biological networks Claudine Chaouiya SBML Extention L3F meeting August

Size: px
Start display at page:

Download "biological networks Claudine Chaouiya SBML Extention L3F meeting August"

Transcription

1 Campus de Luminy - Marseille - France Petri nets and qualitative modelling of biological networks Claudine Chaouiya chaouiya@igc.gulbenkian.pt chaouiya@tagc.univ-mrs.fr SML Extention L3F meeting 1-13 ugust 008 1

2 a Firing of t 1 Firing of t b pre - condition matrix t 1 t t 3 p Pre = C = Post " Pre = post - condition matrix t 1 t t 3 p p Post = p p p p p incidence matrix t 1 t t 3 p p "1 0 1 p 3 4 "1 " p " initial marking " 1% $ ' M 0 = $ 1 ' $ 0' $ ' # 0& " 1% $ ' " 1% 0 M = $ ' $ ' = M $ 3' 0 + C. $ 1 ' $ ' # $ 0& ' # 1& state equation M'= M + C.", c R(M 0 ), the marking graph M 0 M 1 M SML Extention L3F meeting 1-13 ugust 008

3 Modelling of biochemical networks Qualitative PN modelling of metabolic networks transformation chemical reaction places: reactants, products, enzymes... transitions: reactions, catalysis... weighted arcs: stoichiometry Glucose hexokinase Glucose-6-phosphate TP DP hexokinase Glucose Glucose-6-phosphate TP DP SML Extention L3F meeting 1-13 ugust 008 3

4 Synthesis Decomposition Catalysed reaction Inhibited reaction Reversible reaction with stoichiometry SML Extention L3F meeting 1-13 ugust 008 4

5 Synthesis Decomposition Catalysed reaction Inhibited reaction New arcs: - Test/read - Inhibitory Reversible reaction with stoichiometry SML Extention L3F meeting 1-13 ugust 008 5

6 Modelling of biochemical networks Tools Snoopy (PN editor) + Charlie (PN analysis) + PIn (invariants, MCT sets, ) randenburg University of Technology Cottbus Genomic Object Net: Edition and simulation of biopathways by means of HFPNs. GON is now commercialised as Cell Illustrator. Matsuno & Miyano Hybrid Functional Petri Nets SML Extention L3F meeting 1-13 ugust 008 6

7 Tools Modelling of biochemical networks Name IN Prod Maria Features nalysis of standard (timed) PNs and CPNs, no graphical editor, includes a model-checker for CTL. Efficient reachability analysis tool for standard PNs. Extensive reachability analysis and model checking of CPNs. CPN Tools TimeNet Möbius Edition, simulation and analysis of (timed) CPNs, graphical editor, hierarchical modelling. Modelling, validation, and performance evaluation of distributed systems using Generalized SPNs and their colored extension. Edition, analysis, simulation of stochastic models SML Extention L3F meeting 1-13 ugust 008 7

8 Petri net extensions Time: deterministic delay, stochastic, intervals Marking: coloured, hybrid HFPNs: hybrid functional PNs Hybrid: mixing conituous/discrete places and transitions Functional: rules for consumption and production might be marking dependent SML Extention L3F meeting 1-13 ugust 008 8

9 Existing PN formats Elements for places - transitions - arcs PNML Petri Nets Markup Language extensions are described in specific documents PNN bstract Petri Net Notation many others Cell System Markup Language (CSML) used by Cell Illustrator (CSML SML) What extensions should be taken into account? SML Extention L3F meeting 1-13 ugust 008 9

10 Modelling of biological networks, Stochastic PNs SPN modelling of stochastic molecular interactions (Gillespie's algorithm) R. Srivastava,, MS Peterson and WE entley (001) iotechnol ioeng. Oct 5;75(1): Uncertainty attached to the data - Environmental noise Intrinsic noise (i.e. low molecular concentrations) Stochastic time-delay associated to each transition (exponential distribution, may depend on the marking) t1, θ1 Example : R R λ t monomérisation R R t + dimérisation λ + reaction involving a unique reactant: λ = k M(R ) constant monomerisation rate constant dimerisation rate, c + =k + /V.N reaction involving two reactants: λ + = c + M(R)(M(R)-1) SML Extention L3F meeting 1-13 ugust

