Reliability of Safety-Critical Systems 5.4 Petrinets

Size: px
Start display at page:

Download "Reliability of Safety-Critical Systems 5.4 Petrinets"

Transcription

1 Reliability of Safety-Critical Systems 5.4 Petrinets Mary Ann Lundteigen and Marvin Rausand RAMS Group Department of Production and Quality Engineering NTNU (Version 1.0) M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 1 / 24

2 Reliability of Safety-Critical Systems Slides related to the book Reliability of Safety-Critical Systems Theory and Applications Wiley, 2014 Theory and Applications Marvin Rausand Homepage of the book: books/sis M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 2 / 24

3 Purpose The purpose of this slide series is to: 1. Explain the main attributes and concepts associated with Petri Nets 2. Explain how Petri Nets may be used for system reliability analysis 3. Discuss some pros and cons for the application of Petri Nets M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 3 / 24

4 About Petri nets Petri Nets is a well known approach in many application areas, but has not until recently got a high status within the field of system reliability. Petri Nets was introduced by Carl Adam Petri in the 1960s It has bee widely used for analysis of telecommunication, software engineering, and transportation Petri Nets are now referenced by IEC as a suitable approach for reliability analysis IEC defines terminology and gives requirements for the use of Petri Nets We will use the abbreviation PN for Petri nets in the following slides. M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 4 / 24

5 Places, transitions, and arcs A PN constiute two basic nodes: places, drawn as circles, and transitions, drawn as bars. Places: Circles used to model local states or conditions (e.g., failed or functioning). Transitions: Bars used to model local events (e.g., failure or restoration). Arcs: Directed arcs that links places and transitions. Input place p 1 p 2 Output place Figure: Input places vs output places M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 5 / 24

6 Tokens and firing Tokens (black circles) are dynamic elements used to illustrate the system state at a certain point in time. p 1 t1 p p 2 1 t 1 p 2 (a) (b) Note that: Figure: Simple PN, without (a) and with (b) tokens A PN with tokens is called a marked PN Firing is the event where one or more tokens are moved from one place to another M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 6 / 24

7 Multiplicity and enabling Multiplicity (or weight): A digit (e.g., 1, 2 etc) assigned to an arc, and which represents the number of tokens the arc delivers at a time. It may be remarked that: When multiplicity is 1, it is not specified in the PN A transition is enabled (ready for firing) if the number of tokens in each of its input places is equal to or greater than the multiplicity of the associated arcs. Not enabled p1 p2 2 (a) 2 t 1 p 3 Enabled, before firing p1 p2 2 (b) 2 t 1 p 3 After firing p1 p2 Figure: PN before and after firing 2 (c) 2 t 1 p 3 M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 7 / 24

8 Inhibitor arc Inhibitor arc: A directed arc with by a small circle, and whose main purpose is to block the output transition if the number of tokens is in the input places are equal to or higher than the multiplicity (weight) of the arc. p 1 p 2 t p 1 3 Figure: PN with inhibitor arc Figure above: Transition t 1 is inhibited as long as there is a token in place p 2. M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 8 / 24

9 Transition types Transitions may be immidiate (when enabling conditions are fulfilled), or timed with a delay > 0. The delays may be deterministic or stochastic, as shown in the table below: Type of transition in PN Deterministic Stochastic Parameter Delay is zero Delay is d Exponentially or geometrically distributed Arbritrary distributed d λ Symbol M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 9 / 24

10 Stochastic PNs Stochastic PN (SPN): A PN with stochastic transitions only. A generalized SPN (GSPN) allows timed as well as immidiate transitions, but only exponentially distributed firing times are accepted for the timed transitions. This means that GSPN is not so general, in the meaning that it allows any type of stochastic distributions for the times transitions. M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 10 / 24

11 State of an item A PN may be used to model the functioning and failure of a single item, as shown below: p 1 Functioning t 2 t 1 Repair ended p 2 Failure Not functioning M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 11 / 24

12 Fault tree A PN may be used to model an OR gate in a fault tree, as shown below: TOP p 3 t 1 t p 1 p 2 M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 12 / 24

13 Fault tree A PN may be used to model an AND gate in a fault tree, as shown below: TOP p 3 t p 1 p 2 M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 13 / 24

14 Having different failure modes A PN may be used to model an item that can experience a dangerous detected (DD) or dangerous undetected (DU), as shown below: p SW p SW puw tdu puf tsdu tsdd puw t DU puf tsdu tsdd p SF p SF pdw λ DU tdd p DF pdw λ DU tdd pdf λ DD λ DD (a) (b) Note: Notations are explained in the next slide slide. M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 14 / 24

15 Notations (previous slide) Parameter p UW p DW p SW Parameter p UF p DF p SF Parameter t DU t DD t SDU t SDD Working states (when token is present) State where no DU failure is present State where no DD failure is present State where system is working (no DU or DD failure present) Failed states (when token is present) State where a DU failure is present State where a DD failure is present State where the system has failed (DU or DD failure is present) Transitions Firing of a DU failure (exponentially distributed) with rate λ DU Firing of a DU failure (exponentially distributed) with rate λ DD (Immidiate) firing of a system failure caused by a DU failure (Immidiate) firing of a system failure caused by a DD failure M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 15 / 24

16 1oo2 voted system (non-repairable) A PN may be used to model a non-repairable 1oo2 voted system, as seen below. p SW p1w t1f p 1F t SF p SF p 2W t 2F p 2F Note: Notations are provided on the next slide. M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 16 / 24

