no temporal correlation TPL = PL0 Eqn(2)= log Pr(r l t i, D t k ) log Pr(rt l t i, D t k ) log Pr(rT l t i, D t k ) Pr(r l i tʹ, D t k ) Pr(r t l i tʹ, D t k ) Pr(r T l i tʹ, D t k ) { 0 PL0{ { 0

21 How can (attacker) infer private data using MC Model Attacker Define TPL Find structure of TPL Definition of TPL: If with temporal correlation TPL =? Hard to quantify Eqn(2) Eqn(2)= log Pr(r l t i, D t k ) log Pr(rt l t i, D t k ) log Pr(rT l t i, D t k ) Pr(r l i tʹ, D t k ) Pr(r t l i tʹ, D t k ) Pr(r T l i tʹ, D t k ) {? PL0{ {?

22 How can (attacker) infer private data using MC Model Attacker Define TPL Find structure of TPL (i) A i T (D K,P i B, ) (BPL) (ii) A i T (D K,,P i F ) (FPL) (iii) A i T (D K,P i B,P i F ) (i) (ii) r. r t- r t r t+. r T

23 How can (attacker) infer private data using MC Model Attacker Define TPL Find structure of TPL BPL Analyze BPL Backward temporal correlations Eqn(6)= Backward privacy loss function. how to calculate it?

24 How can (attacker) infer private data using MC Model Attacker Define TPL Find structure of TPL FPL Analyze FPL Forward temporal correlations Forward privacy loss function. how to calculate it?

25 Calculating BPL & FPL Privacy Quantification Upper bound We convert the problem of BPL/FPL calculation to finding an optimal solution of a linear-fractional programming problem. This problem can be solved by simplex algorithm in O(2 n ). We designed a O(n 2 ) algorithm for quantifying BPL/FPL.

26 Calculating BPL & FPL Privacy Quantification Upper bound Example of BPL under different temporal corr. (i) Strong temporal corr. (ii) Moderate temporal corr. (iii) No temporal corr..0 Privacy Loss t= Time

27 Refer to Theorem 5 in our paper Calculating BPL & FPL Privacy Quantification Upper bound Privacy Loss BPL q = 0.8; d = 0.; ε = 0.23 q=0.8, d=0., ε=0.23 (a) case B Pi=( ) BPL q = 0.8; d = 0; ε = 0.5 q=0.8, d=0, ε=0.5 (b) case 2 B Pi=( ) 0 BPL t q = 0.8; d = 0; ε = 0.23 q=0.8, d=0, ε=0.23 (c) time case 3 B Pi=( 0 ) t BPL t q = ; d = 0; ε = 0.23 q=, d=0, ε=0.23 (d) case 4 B 0 Pi=( ) t 0

28 Outline Data Mining with Differential Privacy Scenario: Spatiotemporal Data Mining using DP Markov Chain for temporal correlations Gaussian Random Markov Field for user-user correlations Summary and open problems - what is GMRF - how can (attacker) learn GMRF from data - how can (attacker) infer private data using GMRF

29 What is GMRF Gaussian Markov Random Field is a probabilistic graphical model, in which each node is Gaussian variable and the (undirected) edges indicate the dependencies between variables. Data Correlation = (Joint) Distribution over Data We choose Gaussian Markov random field - Rich representation - Easy to construct - Unified form-gaussian - East to compute

30 how can (attacker) learn GMRF If attacker knows user-location frequency: If attacker knows user-user social network, we can construct GMRF from weighted undirected graph A B C D ø ö ç ç ç ç ç è æ S = ø ö ç è æ S - µ - - x x x 2 exp ) ( T i x i p Laplacian matrix

31 How can (attacker) infer private data using MC Model Attacker Define SPL x x4 3 2 G known unknown victim x2 x3 x x5 x6 x4 x5 x7 x8 x9 3 2 G x x3 x6 x7 x8 x9 (a) R(G,/3) (b) R (G,0.5) each user can define their privacy level as R(G,δ). G: subgraph of GMRF δ: percentage of the data is known by adversaries