11 Modelling of biological networks, Hybrid PNs HPN modelling of gene regulated metabolic networks M.Chen and R.Hofestädt (003), In Silico iology 3, 009 molecular concentration = continuous rather than discrete discrete places (with tokens) discrete transitions (with delays) continuous places (with marks IR + ) continuous transitions (with speeds SML Extention L3F meeting 1-13 ugust

12 Modelling of biological networks, Hybrid PNs HPN modelling of gene regulated metabolic networks Lambda phage genetic switch feedback mechanism. Doi, H. Matsuno, S. Miyano (000) Currents in Computational Molecular iology, Now Cell Illustrator SML Extention L3F meeting 1-13 ugust 008 1

13 PN modelling of logical regulatory networks Multi-valued Regulatory Petri Nets Genetic regulatory networks described in terms of logical models (multilevel discretisation) two complementary places for each gene two transitions for each logical parameter (effect of interactions on a given gene) Testing the exact amount of tokens in a place test (read) arc M(p) cste inhibitory arc M(p) cste SML Extention L3F meeting 1-13 ugust

14 PN modelling of logical regulatory networks Multi-valued Regulatory Petri Nets Genetic regulatory networks described in terms of logical models (multilevel discretisation) two complementary places for each gene two transitions for each logical parameter (effect of interactions on a given gene) Example max =1 max =3 K ()= K ( )=1 t t, M()+M(Ã)=1 M()+M()=3 + t + t, SML Extention L3F meeting 1-13 ugust

15 PN modelling of logical regulatory networks Multi-valued Regulatory Petri Nets Genetic regulatory networks described in terms of logical models (multilevel discretisation) two complementary places for each gene two transitions for each logical parameter (effect of interactions on a given gene) Example max =1 max =3 K ()= K ( )=1 t 3 t, M()+M(Ã)=1 M()+M()=3 + t + t, SML Extention L3F meeting 1-13 ugust

16 PN modelling of logical regulatory networks Multi-valued Regulatory Petri Nets Genetic regulatory networks described in terms of logical models (multilevel discretisation) two complementary places for each gene two transitions for each logical parameter (effect of interactions on a given gene) Example max =1 max =3 K ()= K ( )=1 t 3 t, M()+M(Ã)=1 M()+M()=3 + t 3 + t, SML Extention L3F meeting 1-13 ugust

17 max =1 max =3 M()+M(Ã)=1 M()+M()=3 K ()= K ( )=1 t 3 t, + t 3 + t, K ()=3 K ( )=0 "extremal" parameter values t SML Extention L3F meeting 1-13 ugust t,

Applications of Petri Nets

Applications of Petri Nets Applications of Petri Nets Presenter: Chung-Wei Lin 2010.10.28 Outline Revisiting Petri Nets Application 1: Software Syntheses Theory and Algorithm Application 2: Biological Networks Comprehensive Introduction

More information

Petri net models. tokens placed on places define the state of the Petri net

Petri net models. tokens placed on places define the state of the Petri net Petri nets Petri net models Named after Carl Adam Petri who, in the early sixties, proposed a graphical and mathematical formalism suitable for the modeling and analysis of concurrent, asynchronous distributed

More information

Biological Pathways Representation by Petri Nets and extension

Biological Pathways Representation by Petri Nets and extension Biological Pathways Representation by and extensions December 6, 2006 Biological Pathways Representation by and extension 1 The cell Pathways 2 Definitions 3 4 Biological Pathways Representation by and