17 Notations (previous slide) Parameter p SW p 1W p 2W Parameter p 1F p 2F p SF Parameter t 1F t 2F t SF Working states (when token is present) State where system is working State where channel 1 is working State where channel 2 is working Failed states (when token is present) State where channel 1 has failed State where channel 2 has failed State where system has failed Transitions Firing of a failure (exponentially distributed) with rate λ 1F Firing of a DU failure (exponentially distributed) with rate λ 2F (Immidiate) firing of system failure if both channels have a failed M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 17 / 24

18 1oo2 voted system (repairable) A PN may be used to model a repairable 1oo2 voted system, as seen below. p SW t 1R p1w t1f p 1F t SF tsr1 tsr2 p SF p 2W t 2F p 2F t 2R Note: Notations are provided on the next slide. M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 18 / 24

19 Notations (previous slide) Parameter Parameter Parameter t 1F t 2F t SF Parameter t 1R t 2R t SR1 t SR1 Working states (when token is present) See notations for non-repairable 1oo2 system Failed states (when token is present) See notations for non-repairable 1oo2 system Transitions (failure) Firing of a failure (exponentially distributed) with rate λ 1F Firing of a failure (exponentially distributed) with rate λ 2F (Immidiate) firing of system failure when both channels have failed Transitions (repair) Firing of a repair (exponentially distributed) with rate µ 1R Firing of a repair (exponentially distributed) with rate µ 2R (Immidiate) firing of a return to functioning state after repair of channel 1 (Immidiate) firing of a return to functioning state after repair of channel 1 M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 19 / 24

20 Modularization of PNs It may be feasible to modularize the PN, by modeling each functional block (in a reliability block diagram). A module can include two parts: Intrinsic part: Modules that describes the behavoir of the items in the module Extrinsic part: Module that links the intrinsic part to system properties (e.g., failure, repair, working) S t 1R C1 p SW p1w t1f p 1F p1w t S p2w p1f tsr1 p SF p2f tsr2 p 2W t 2F p 2F t 2R C2 M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 20 / 24

21 Predicates and Assertions By Predicates (?? ) and Assertions (!! ), the modeling of the 1oo2 system may be simplified as follows: Ci!!nb pw = nbpw + 1 t ir!!nb pf = nbpf 1??nbpF > 0 p SW S piw ti F p i F?? nbp W == 0 t S t SR??nbp W > 0!!nbpF = nbpf + 1!!nbpW = nbpw 1??nbp W > 0 p SF Note: Notations are as defined on previous slides. Explanation of?? and!! are found in the textbook. M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 21 / 24

22 Reliability block diagram driven PNs Reliability block diagram (RBD) driven PNs may be constructed with basis in modules of item/channel states, as seen in the illustration on the next slide. The following features are added to the model: States variables: Local item or channel level, here denoted C i Global/system level, here denoted S Temporary states (local or global), here global and denoted A and B Global assertions, which are statements that are related to global state variables (by pointing at global states)!!a = In.Ci means that the temporary state A is assigned the value of the local state Ci M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 22 / 24

23 Reliability block diagram driven PNs!C1 C1!!nbpW = nbpw + 1 t 1R!!nbpF = nbpf 1??nbp F > 0!!A = In.C1 p1w t1f p1f A In = 1 1!-C1!!nbpF = nbpf + 1!!nbpW = nbpw 1??nbp W > 0 S C2 t 2R!C2!!nb pw = nbpw + 1!!nb pf = nbpf 1??nbp F > 0!!B = In.C2!!S = A + B p2w t 2F p2f B!-C2!!nb pf = nbpf + 1!!nb pw = nbpw 1??nbp W > 0 M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 23 / 24

24 Analysis (of reliability) Software tool is more or less required in order to use PNs for reliability analysis. Some alternatives are: SHARPE developed by Duke University GRIF developed by Total Matlab (?) For repairable systems, availability (or unavailability) may be found by calculating the (average) time spent in places p SW and p SF. M.A.Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.0) 24 / 24

Reliability of Safety-Critical Systems 5.1 Reliability Quantification with RBDs

Reliability of Safety-Critical Systems 5.1 Reliability Quantification with RBDs Reliability of Safety-Critical Systems 5.1 Reliability Quantification with RBDs Mary Ann Lundteigen and Marvin Rausand mary.a.lundteigen@ntnu.no &marvin.rausand@ntnu.no RAMS Group Department of Production

More information

Reliability of Safety-Critical Systems Chapter 8. Probability of Failure on Demand using IEC formulas

Reliability of Safety-Critical Systems Chapter 8. Probability of Failure on Demand using IEC formulas Reliability of Safety-Critical Systems Chapter 8. Probability of Failure on Demand using IEC 61508 formulas Mary Ann Lundteigen and Marvin Rausand mary.a.lundteigen@ntnu.no &marvin.rausand@ntnu.no RAMS

More information

Reliability of Safety-Critical Systems Chapter 8. Probability of Failure on Demand using fault trees

Reliability of Safety-Critical Systems Chapter 8. Probability of Failure on Demand using fault trees Reliability of Safety-Critical Systems Chapter 8. Probability of Failure on Demand using fault trees Mary Ann Lundteigen and Marvin Rausand mary.a.lundteigen@ntnu.no &marvin.rausand@ntnu.no RAMS Group

More information

Reliability of Safety-Critical Systems Chapter 9. Average frequency of dangerous failures

Reliability of Safety-Critical Systems Chapter 9. Average frequency of dangerous failures Reliability of Safety-Critical Systems Chapter 9. Average frequency of dangerous failures Mary Ann Lundteigen and Marvin Rausand mary.a.lundteigen@ntnu.no &marvin.rausand@ntnu.no RAMS Group Department

More information

Chapter 8. Calculation of PFD using Markov

Chapter 8. Calculation of PFD using Markov Chapter 8. Calculation of PFD using Markov Mary Ann Lundteigen Marvin Rausand RAMS Group Department of Mechanical and Industrial Engineering NTNU (Version 0.1) Lundteigen& Rausand Chapter 8.Calculation