32 How can (attacker) infer private data using MC Model Attacker Define SPL Bayesian Inference what is the probability of return r, if the victim is at loci? Pr(r loc i ) = Pr(r D)Pr(D u loc i, D k ) D u Du ~ unknown, try to infer Dk ~ known to adversary On GMRF SPL = Pr(r loc i ) Pr(r loc i ) = Du Du Pr(r D)Pr(D u loc i, D k ) Pr(r D )Pr(D u loc' i, D k ) what is the difference of the probability between the victim is at loci and the victim is at loc i Marginalizing Du Du Pr(r D)Pr(D u loc i, D k ) Marginalization Laplace Mechanism Data Correlation (GMRF)

33 impact of Pi s: parameter of Laplacian smoothing. The smaller s, the high prior knowledge about Pi 00 s=0.0. s=0.05. s= s= s=0.0. s=0.05. s= s= t= (b) TPL for ε= 0 t= (b) TPL for ε=0.

34 impact of Gi,m p: density of graph SPL vs. p: PL on a sparser graphs tend to be higher. SPL vs. Gi : PL on larger Gi tends to be higher. higher ε= 40 ε= 30 Average SPL G0.8_50 Brightkite_50 G0.2_ G0.8 G0.5 G m= Gi = (a) SPL vs. p (b) SPL vs. Gi (m=0)

35 Outline Data Mining with Differential Privacy Scenario: Spatiotemporal Data Mining using DP Markov Chain for temporal correlations Gaussian Random Markov Field for user-user correlations Summary and open problems

36 Summary When mining private data using DP, we need to model data correlations. In spatiotemporal data, naturally we model temporal correlations using Markov Chain; model user-user correlations using GMRF as attacker s knowledge. Based on the inference/computation on MC and GMRF, we can calibrate privacy parameter for DP. sensitive data model data correlations attacker inference Laplace Mechanism Lap(/ε ) ε-dp data

37 Open Problems How to model spatiotemporal correlations as a whole? Or the appropriate combination between MC and GMRF? Data correlations may degrade the utility of the miningd private data (need to add more noisy for the same level of privacy): how can data miner takes advantage of data correlations to improve data utility?

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

Privacy of Numeric Queries Via Simple Value Perturbation. The Laplace Mechanism

Privacy of Numeric Queries Via Simple Value Perturbation. The Laplace Mechanism Privacy of Numeric Queries Via Simple Value Perturbation The Laplace Mechanism Differential Privacy A Basic Model Let X represent an abstract data universe and D be a multi-set of elements from X. i.e.

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

The Optimal Mechanism in Differential Privacy

The Optimal Mechanism in Differential Privacy The Optimal Mechanism in Differential Privacy Quan Geng Advisor: Prof. Pramod Viswanath 11/07/2013 PhD Final Exam of Quan Geng, ECE, UIUC 1 Outline Background on Differential Privacy ε-differential Privacy:

More information

Differentially Private Real-time Data Release over Infinite Trajectory Streams

Differentially Private Real-time Data Release over Infinite Trajectory Streams Differentially Private Real-time Data Release over Infinite Trajectory Streams Kyoto University, Japan Department of Social Informatics Yang Cao, Masatoshi Yoshikawa 1 Outline Motivation: opportunity &

More information

9 Forward-backward algorithm, sum-product on factor graphs

9 Forward-backward algorithm, sum-product on factor graphs Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 9 Forward-backward algorithm, sum-product on factor graphs The previous

More information

Markov Random Fields

Markov Random Fields Markov Random Fields Umamahesh Srinivas ipal Group Meeting February 25, 2011 Outline 1 Basic graph-theoretic concepts 2 Markov chain 3 Markov random field (MRF) 4 Gauss-Markov random field (GMRF), and

More information

Calibrating Noise to Sensitivity in Private Data Analysis

Calibrating Noise to Sensitivity in Private Data Analysis Calibrating Noise to Sensitivity in Private Data Analysis Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith Mamadou H. Diallo 1 Overview Issues: preserving privacy in statistical databases Assumption:

More information

An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application

An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application An Introduction to Reversible Jump MCMC for Bayesian Networks, with Application, CleverSet, Inc. STARMAP/DAMARS Conference Page 1 The research described in this presentation has been funded by the U.S.