More information

Coloured hybrid Petri nets for systems biology

Coloured hybrid Petri nets for systems biology Coloured hybrid Petri nets for systems biology Mostafa Herajy 1, Fei Liu 2 and Christian Rohr 3 1 Department of Mathematics and Computer Science, Faculty of Science, Port Said University, 42521 - Port

More information

Boundary Formation by Notch Signaling in Drosophila Multicellular Systems: Experimental Observations and Gene Network Modeling by Genomic Object Net

Boundary Formation by Notch Signaling in Drosophila Multicellular Systems: Experimental Observations and Gene Network Modeling by Genomic Object Net Boundary Formation by Notch Signaling in Drosophila Multicellular Systems: Experimental Observations and Gene Network Modeling by Genomic Object Net H. Matsuno, R. Murakani, R. Yamane, N. Yamasaki, S.

More information

Qualitative Petri Net Modelling of Genetic Networks

Qualitative Petri Net Modelling of Genetic Networks Qualitative Petri Net Modelling of Genetic Networks Claudine Chaouiya 1, Elisabeth Remy 2, and Denis Thieffry 1 1 Institut de biologie du Développement de Marseille Luminy UMR 6216, Case 907 - Luminy,

More information

A compact modeling approach for deterministic biological systems

A compact modeling approach for deterministic biological systems A compact modeling approach for deterministic biological systems Luis M. Torres 1 Annegret K. Wagler 2 1 Ecuadorian Research Center on Mathematical Modeling ModeMat Escuela Politécnica Nacional, Quito

More information

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes 1/ 223 SPA for quantitative analysis: Lecture 6 Modelling Biological Processes Jane Hillston LFCS, School of Informatics The University of Edinburgh Scotland 7th March 2013 Outline 2/ 223 1 Introduction

More information

From cell biology to Petri nets. Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE

From cell biology to Petri nets. Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE From cell biology to Petri nets Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE Biology = Concentrations Breitling / 2 The simplest chemical reaction A B irreversible,

More information

Logic-Based Modeling in Systems Biology

Logic-Based Modeling in Systems Biology Logic-Based Modeling in Systems Biology Alexander Bockmayr LPNMR 09, Potsdam, 16 September 2009 DFG Research Center Matheon Mathematics for key technologies Outline A.Bockmayr, FU Berlin/Matheon 2 I. Systems

More information

On Qualitative Analysis of Fault Trees Using Structurally Persistent Nets

On Qualitative Analysis of Fault Trees Using Structurally Persistent Nets On Qualitative Analysis of Fault Trees Using Structurally Persistent Nets Ricardo J. Rodríguez rj.rodriguez@unileon.es Research Institute of Applied Sciences in Cybersecurity University of León, Spain

More information

DES. 4. Petri Nets. Introduction. Different Classes of Petri Net. Petri net properties. Analysis of Petri net models

DES. 4. Petri Nets. Introduction. Different Classes of Petri Net. Petri net properties. Analysis of Petri net models 4. Petri Nets Introduction Different Classes of Petri Net Petri net properties Analysis of Petri net models 1 Petri Nets C.A Petri, TU Darmstadt, 1962 A mathematical and graphical modeling method. Describe

More information

Analysis and Optimization of Discrete Event Systems using Petri Nets

Analysis and Optimization of Discrete Event Systems using Petri Nets Volume 113 No. 11 2017, 1 10 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Analysis and Optimization of Discrete Event Systems using Petri Nets

More information

Stochastic Petri Nets. Jonatan Lindén. Modelling SPN GSPN. Performance measures. Almost none of the theory. December 8, 2010

Stochastic Petri Nets. Jonatan Lindén. Modelling SPN GSPN. Performance measures. Almost none of the theory. December 8, 2010 Stochastic Almost none of the theory December 8, 2010 Outline 1 2 Introduction A Petri net (PN) is something like a generalized automata. A Stochastic Petri Net () a stochastic extension to Petri nets,