More information

Chapter 8. Calculation of PFD using FTA

Chapter 8. Calculation of PFD using FTA Chapter 8. Calculation of PFD using FTA Mary Ann Lundteigen Marvin Rausand RAMS Group Department of Mechanical and Industrial Engineering NTNU (Version 0.1) Lundteigen& Rausand Chapter 8.Calculation of

More information

Chapter 12. Spurious Operation and Spurious Trips

Chapter 12. Spurious Operation and Spurious Trips Chapter 12. Spurious Operation and Spurious Trips Mary Ann Lundteigen Marvin Rausand RAMS Group Department of Mechanical and Industrial Engineering NTNU (Version 0.1) Lundteigen& Rausand Chapter 12.Spurious

More information

Stochastic Petri Net. Ben, Yue (Cindy) 2013/05/08

Stochastic Petri Net. Ben, Yue (Cindy) 2013/05/08 Stochastic Petri Net 2013/05/08 2 To study a formal model (personal view) Definition (and maybe history) Brief family tree: the branches and extensions Advantages and disadvantages for each Applications

More information

System Reliability Thory 6. Common-Cause Failures

System Reliability Thory 6. Common-Cause Failures System Reliability Thory 6. Common-Cause Failures Marvin Rausand marvin.rausand@ntnu.no RAMS Group Department of Production and Quality Engineering NTNU (Version 0.1) Marvin Rausand (RAMS Group) System

More information

System Reliability Analysis. CS6323 Networks and Systems

System Reliability Analysis. CS6323 Networks and Systems System Reliability Analysis CS6323 Networks and Systems Topics Combinatorial Models for reliability Topology-based (structured) methods for Series Systems Parallel Systems Reliability analysis for arbitrary

More information

MODELLING DYNAMIC RELIABILITY VIA FLUID PETRI NETS

MODELLING DYNAMIC RELIABILITY VIA FLUID PETRI NETS MODELLING DYNAMIC RELIABILITY VIA FLUID PETRI NETS Daniele Codetta-Raiteri, Dipartimento di Informatica, Università di Torino, Italy Andrea Bobbio, Dipartimento di Informatica, Università del Piemonte

More information

Mean fault time for estimation of average probability of failure on demand.

Mean fault time for estimation of average probability of failure on demand. Mean fault time for estimation of average probability of failure on demand. Isshi KOYATA a *, Koichi SUYAMA b, and Yoshinobu SATO c a The University of Marine Science and Technology Doctoral Course, Course

More information

Research Article Research on Dynamic Reliability of a Jet Pipe Servo Valve Based on Generalized Stochastic Petri Nets

Research Article Research on Dynamic Reliability of a Jet Pipe Servo Valve Based on Generalized Stochastic Petri Nets Aerospace Engineering Volume 2015, Article ID 171642, 8 pages http://dx.doi.org/10.55/2015/171642 Research Article Research on Dynamic Reliability of a Jet Pipe Servo Valve Based on Generalized Stochastic

More information

Dependability Analysis

Dependability Analysis Software and Systems Verification (VIMIMA01) Dependability Analysis Istvan Majzik Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology

More information

Composition of product-form Generalized Stochastic Petri Nets: a modular approach

Composition of product-form Generalized Stochastic Petri Nets: a modular approach Composition of product-form Generalized Stochastic Petri Nets: a modular approach Università Ca Foscari di Venezia Dipartimento di Informatica Italy October 2009 Markov process: steady state analysis Problems

More information

On Qualitative Analysis of Fault Trees Using Structurally Persistent Nets

On Qualitative Analysis of Fault Trees Using Structurally Persistent Nets On Qualitative Analysis of Fault Trees Using Structurally Persistent Nets Ricardo J. Rodríguez rj.rodriguez@unileon.es Research Institute of Applied Sciences in Cybersecurity University of León, Spain

More information

Evaluating the PFD of Safety Instrumented Systems with Partial Stroke Testing

Evaluating the PFD of Safety Instrumented Systems with Partial Stroke Testing Evaluating the PF of Safety Instrumented Systems with Partial Stroke Testing Luiz Fernando Oliveira Vice-President NV Energy Solutions South America How did I get to writing this paper? Started doing SIL

More information

Imperfect Testing and its Influence on Availability of Safety Instrumented Systems

Imperfect Testing and its Influence on Availability of Safety Instrumented Systems Imperfect Testing and its Influence on Availability of Safety Instrumented Systems Shipra Sachdeva Master of Science in Mathematics (for international students) Submission date: June 2015 Supervisor: Bo

More information

Proxel-Based Simulation of Stochastic Petri Nets Containing Immediate Transitions

Proxel-Based Simulation of Stochastic Petri Nets Containing Immediate Transitions Electronic Notes in Theoretical Computer Science Vol. 85 No. 4 (2003) URL: http://www.elsevier.nl/locate/entsc/volume85.html Proxel-Based Simulation of Stochastic Petri Nets Containing Immediate Transitions

More information

STOCHASTIC MODELS FOR RELIABILITY, AVAILABILITY, AND MAINTAINABILITY

STOCHASTIC MODELS FOR RELIABILITY, AVAILABILITY, AND MAINTAINABILITY STOCHASTIC MODELS FOR RELIABILITY, AVAILABILITY, AND MAINTAINABILITY Ph.D. Assistant Professor Industrial and Systems Engineering Auburn University RAM IX Summit November 2 nd 2016 Outline Introduction

More information

Reliability Analysis of Electronic Systems using Markov Models

Reliability Analysis of Electronic Systems using Markov Models Reliability Analysis of Electronic Systems using Markov Models István Matijevics Polytechnical Engineering College, Subotica, Serbia and Montenegro, matistvan@yahoo.com Zoltán Jeges Polytechnical Engineering