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Enabling Accurate Analysis of Private Network Data

Enabling Accurate Analysis of Private Network Data Enabling Accurate Analysis of Private Network Data Michael Hay Joint work with Gerome Miklau, David Jensen, Chao Li, Don Towsley University of Massachusetts, Amherst Vibhor Rastogi, Dan Suciu University

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

Conditional Random Field

Conditional Random Field Introduction Linear-Chain General Specific Implementations Conclusions Corso di Elaborazione del Linguaggio Naturale Pisa, May, 2011 Introduction Linear-Chain General Specific Implementations Conclusions

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

The Optimal Mechanism in Differential Privacy

The Optimal Mechanism in Differential Privacy The Optimal Mechanism in Differential Privacy Quan Geng Advisor: Prof. Pramod Viswanath 3/29/2013 PhD Prelimary Exam of Quan Geng, ECE, UIUC 1 Outline Background on differential privacy Problem formulation

More information

4 : Exact Inference: Variable Elimination

4 : Exact Inference: Variable Elimination 10-708: Probabilistic Graphical Models 10-708, Spring 2014 4 : Exact Inference: Variable Elimination Lecturer: Eric P. ing Scribes: Soumya Batra, Pradeep Dasigi, Manzil Zaheer 1 Probabilistic Inference

More information

What is (certain) Spatio-Temporal Data?

What is (certain) Spatio-Temporal Data? What is (certain) Spatio-Temporal Data? A spatio-temporal database stores triples (oid, time, loc) In the best case, this allows to look up the location of an object at any time 2 What is (certain) Spatio-Temporal

More information

Personalized Social Recommendations Accurate or Private

Personalized Social Recommendations Accurate or Private Personalized Social Recommendations Accurate or Private Presented by: Lurye Jenny Paper by: Ashwin Machanavajjhala, Aleksandra Korolova, Atish Das Sarma Outline Introduction Motivation The model General

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Bayesian Networks. instructor: Matteo Pozzi. x 1. x 2. x 3 x 4. x 5. x 6. x 7. x 8. x 9. Lec : Urban Systems Modeling

Bayesian Networks. instructor: Matteo Pozzi. x 1. x 2. x 3 x 4. x 5. x 6. x 7. x 8. x 9. Lec : Urban Systems Modeling 12735: Urban Systems Modeling Lec. 09 Bayesian Networks instructor: Matteo Pozzi x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 1 outline example of applications how to shape a problem as a BN complexity of the inference

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Note Set 5: Hidden Markov Models

Note Set 5: Hidden Markov Models Note Set 5: Hidden Markov Models Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2016 1 Hidden Markov Models (HMMs) 1.1 Introduction Consider observed data vectors x t that are d-dimensional

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Bayesian Networks Inference with Probabilistic Graphical Models

Bayesian Networks Inference with Probabilistic Graphical Models 4190.408 2016-Spring Bayesian Networks Inference with Probabilistic Graphical Models Byoung-Tak Zhang intelligence Lab Seoul National University 4190.408 Artificial (2016-Spring) 1 Machine Learning? Learning

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graphical model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

[Title removed for anonymity]

[Title removed for anonymity] [Title removed for anonymity] Graham Cormode graham@research.att.com Magda Procopiuc(AT&T) Divesh Srivastava(AT&T) Thanh Tran (UMass Amherst) 1 Introduction Privacy is a common theme in public discourse

More information

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graph model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

Data Mining 2018 Bayesian Networks (1)

Data Mining 2018 Bayesian Networks (1) Data Mining 2018 Bayesian Networks (1) Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Data Mining 1 / 49 Do you like noodles? Do you like noodles? Race Gender Yes No Black Male 10

More information

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma COMS 4771 Probabilistic Reasoning via Graphical Models Nakul Verma Last time Dimensionality Reduction Linear vs non-linear Dimensionality Reduction Principal Component Analysis (PCA) Non-linear methods