More information

Stochastic Petri Net. Ben, Yue (Cindy) 2013/05/08

Stochastic Petri Net. Ben, Yue (Cindy) 2013/05/08 Stochastic Petri Net 2013/05/08 2 To study a formal model (personal view) Definition (and maybe history) Brief family tree: the branches and extensions Advantages and disadvantages for each Applications

More information

MPath2PN - Translating metabolic pathways into Petri nets

MPath2PN - Translating metabolic pathways into Petri nets MPath2PN - Translating metabolic pathways into Petri nets Paolo Baldan 1, Nicoletta Cocco 2, Francesco De Nes 2, Mercè Llabrés Segura 3, Andrea Marin 2, Marta Simeoni 2 1 Università di Padova, Italy baldan@math.unipd.it

More information

Cells in silico: a Holistic Approach

Cells in silico: a Holistic Approach Cells in silico: a Holistic Approach Pierpaolo Degano Dipartimento di Informatica, Università di Pisa, Italia joint work with a lot of nice BISCA people :-) Bertinoro, 7th June 2007 SFM 2008 Bertinoro

More information

Principles of Synthetic Biology: Midterm Exam

Principles of Synthetic Biology: Midterm Exam Principles of Synthetic Biology: Midterm Exam October 28, 2010 1 Conceptual Simple Circuits 1.1 Consider the plots in figure 1. Identify all critical points with an x. Put a circle around the x for each

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

ADVANCED ROBOTICS. PLAN REPRESENTATION Generalized Stochastic Petri nets and Markov Decision Processes

ADVANCED ROBOTICS. PLAN REPRESENTATION Generalized Stochastic Petri nets and Markov Decision Processes ADVANCED ROBOTICS PLAN REPRESENTATION Generalized Stochastic Petri nets and Markov Decision Processes Pedro U. Lima Instituto Superior Técnico/Instituto de Sistemas e Robótica September 2009 Reviewed April

More information

From Petri Nets to Differential Equations An Integrative Approach for Biochemical Network Analysis

From Petri Nets to Differential Equations An Integrative Approach for Biochemical Network Analysis From Petri Nets to Differential Equations An Integrative Approach for Biochemical Network Analysis David Gilbert drg@brc.dcs.gla.ac.uk Bioinformatics Research Centre, University of Glasgow and Monika Heiner

More information

MILANO, JUNE Monika Heiner Brandenburg University of Technology Cottbus

MILANO, JUNE Monika Heiner Brandenburg University of Technology Cottbus MILANO, JUNE 2013 WHAT CAN PETRI NETS DO 4 MULTISCALE SYSTEMS BIOLOGY? Monika Heiner Brandenburg University of Technology Cottbus http://www-dssz.informatik.tu-cottbus.de/bme/petrinets2013 PETRI NETS -

More information

MA 777: Topics in Mathematical Biology

MA 777: Topics in Mathematical Biology MA 777: Topics in Mathematical Biology David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma777/ Spring 2018 David Murrugarra (University of Kentucky) Lecture

More information

URL: <

URL:   < Citation: ngelova, Maia and en Halim, sma () Dynamic model of gene regulation for the lac operon. Journal of Physics: Conference Series, 86 (). ISSN 7-696 Published by: IOP Publishing URL: http://dx.doi.org/.88/7-696/86//7

More information

Time Petri Nets. Miriam Zia School of Computer Science McGill University

Time Petri Nets. Miriam Zia School of Computer Science McGill University Time Petri Nets Miriam Zia School of Computer Science McGill University Timing Specifications Why is time introduced in Petri nets? To model interaction between activities taking into account their start

More information

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models Markus W. Covert Stanford University 0 CRC Press Taylor & Francis Group Boca Raton London New York Contents /... Preface, xi