More information

Reliability Analysis of an Anti-lock Braking System using Stochastic Petri Nets

Reliability Analysis of an Anti-lock Braking System using Stochastic Petri Nets Reliability Analysis of an Anti-lock Braking System using Stochastic Petri Nets Kshamta Jerath kjerath@eecs.wsu.edu Frederick T. Sheldon sheldon@eecs.wsu.edu School of Electrical Engineering and Computer

More information

9. Reliability theory

9. Reliability theory Material based on original slides by Tuomas Tirronen ELEC-C720 Modeling and analysis of communication networks Contents Introduction Structural system models Reliability of structures of independent repairable

More information

Dependable Computer Systems

Dependable Computer Systems Dependable Computer Systems Part 3: Fault-Tolerance and Modelling Contents Reliability: Basic Mathematical Model Example Failure Rate Functions Probabilistic Structural-Based Modeling: Part 1 Maintenance

More information

A FRAMEWORK FOR PERFORMABILITY MODELLING USING PROXELS. Sanja Lazarova-Molnar, Graham Horton

A FRAMEWORK FOR PERFORMABILITY MODELLING USING PROXELS. Sanja Lazarova-Molnar, Graham Horton A FRAMEWORK FOR PERFORMABILITY MODELLING USING PROXELS Sanja Lazarova-Molnar, Graham Horton University of Magdeburg Department of Computer Science Universitaetsplatz 2, 39106 Magdeburg, Germany sanja@sim-md.de

More information

DES. 4. Petri Nets. Introduction. Different Classes of Petri Net. Petri net properties. Analysis of Petri net models

DES. 4. Petri Nets. Introduction. Different Classes of Petri Net. Petri net properties. Analysis of Petri net models 4. Petri Nets Introduction Different Classes of Petri Net Petri net properties Analysis of Petri net models 1 Petri Nets C.A Petri, TU Darmstadt, 1962 A mathematical and graphical modeling method. Describe

More information

Reliability of Technical Systems

Reliability of Technical Systems Reliability of Technical Systems Main Topics. Short Introduction, Reliability Parameters: Failure Rate, Failure Probability, etc. 2. Some Important Reliability Distributions 3. Component Reliability 4.

More information

Specification models and their analysis Petri Nets

Specification models and their analysis Petri Nets Specification models and their analysis Petri Nets Kai Lampka December 10, 2010 1 30 Part I Petri Nets Basics Petri Nets Introduction A Petri Net (PN) is a weighted(?), bipartite(?) digraph(?) invented

More information

Multi-State Availability Modeling in Practice

Multi-State Availability Modeling in Practice Multi-State Availability Modeling in Practice Kishor S. Trivedi, Dong Seong Kim, Xiaoyan Yin Depart ment of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA kst@ee.duke.edu, {dk76,

More information

Causal & Frequency Analysis

Causal & Frequency Analysis Causal & Frequency Analysis Arshad Ahmad arshad@utm.my Fishbone Diagram 2 The Cause and Effect (CE) Diagram (Ishikawa Fishbone) Created in 1943 by Professor Kaoru Ishikawa of Tokyo University Used to investigate

More information

Modeling Common Cause Failures in Diverse Components with Fault Tree Applications

Modeling Common Cause Failures in Diverse Components with Fault Tree Applications Modeling Common Cause Failures in Diverse s with Fault Tree Applications Joseph R. Belland, Isograph Inc. Key Words: Common Cause Failures, Fault Trees, Beta Factor SUMMARY & CONCLUSIONS A common cause

More information

Analysis and Optimization of Discrete Event Systems using Petri Nets

Analysis and Optimization of Discrete Event Systems using Petri Nets Volume 113 No. 11 2017, 1 10 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Analysis and Optimization of Discrete Event Systems using Petri Nets

More information

Chapter 5 Component Importance

Chapter 5 Component Importance Chapter 5 Component Importance Marvin Rausand Department of Production and Quality Engineering Norwegian University of Science and Technology marvin.rausand@ntnu.no Marvin Rausand, March 19, 2004 System

More information

Safety Analysis Using Petri Nets

Safety Analysis Using Petri Nets Safety Analysis Using Petri Nets IEEE Transactions on Software Engineering (1987) Nancy G. Leveson and Janice L. Stolzy Park, Ji Hun 2010.06.21 Introduction Background Petri net Time petri net Contents

More information

Stochastic Petri Nets. Jonatan Lindén. Modelling SPN GSPN. Performance measures. Almost none of the theory. December 8, 2010

Stochastic Petri Nets. Jonatan Lindén. Modelling SPN GSPN. Performance measures. Almost none of the theory. December 8, 2010 Stochastic Almost none of the theory December 8, 2010 Outline 1 2 Introduction A Petri net (PN) is something like a generalized automata. A Stochastic Petri Net () a stochastic extension to Petri nets,

More information

Nuclear reliability: system reliabilty

Nuclear reliability: system reliabilty Nuclear reliability: system reliabilty Dr. Richard E. Turner (ret26@cam.ac.uk) December 3, 203 Goal of these two lectures failures are inevitable: need methods for characterising and quantifying them LAST

More information

Reliability of Technical Systems. Advanced Methods for Systems Modelling and Simulation I : Petri Nets

Reliability of Technical Systems. Advanced Methods for Systems Modelling and Simulation I : Petri Nets Reliability of Technical Systems Advanced Methods for Systems Modelling and Simulation I : Petri Nets Petri Nets - Overview Introduction Basic elements and rules Notation Extensions/Tools Applications