More information

11 : Gaussian Graphic Models and Ising Models

11 : Gaussian Graphic Models and Ising Models 10-708: Probabilistic Graphical Models 10-708, Spring 2017 11 : Gaussian Graphic Models and Ising Models Lecturer: Bryon Aragam Scribes: Chao-Ming Yen 1 Introduction Different from previous maximum likelihood

More information

3 : Representation of Undirected GM

3 : Representation of Undirected GM 10-708: Probabilistic Graphical Models 10-708, Spring 2016 3 : Representation of Undirected GM Lecturer: Eric P. Xing Scribes: Longqi Cai, Man-Chia Chang 1 MRF vs BN There are two types of graphical models:

More information

Challenges in Privacy-Preserving Analysis of Structured Data Kamalika Chaudhuri

Challenges in Privacy-Preserving Analysis of Structured Data Kamalika Chaudhuri Challenges in Privacy-Preserving Analysis of Structured Data Kamalika Chaudhuri Computer Science and Engineering University of California, San Diego Sensitive Structured Data Medical Records Search Logs

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

ECE521 Lecture 19 HMM cont. Inference in HMM

ECE521 Lecture 19 HMM cont. Inference in HMM ECE521 Lecture 19 HMM cont. Inference in HMM Outline Hidden Markov models Model definitions and notations Inference in HMMs Learning in HMMs 2 Formally, a hidden Markov model defines a generative process

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 CS 2750: Machine Learning Bayesian Networks Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 Plan for today and next week Today and next time: Bayesian networks (Bishop Sec. 8.1) Conditional

More information

Pufferfish Privacy Mechanisms for Correlated Data. Shuang Song, Yizhen Wang, Kamalika Chaudhuri University of California, San Diego

Pufferfish Privacy Mechanisms for Correlated Data. Shuang Song, Yizhen Wang, Kamalika Chaudhuri University of California, San Diego Pufferfish Privacy Mechanisms for Correlated Data Shuang Song, Yizhen Wang, Kamalika Chaudhuri University of California, San Diego Sensitive Data with Correlation } Data from social networks, } eg. Spreading

More information

1 Undirected Graphical Models. 2 Markov Random Fields (MRFs)

1 Undirected Graphical Models. 2 Markov Random Fields (MRFs) Machine Learning (ML, F16) Lecture#07 (Thursday Nov. 3rd) Lecturer: Byron Boots Undirected Graphical Models 1 Undirected Graphical Models In the previous lecture, we discussed directed graphical models.

More information

Why (Bayesian) inference makes (Differential) privacy easy

Why (Bayesian) inference makes (Differential) privacy easy Why (Bayesian) inference makes (Differential) privacy easy Christos Dimitrakakis 1 Blaine Nelson 2,3 Aikaterini Mitrokotsa 1 Benjamin Rubinstein 4 Zuhe Zhang 4 1 Chalmers university of Technology 2 University

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 9 Undirected Models CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due next Wednesday (Nov 4) in class Start early!!! Project milestones due Monday (Nov 9)

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Notes on Markov Networks

Notes on Markov Networks Notes on Markov Networks Lili Mou moull12@sei.pku.edu.cn December, 2014 This note covers basic topics in Markov networks. We mainly talk about the formal definition, Gibbs sampling for inference, and maximum

More information

Chapter 16. Structured Probabilistic Models for Deep Learning

Chapter 16. Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 1 Chapter 16 Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 2 Structured Probabilistic Models way of using graphs to describe

More information

Introduction to Artificial Intelligence (AI)

Introduction to Artificial Intelligence (AI) Introduction to Artificial Intelligence (AI) Computer Science cpsc502, Lecture 10 Oct, 13, 2011 CPSC 502, Lecture 10 Slide 1 Today Oct 13 Inference in HMMs More on Robot Localization CPSC 502, Lecture

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC Markov chains Let S = {1, 2,..., N} be a finite set consisting of N states. A Markov chain Y 0, Y 1, Y 2,... is a sequence of random variables, with Y t S for all points in time

More information

Maryam Shoaran Alex Thomo Jens Weber. University of Victoria, Canada

Maryam Shoaran Alex Thomo Jens Weber. University of Victoria, Canada Maryam Shoaran Alex Thomo Jens Weber University of Victoria, Canada Introduction Challenge: Evidence of Participation Sample Aggregates Zero-Knowledge Privacy Analysis of Utility of ZKP Conclusions 12/17/2015

More information

Artificial Intelligence Bayes Nets: Independence

Artificial Intelligence Bayes Nets: Independence Artificial Intelligence Bayes Nets: Independence Instructors: David Suter and Qince Li Course Delivered @ Harbin Institute of Technology [Many slides adapted from those created by Dan Klein and Pieter

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Machine Learning for Data Science (CS4786) Lecture 19

Machine Learning for Data Science (CS4786) Lecture 19 Machine Learning for Data Science (CS4786) Lecture 19 Hidden Markov Models Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2017fa/ Quiz Quiz Two variables can be marginally independent but not

More information

The Monte Carlo Method: Bayesian Networks

The Monte Carlo Method: Bayesian Networks The Method: Bayesian Networks Dieter W. Heermann Methods 2009 Dieter W. Heermann ( Methods)The Method: Bayesian Networks 2009 1 / 18 Outline 1 Bayesian Networks 2 Gene Expression Data 3 Bayesian Networks

More information

Artificial Intelligence

Artificial Intelligence ICS461 Fall 2010 Nancy E. Reed nreed@hawaii.edu 1 Lecture #14B Outline Inference in Bayesian Networks Exact inference by enumeration Exact inference by variable elimination Approximate inference by stochastic

More information

CS Lecture 3. More Bayesian Networks

CS Lecture 3. More Bayesian Networks CS 6347 Lecture 3 More Bayesian Networks Recap Last time: Complexity challenges Representing distributions Computing probabilities/doing inference Introduction to Bayesian networks Today: D-separation,

More information

Link Analysis Ranking

Link Analysis Ranking Link Analysis Ranking How do search engines decide how to rank your query results? Guess why Google ranks the query results the way it does How would you do it? Naïve ranking of query results Given query

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Problem Set 3 Issued: Thursday, September 25, 2014 Due: Thursday,

More information

Privacy in Statistical Databases

Privacy in Statistical Databases Privacy in Statistical Databases Individuals x 1 x 2 x n Server/agency ) answers. A queries Users Government, researchers, businesses or) Malicious adversary What information can be released? Two conflicting

More information

probability of k samples out of J fall in R.

probability of k samples out of J fall in R. Nonparametric Techniques for Density Estimation (DHS Ch. 4) n Introduction n Estimation Procedure n Parzen Window Estimation n Parzen Window Example n K n -Nearest Neighbor Estimation Introduction Suppose

More information

Directed Graphical Models or Bayesian Networks

Directed Graphical Models or Bayesian Networks Directed Graphical Models or Bayesian Networks Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Bayesian Networks One of the most exciting recent advancements in statistical AI Compact

More information

MACHINE LEARNING 2 UGM,HMMS Lecture 7

MACHINE LEARNING 2 UGM,HMMS Lecture 7 LOREM I P S U M Royal Institute of Technology MACHINE LEARNING 2 UGM,HMMS Lecture 7 THIS LECTURE DGM semantics UGM De-noising HMMs Applications (interesting probabilities) DP for generation probability

More information

Need for Sampling in Machine Learning. Sargur Srihari

Need for Sampling in Machine Learning. Sargur Srihari Need for Sampling in Machine Learning Sargur srihari@cedar.buffalo.edu 1 Rationale for Sampling 1. ML methods model data with probability distributions E.g., p(x,y; θ) 2. Models are used to answer queries,

More information

State Space and Hidden Markov Models

State Space and Hidden Markov Models State Space and Hidden Markov Models Kunsch H.R. State Space and Hidden Markov Models. ETH- Zurich Zurich; Aliaksandr Hubin Oslo 2014 Contents 1. Introduction 2. Markov Chains 3. Hidden Markov and State

More information

Gradient Estimation for Attractor Networks

Gradient Estimation for Attractor Networks Gradient Estimation for Attractor Networks Thomas Flynn Department of Computer Science Graduate Center of CUNY July 2017 1 Outline Motivations Deterministic attractor networks Stochastic attractor networks