More information

Choice of Demand Mode for Subsea Safety Systems

Choice of Demand Mode for Subsea Safety Systems Choice of Demand Mode for Subsea Safety Systems Xiuyu He Reliability, Availability, Maintainability and Safety (RAMS) Submission date: July 2013 Supervisor: Jørn Vatn, IPK Norwegian University of Science

More information

Common Cause Failure (CCF)

Common Cause Failure (CCF) Common Cause Failure (CCF) 건국대학교컴퓨터공학과 UC Lab. 정혁준 & 박경식 amitajung@naver.com, kyeongsik@konkuk.ac.kr Contents Common Cause Failure (CCF) Types of CCF Examples Reducing CCF Common Cause Failure (CCF) Definition

More information

Stéphane Lafortune. August 2006

Stéphane Lafortune. August 2006 UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE LECTURE NOTES FOR EECS 661 CHAPTER 1: INTRODUCTION TO DISCRETE EVENT SYSTEMS Stéphane Lafortune August 2006 References for

More information

Applications of Petri Nets

Applications of Petri Nets Applications of Petri Nets Presenter: Chung-Wei Lin 2010.10.28 Outline Revisiting Petri Nets Application 1: Software Syntheses Theory and Algorithm Application 2: Biological Networks Comprehensive Introduction

More information

Dynamic Fault Tree Analysis Based On The Structure Function

Dynamic Fault Tree Analysis Based On The Structure Function Author manuscript, published in "Annual Reliability and Maintainability Symposium 2011 (RAMS 2011), Orlando, FL : United States (2011)" Dynamic Fault Tree Analysis Based On The Structure Function Guillaume

More information

Chapter 18 Section 8.5 Fault Trees Analysis (FTA) Don t get caught out on a limb of your fault tree.

Chapter 18 Section 8.5 Fault Trees Analysis (FTA) Don t get caught out on a limb of your fault tree. Chapter 18 Section 8.5 Fault Trees Analysis (FTA) Don t get caught out on a limb of your fault tree. C. Ebeling, Intro to Reliability & Maintainability Engineering, 2 nd ed. Waveland Press, Inc. Copyright

More information

Dependable Systems. ! Dependability Attributes. Dr. Peter Tröger. Sources:

Dependable Systems. ! Dependability Attributes. Dr. Peter Tröger. Sources: Dependable Systems! Dependability Attributes Dr. Peter Tröger! Sources:! J.C. Laprie. Dependability: Basic Concepts and Terminology Eusgeld, Irene et al.: Dependability Metrics. 4909. Springer Publishing,

More information

Analyzing Concurrent and Fault-Tolerant Software using Stochastic Reward Nets

Analyzing Concurrent and Fault-Tolerant Software using Stochastic Reward Nets Analyzing Concurrent and Fault-Tolerant Software using Stochastic Reward Nets Gianfranco Ciardo Software Productivity Consortium Herndon, VA 22070 Kishor S. Trivedi Dept. of Electrical Engineering Duke

More information

Livelock example. p 1. Assume this as initial marking. t 1 R. t 2. t 4. t 3. t 6. t 5. t 7. t 8. (taken from Fundamentals of SE by C.

Livelock example. p 1. Assume this as initial marking. t 1 R. t 2. t 4. t 3. t 6. t 5. t 7. t 8. (taken from Fundamentals of SE by C. p 1 Livelock example (taken from Fundamentals of SE by C. Ghezzi) p 1 Assume this as initial marking. t 1 R t 3 t 4 t 5 t 6 t 7 t 8 Slide No.106 Livelock example analysis The tokens in R cannot be divided

More information

Evaluation criteria for reliability in computer systems

Evaluation criteria for reliability in computer systems Journal of Electrical and Electronic Engineering 5; 3(-): 83-87 Published online February, 5 (http://www.sciencepublishinggroup.com/j/jeee) doi:.648/j.jeee.s.53.8 ISSN: 39-63 (Print); ISSN: 39-65 (Online)

More information

Part 3: Fault-tolerance and Modeling

Part 3: Fault-tolerance and Modeling Part 3: Fault-tolerance and Modeling Course: Dependable Computer Systems 2012, Stefan Poledna, All rights reserved part 3, page 1 Goals of fault-tolerance modeling Design phase Designing and implementing

More information

Using Coloured Petri Nets for integrated reliability and safety evaluations

Using Coloured Petri Nets for integrated reliability and safety evaluations Author manuscript, published in "4th IFAC Workshop on Dependable Control of Discrete Systems, York : United Kingdom (2013)" DOI : 10.3182/20130904-3-UK-4041.00016 Using Coloured Petri Nets for integrated

More information

Page 1. Outline. Modeling. Experimental Methodology. ECE 254 / CPS 225 Fault Tolerant and Testable Computing Systems. Modeling and Evaluation

Page 1. Outline. Modeling. Experimental Methodology. ECE 254 / CPS 225 Fault Tolerant and Testable Computing Systems. Modeling and Evaluation Page 1 Outline ECE 254 / CPS 225 Fault Tolerant and Testable Computing Systems Modeling and Evaluation Copyright 2004 Daniel J. Sorin Duke University Experimental Methodology and Modeling Modeling Random

More information

UNAVAILABILITY CALCULATIONS WITHIN THE LIMITS OF COMPUTER ACCURACY ABSTRACT

UNAVAILABILITY CALCULATIONS WITHIN THE LIMITS OF COMPUTER ACCURACY ABSTRACT (Vol.2) 29, December UNAVAILABILITY CALCULATIONS WITHIN THE LIMITS OF COMPUTER ACCURACY R. Briš Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Ostrava, Czech Republic

More information

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues Content What are Events? Examples for Problematic Event Semantics Inhibit, Enabler / Conditioning