More information

arxiv: v1 [cs.db] 29 Sep 2016

arxiv: v1 [cs.db] 29 Sep 2016 DPHMM: Customizable Data Release with Differential Privacy via Hidden Markov Model Yonghui Xiao #, Yilin Shen, Jinfei Liu #3, Li Xiong #, Hongxia Jin 5, Xiaofeng Xu #6 # MathCS Department, Emory University,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 4, February 16, 2012 David Sontag (NYU) Graphical Models Lecture 4, February 16, 2012 1 / 27 Undirected graphical models Reminder

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.047 / 6.878 Computational Biology: Genomes, etworks, Evolution Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Graphical Models 101. Biostatistics 615/815 Lecture 12: Hidden Markov Models. Example probability distribution. An example graphical model

Graphical Models 101. Biostatistics 615/815 Lecture 12: Hidden Markov Models. Example probability distribution. An example graphical model 101 Biostatistics 615/815 Lecture 12: Hidden Markov Models Hyun Min Kang February 15th, 2011 Marriage between probability theory and graph theory Each random variable is represented as vertex Dependency

More information

Lecture 21: Spectral Learning for Graphical Models

Lecture 21: Spectral Learning for Graphical Models 10-708: Probabilistic Graphical Models 10-708, Spring 2016 Lecture 21: Spectral Learning for Graphical Models Lecturer: Eric P. Xing Scribes: Maruan Al-Shedivat, Wei-Cheng Chang, Frederick Liu 1 Motivation

More information

Estimating Large Scale Population Movement ML Dublin Meetup

Estimating Large Scale Population Movement ML Dublin Meetup Deutsche Bank COO Chief Data Office Estimating Large Scale Population Movement ML Dublin Meetup John Doyle PhD Assistant Vice President CDO Research & Development Science & Innovation john.doyle@db.com

More information

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine CS 484 Data Mining Classification 7 Some slides are from Professor Padhraic Smyth at UC Irvine Bayesian Belief networks Conditional independence assumption of Naïve Bayes classifier is too strong. Allows

More information

F O R SOCI AL WORK RESE ARCH

F O R SOCI AL WORK RESE ARCH 7 TH EUROPE AN CONFERENCE F O R SOCI AL WORK RESE ARCH C h a l l e n g e s i n s o c i a l w o r k r e s e a r c h c o n f l i c t s, b a r r i e r s a n d p o s s i b i l i t i e s i n r e l a t i o n

More information

Towards a Bayesian model for Cyber Security

Towards a Bayesian model for Cyber Security Towards a Bayesian model for Cyber Security Mark Briers (mbriers@turing.ac.uk) Joint work with Henry Clausen and Prof. Niall Adams (Imperial College London) 27 September 2017 The Alan Turing Institute

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

15-780: Grad AI Lecture 19: Graphical models, Monte Carlo methods. Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

15-780: Grad AI Lecture 19: Graphical models, Monte Carlo methods. Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman 15-780: Grad AI Lecture 19: Graphical models, Monte Carlo methods Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman Admin Reminder: midterm March 29 Reminder: project milestone

More information

4.1 Notation and probability review

4.1 Notation and probability review Directed and undirected graphical models Fall 2015 Lecture 4 October 21st Lecturer: Simon Lacoste-Julien Scribe: Jaime Roquero, JieYing Wu 4.1 Notation and probability review 4.1.1 Notations Let us recall

More information

Privacy-Preserving Data Mining

Privacy-Preserving Data Mining CS 380S Privacy-Preserving Data Mining Vitaly Shmatikov slide 1 Reading Assignment Evfimievski, Gehrke, Srikant. Limiting Privacy Breaches in Privacy-Preserving Data Mining (PODS 2003). Blum, Dwork, McSherry,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 13: Learning in Gaussian Graphical Models, Non-Gaussian Inference, Monte Carlo Methods Some figures

More information

Differential Privacy and Verification. Marco Gaboardi University at Buffalo, SUNY

Differential Privacy and Verification. Marco Gaboardi University at Buffalo, SUNY Differential Privacy and Verification Marco Gaboardi University at Buffalo, SUNY Given a program P, is it differentially private? P Verification Tool yes? no? Proof P Verification Tool yes? no? Given a

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 24. Hidden Markov Models & message passing Looking back Representation of joint distributions Conditional/marginal independence

More information

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010 Hidden Lecture 4: Hidden : An Introduction to Dynamic Decision Making November 11, 2010 Special Meeting 1/26 Markov Model Hidden When a dynamical system is probabilistic it may be determined by the transition

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

CMPUT651: Differential Privacy

CMPUT651: Differential Privacy CMPUT65: Differential Privacy Homework assignment # 2 Due date: Apr. 3rd, 208 Discussion and the exchange of ideas are essential to doing academic work. For assignments in this course, you are encouraged

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Probabilistic Graphical Models. Guest Lecture by Narges Razavian Machine Learning Class April

Probabilistic Graphical Models. Guest Lecture by Narges Razavian Machine Learning Class April Probabilistic Graphical Models Guest Lecture by Narges Razavian Machine Learning Class April 14 2017 Today What is probabilistic graphical model and why it is useful? Bayesian Networks Basic Inference

More information

2 : Directed GMs: Bayesian Networks

2 : Directed GMs: Bayesian Networks 10-708: Probabilistic Graphical Models 10-708, Spring 2017 2 : Directed GMs: Bayesian Networks Lecturer: Eric P. Xing Scribes: Jayanth Koushik, Hiroaki Hayashi, Christian Perez Topic: Directed GMs 1 Types

More information

CSC 412 (Lecture 4): Undirected Graphical Models

CSC 412 (Lecture 4): Undirected Graphical Models CSC 412 (Lecture 4): Undirected Graphical Models Raquel Urtasun University of Toronto Feb 2, 2016 R Urtasun (UofT) CSC 412 Feb 2, 2016 1 / 37 Today Undirected Graphical Models: Semantics of the graph:

More information

Introduction. Chapter 1

Introduction. Chapter 1 Chapter 1 Introduction In this book we will be concerned with supervised learning, which is the problem of learning input-output mappings from empirical data (the training dataset). Depending on the characteristics

More information

Bayes Nets: Independence

Bayes Nets: Independence Bayes Nets: Independence [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Bayes Nets A Bayes

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/32 Lecture 5a Bayesian network April 14, 2016 2/32 Table of contents 1 1. Objectives of Lecture 5a 2 2.Bayesian

More information

Based on slides by Richard Zemel

Based on slides by Richard Zemel CSC 412/2506 Winter 2018 Probabilistic Learning and Reasoning Lecture 3: Directed Graphical Models and Latent Variables Based on slides by Richard Zemel Learning outcomes What aspects of a model can we

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

Intelligent Systems:

Intelligent Systems: Intelligent Systems: Undirected Graphical models (Factor Graphs) (2 lectures) Carsten Rother 15/01/2015 Intelligent Systems: Probabilistic Inference in DGM and UGM Roadmap for next two lectures Definition

More information

Quantitative Approaches to Information Protection

Quantitative Approaches to Information Protection Quantitative Approaches to Information Protection Catuscia Palamidessi INRIA Saclay 1 LOCALI meeting, Beijin 06/11/2013 Plan of the talk Motivations and Examples A General Quantitative Model Quantitative

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 16, 6/1/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Uncertainty & Bayesian Networks

More information

Recap: Bayes Nets. CS 473: Artificial Intelligence Bayes Nets: Independence. Conditional Independence. Bayes Nets. Independence in a BN

Recap: Bayes Nets. CS 473: Artificial Intelligence Bayes Nets: Independence. Conditional Independence. Bayes Nets. Independence in a BN CS 473: Artificial Intelligence ayes Nets: Independence A ayes net is an efficient encoding of a probabilistic model of a domain ecap: ayes Nets Questions we can ask: Inference: given a fixed N, what is

More information

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Part I C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Probabilistic Graphical Models Graphical representation of a probabilistic model Each variable corresponds to a

More information