More information

Page 1. Outline. Experimental Methodology. Modeling. ECE 254 / CPS 225 Fault Tolerant and Testable Computing Systems. Modeling and Evaluation

Page 1. Outline. Experimental Methodology. Modeling. ECE 254 / CPS 225 Fault Tolerant and Testable Computing Systems. Modeling and Evaluation Outline Fault Tolerant and Testable Computing Systems Modeling and Evaluation Copyright 2011 Daniel J. Sorin Duke University Experimental Methodology and Modeling Random Variables Probabilistic Models

More information

From Stochastic Processes to Stochastic Petri Nets

From Stochastic Processes to Stochastic Petri Nets From Stochastic Processes to Stochastic Petri Nets Serge Haddad LSV CNRS & ENS Cachan & INRIA Saclay Advanced Course on Petri Nets, the 16th September 2010, Rostock 1 Stochastic Processes and Markov Chains

More information

Comparative Reliability Analysis of Reactor Trip System Architectures: Industrial Case

Comparative Reliability Analysis of Reactor Trip System Architectures: Industrial Case Comparative Reliability Analysis of Reactor Trip System Architectures: Industrial Case Aleksei Vambol 1 and Vyacheslav Kharchenko 1,2 1 Department of Computer Systems, Networks and Cybersecurity, National

More information

Regression Analysis: Exploring relationships between variables. Stat 251

Regression Analysis: Exploring relationships between variables. Stat 251 Regression Analysis: Exploring relationships between variables Stat 251 Introduction Objective of regression analysis is to explore the relationship between two (or more) variables so that information

More information

Routing Algorithms. CS60002: Distributed Systems. Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Routing Algorithms. CS60002: Distributed Systems. Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Routing Algorithms CS60002: Distributed Systems Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Main Features Table Computation The routing tables must be computed

More information

Software Reliability & Testing

Software Reliability & Testing Repairable systems Repairable system A reparable system is obtained by glueing individual non-repairable systems each around a single failure To describe this gluing process we need to review the concept

More information

SPN 2003 Preliminary Version. Translating Hybrid Petri Nets into Hybrid. Automata 1. Dipartimento di Informatica. Universita di Torino

SPN 2003 Preliminary Version. Translating Hybrid Petri Nets into Hybrid. Automata 1. Dipartimento di Informatica. Universita di Torino SPN 2003 Preliminary Version Translating Hybrid Petri Nets into Hybrid Automata 1 Marco Gribaudo 2 and Andras Horvath 3 Dipartimento di Informatica Universita di Torino Corso Svizzera 185, 10149 Torino,

More information

Reliability of Technical Systems

Reliability of Technical Systems Reliability of Technical Systems Main Topics 1. Short Introduction, Reliability Parameters: Failure Rate, Failure Probability, etc. 2. Some Important Reliability Distributions 3. Component Reliability

More information

Pain Signaling - A Case Study of the Modular Petri Net Modeling Concept with Prospect to a Protein-Oriented Modeling Platform

Pain Signaling - A Case Study of the Modular Petri Net Modeling Concept with Prospect to a Protein-Oriented Modeling Platform 1 BioPPN Workshop, 20 June 2011 Pain Signaling - A Case Study of the Modular Petri Net Modeling Concept with Prospect to a Protein-Oriented Modeling Platform Mary Ann Blätke, Sonja Meyer, Wolfgang Marwan

More information

COMPACT RELIABILITY AND MAINTENANCE MODELING OF COMPLEX REPAIRABLE SYSTEMS

COMPACT RELIABILITY AND MAINTENANCE MODELING OF COMPLEX REPAIRABLE SYSTEMS COMPACT RELIABILITY AND MAINTENANCE MODELING OF COMPLEX REPAIRABLE SYSTEMS A Thesis Presented to The Academic Faculty by René Valenzuela In Partial Fulfillment of the Requirements for the Degree Doctor

More information

Chapter 6. a. Open Circuit. Only if both resistors fail open-circuit, i.e. they are in parallel.

Chapter 6. a. Open Circuit. Only if both resistors fail open-circuit, i.e. they are in parallel. Chapter 6 1. a. Section 6.1. b. Section 6.3, see also Section 6.2. c. Predictions based on most published sources of reliability data tend to underestimate the reliability that is achievable, given that

More information

The random counting variable. Barbara Russo

The random counting variable. Barbara Russo The random counting variable Barbara Russo Counting Random Variable } Until now we have seen the point process through two sets of random variables } T i } X i } We introduce a new random variable the

More information

Model-Based Safety Assessment with AltaRica 3.0

Model-Based Safety Assessment with AltaRica 3.0 Model-Based Safety Assessment with AltaRica 3.0 Towards the next generation of methods, concepts and tools for probabilistic safety assessment (a computer scientist point of view) Prof. Antoine Rauzy Department

More information

Industrial Automation (Automação de Processos Industriais)

Industrial Automation (Automação de Processos Industriais) Industrial Automation (Automação de Processos Industriais) Discrete Event Systems http://users.isr.ist.utl.pt/~jag/courses/api1516/api1516.html Slides 2010/2011 Prof. Paulo Jorge Oliveira Rev. 2011-2015

More information

Introduction to Stochastic Petri Nets

Introduction to Stochastic Petri Nets Introduction to Stochastic Petri Nets Gianfranco Balbo Università di Torino, Torino, Italy, Dipartimento di Informatica balbo@di.unito.it Abstract. Stochastic Petri Nets are a modelling formalism that

More information

Stochastic Simulation.

Stochastic Simulation. Stochastic Simulation. (and Gillespie s algorithm) Alberto Policriti Dipartimento di Matematica e Informatica Istituto di Genomica Applicata A. Policriti Stochastic Simulation 1/20 Quote of the day D.T.

More information

Availability. M(t) = 1 - e -mt

Availability. M(t) = 1 - e -mt Availability Availability - A(t) the probability that the system is operating correctly and is available to perform its functions at the instant of time t More general concept than reliability: failure

More information

fakultät für informatik informatik 12 technische universität dortmund Petri nets Peter Marwedel Informatik 12 TU Dortmund Germany

fakultät für informatik informatik 12 technische universität dortmund Petri nets Peter Marwedel Informatik 12 TU Dortmund Germany 12 Petri nets Peter Marwedel Informatik 12 TU Dortmund Germany Introduction Introduced in 1962 by Carl Adam Petri in his PhD thesis. Focus on modeling causal dependencies; no global synchronization assumed

More information

Considering Security Aspects in Safety Environment. Dipl.-Ing. Evzudin Ugljesa

Considering Security Aspects in Safety Environment. Dipl.-Ing. Evzudin Ugljesa Considering Security spects in Safety Environment Dipl.-ng. Evzudin Ugljesa Overview ntroduction Definitions of safety relevant parameters Description of the oo4-architecture Calculation of the FD-Value

More information

biological networks Claudine Chaouiya SBML Extention L3F meeting August

biological networks Claudine Chaouiya  SBML Extention L3F meeting August Campus de Luminy - Marseille - France Petri nets and qualitative modelling of biological networks Claudine Chaouiya chaouiya@igc.gulbenkian.pt chaouiya@tagc.univ-mrs.fr SML Extention L3F meeting 1-13 ugust

More information

Markov Model. Model representing the different resident states of a system, and the transitions between the different states

Markov Model. Model representing the different resident states of a system, and the transitions between the different states Markov Model Model representing the different resident states of a system, and the transitions between the different states (applicable to repairable, as well as non-repairable systems) System behavior

More information

An Holistic State Equation for Timed Petri Nets

An Holistic State Equation for Timed Petri Nets An Holistic State Equation for Timed Petri Nets Matthias Werner, Louchka Popova-Zeugmann, Mario Haustein, and E. Pelz 3 Professur Betriebssysteme, Technische Universität Chemnitz Institut für Informatik,

More information

Assessment of the Reactor Trip System Dependability

Assessment of the Reactor Trip System Dependability Assessment of the Reactor Trip System Dependability Two Markov Chains - based Cases Vyacheslav Kharchenko Department of Computer Systems and Networks National aerospace university KhAI 1 Kharkiv, Ukraine

More information

Non-observable failure progression

Non-observable failure progression Non-observable failure progression 1 Age based maintenance policies We consider a situation where we are not able to observe failure progression, or where it is impractical to observe failure progression:

More information

Markov Models for Reliability Modeling

Markov Models for Reliability Modeling Markov Models for Reliability Modeling Prof. Naga Kandasamy ECE Department, Drexel University, Philadelphia, PA 904 Many complex systems cannot be easily modeled in a combinatorial fashion. The corresponding

More information

PETRI NET MODELING OF FAULT ANALYSIS FOR PROBABILISTIC RISK ASSESSMENT. Andrew Lee

PETRI NET MODELING OF FAULT ANALYSIS FOR PROBABILISTIC RISK ASSESSMENT. Andrew Lee PETRI NET MODELING OF FAULT ANALYSIS FOR PROBABILISTIC RISK ASSESSMENT By Andrew Lee A Thesis Submitted in Partial Fulfillment of the Requirements for the Master of Applied Science in The Faculty of Energy

More information

Development of Multi-Unit Dependency Evaluation Model Using Markov Process and Monte Carlo Method

Development of Multi-Unit Dependency Evaluation Model Using Markov Process and Monte Carlo Method Development of Multi-Unit Dependency Evaluation Model Using Markov Process and Monte Carlo Method Sunghyon Jang, and Akira Yamaguchi Department of Nuclear Engineering and Management, The University of

More information

Quantitative evaluation of Dependability

Quantitative evaluation of Dependability Quantitative evaluation of Dependability 1 Quantitative evaluation of Dependability Faults are the cause of errors and failures. Does the arrival time of faults fit a probability distribution? If so, what

More information

Monte Carlo Simulation for Reliability Analysis of Emergency and Standby Power Systems

Monte Carlo Simulation for Reliability Analysis of Emergency and Standby Power Systems Monte Carlo Simulation for Reliability Analysis of Emergency and Standby Power Systems Chanan Singh, Fellow, IEEE Joydeep Mitra, Student Member, IEEE Department of Electrical Engineering Texas A & M University

More information

Quantitative evaluation of Dependability

Quantitative evaluation of Dependability Quantitative evaluation of Dependability 1 Quantitative evaluation of Dependability Faults are the cause of errors and failures. Does the arrival time of faults fit a probability distribution? If so, what

More information

ADVANCED ROBOTICS. PLAN REPRESENTATION Generalized Stochastic Petri nets and Markov Decision Processes

ADVANCED ROBOTICS. PLAN REPRESENTATION Generalized Stochastic Petri nets and Markov Decision Processes ADVANCED ROBOTICS PLAN REPRESENTATION Generalized Stochastic Petri nets and Markov Decision Processes Pedro U. Lima Instituto Superior Técnico/Instituto de Sistemas e Robótica September 2009 Reviewed April

More information

Stochastic Petri Net

Stochastic Petri Net Stochastic Petri Net Serge Haddad LSV ENS Cachan & CNRS & INRIA haddad@lsv.ens-cachan.fr Petri Nets 2013, June 24th 2013 1 Stochastic Petri Net 2 Markov Chain 3 Markovian Stochastic Petri Net 4 Generalized

More information

Field data reliability analysis of highly reliable item

Field data reliability analysis of highly reliable item Field data reliability analysis of highly reliable item David Vališ & Zdeněk Vintr Faculty of Military Technologies University of Defence 612 00 Brno Czech Republic david.valis@unob.cz Miroslav Koucký

More information

Partial stroke tests as a procedure for the extension of the proof test interval

Partial stroke tests as a procedure for the extension of the proof test interval 7th WEA International Conference on APPLIE COMPUTER CIENCE, Venice, Italy, November 2-23, 27 36 Partial stroke tests as a procedure for the extension of the proof test interval J. BÖRCÖK, 2,. MACHMUR 2

More information

12 - The Tie Set Method

12 - The Tie Set Method 12 - The Tie Set Method Definitions: A tie set V is a set of components whose success results in system success, i.e. the presence of all components in any tie set connects the input to the output in the

More information

A REACHABLE THROUGHPUT UPPER BOUND FOR LIVE AND SAFE FREE CHOICE NETS VIA T-INVARIANTS

A REACHABLE THROUGHPUT UPPER BOUND FOR LIVE AND SAFE FREE CHOICE NETS VIA T-INVARIANTS A REACHABLE THROUGHPUT UPPER BOUND FOR LIVE AND SAFE FREE CHOICE NETS VIA T-INVARIANTS Francesco Basile, Ciro Carbone, Pasquale Chiacchio Dipartimento di Ingegneria Elettrica e dell Informazione, Università

More information

Quantification of the safety level of a safety-critical control system K. Rástočný 1, J. Ilavský 1

Quantification of the safety level of a safety-critical control system K. Rástočný 1, J. Ilavský 1 Ročník 2010 Číslo II Quantification of the safety level of a safety-critical control system K. Rástočný 1, J. Ilavský 1 1 University of Žilina, aculty of Electrical Engineering, Department of Control and

More information

Time Petri Nets. Miriam Zia School of Computer Science McGill University

Time Petri Nets. Miriam Zia School of Computer Science McGill University Time Petri Nets Miriam Zia School of Computer Science McGill University Timing Specifications Why is time introduced in Petri nets? To model interaction between activities taking into account their start

More information

Lecture 4 The stochastic ingredient

Lecture 4 The stochastic ingredient Lecture 4 The stochastic ingredient Luca Bortolussi 1 Alberto Policriti 2 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste Via Valerio 12/a, 34100 Trieste. luca@dmi.units.it

More information

Energy Modeling of Processors in Wireless Sensor Networks based on Petri Nets

Energy Modeling of Processors in Wireless Sensor Networks based on Petri Nets Energy Modeling of Processors in Wireless Sensor Networks based on Petri Nets Ali Shareef, Yifeng Zhu Department of Electrical and Computer Engineering University of Maine, Orono, USA Email: {ashareef,

More information

Chapter 6: Functions of Random Variables

Chapter 6: Functions of Random Variables Chapter 6: Functions of Random Variables Professor Ron Fricker Naval Postgraduate School Monterey, California 3/15/15 Reading Assignment: Sections 6.1 6.4 & 6.8 1 Goals for this Chapter Introduce methods

More information

Efficient diagnosability assessment via ILP optimization: a railway benchmark

Efficient diagnosability assessment via ILP optimization: a railway benchmark Efficient diagnosability assessment via LP optimization: a railway benchmark 23rd EEE nternational Conference on Emerging Technologies and Factory Automation (ETFA 2018) F. Basile1, A. Boussif2, Gianmaria

More information

Coordination. Failures and Consensus. Consensus. Consensus. Overview. Properties for Correct Consensus. Variant I: Consensus (C) P 1. v 1.

Coordination. Failures and Consensus. Consensus. Consensus. Overview. Properties for Correct Consensus. Variant I: Consensus (C) P 1. v 1. Coordination Failures and Consensus If the solution to availability and scalability is to decentralize and replicate functions and data, how do we coordinate the nodes? data consistency update propagation

More information

7. Queueing Systems. 8. Petri nets vs. State Automata

7. Queueing Systems. 8. Petri nets vs. State Automata Petri Nets 1. Finite State Automata 2. Petri net notation and definition (no dynamics) 3. Introducing State: Petri net marking 4. Petri net dynamics 5. Capacity Constrained Petri nets 6. Petri net models

More information

Fault Tolerant Computing CS 530 Fault Modeling

Fault Tolerant Computing CS 530 Fault Modeling CS 53 Fault Modeling Yashwant K. Malaiya Colorado State University Fault Modeling Why fault modeling? Stuck-at / fault model The single fault assumption Bridging and delay faults MOS transistors and CMOS

More information

Simple Neural Nets for Pattern Classification: McCulloch-Pitts Threshold Logic CS 5870

Simple Neural Nets for Pattern Classification: McCulloch-Pitts Threshold Logic CS 5870 Simple Neural Nets for Pattern Classification: McCulloch-Pitts Threshold Logic CS 5870 Jugal Kalita University of Colorado Colorado Springs Fall 2014 Logic Gates and Boolean Algebra Logic gates are used

More information

Time Dependent Analysis with Common Cause Failure Events in RiskSpectrum

Time Dependent Analysis with Common Cause Failure Events in RiskSpectrum Time Dependent Analysis with Common Cause Failure Events in RiskSpectrum Pavel Krcal a,b and Ola Bäckström a a Lloyd's Register Consulting, Stockholm, Sweden b Uppsala University, Uppsala, Sweden Abstract:

More information

Integrated Dynamic Decision Analysis: a method for PSA in dynamic process system

Integrated Dynamic Decision Analysis: a method for PSA in dynamic process system Integrated Dynamic Decision Analysis: a method for PSA in dynamic process system M. Demichela & N. Piccinini Centro Studi su Sicurezza Affidabilità e Rischi, Dipartimento di Scienza dei Materiali e Ingegneria

More information