More information

Hybrid Model of gene regulatory networks, the case of the lac-operon

Hybrid Model of gene regulatory networks, the case of the lac-operon Hybrid Model of gene regulatory networks, the case of the lac-operon Laurent Tournier and Etienne Farcot LMC-IMAG, 51 rue des Mathématiques, 38041 Grenoble Cedex 9, France Laurent.Tournier@imag.fr, Etienne.Farcot@imag.fr

More information

Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno. Biocybernetics

Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno. Biocybernetics Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno Norbert Wiener 26.11.1894-18.03.1964 Biocybernetics Lecture outline Cybernetics Cybernetic systems Feedback

More information

Modeling Continuous Systems Using Modified Petri Nets Model

Modeling Continuous Systems Using Modified Petri Nets Model Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 9 Modeling Continuous Systems Using Modified Petri Nets Model Abbas Dideban, Alireza Ahangarani Farahani, and Mohammad Razavi

More information

86 Part 4 SUMMARY INTRODUCTION

86 Part 4 SUMMARY INTRODUCTION 86 Part 4 Chapter # AN INTEGRATION OF THE DESCRIPTIONS OF GENE NETWORKS AND THEIR MODELS PRESENTED IN SIGMOID (CELLERATOR) AND GENENET Podkolodny N.L. *1, 2, Podkolodnaya N.N. 1, Miginsky D.S. 1, Poplavsky

More information

Simulation of Gene Regulatory Networks

Simulation of Gene Regulatory Networks Simulation of Gene Regulatory Networks Overview I have been assisting Professor Jacques Cohen at Brandeis University to explore and compare the the many available representations and interpretations of

More information

Cell Fate Simulation Model of Gustatory Neurons with MicroRNAs Double-Negative Feedback Loop by Hybrid Functional Petri Net with Extension

Cell Fate Simulation Model of Gustatory Neurons with MicroRNAs Double-Negative Feedback Loop by Hybrid Functional Petri Net with Extension 100 Genome Informatics 17(1): 100 111 (2006) Cell Fate Simulation Model of Gustatory Neurons with MicroRNAs Double-Negative Feedback Loop by Hybrid Functional Petri Net with Extension Ayumu Saito s-ayumu@ims.u-tokyo.ac.jp

More information

Synchronous state transition graph

Synchronous state transition graph Heike Siebert, FU Berlin, Molecular Networks WS10/11 2-1 Synchronous state transition graph (0, 2) (1, 2) vertex set X (state space) edges (x,f(x)) every state has only one successor attractors are fixed

More information

2 4 Chemical Reactions and Enzymes

2 4 Chemical Reactions and Enzymes 2 4 Chemical Reactions and Enzymes THINK ABOUT IT Living things are made up of chemical compounds, but chemistry isn t just what life is made of chemistry is also what life does. Everything that happens

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

System Modelling of Mammalian Cell Cycle Regulation Using Multi-Level Hybrid Petri Nets

System Modelling of Mammalian Cell Cycle Regulation Using Multi-Level Hybrid Petri Nets 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 Nov to 4 Dec 2015 www.mssanz.org.au/modsim2015 System Modelling of Mammalian Cell Cycle Regulation Using Multi-Level A.

More information

Modelling in Systems Biology

Modelling in Systems Biology Modelling in Systems Biology Maria Grazia Vigliotti thanks to my students Anton Stefanek, Ahmed Guecioueur Imperial College Formal representation of chemical reactions precise qualitative and quantitative

More information

Prokaryotic Gene Expression (Learning Objectives)

Prokaryotic Gene Expression (Learning Objectives) Prokaryotic Gene Expression (Learning Objectives) 1. Learn how bacteria respond to changes of metabolites in their environment: short-term and longer-term. 2. Compare and contrast transcriptional control

More information

IV121: Computer science applications in biology

IV121: Computer science applications in biology IV121: Computer science applications in biology Quantitative Models in Biology David Šafránek March 5, 2012 Obsah Continuous mass action Stochastic mass action Beyond elementary reaction kinetics What

More information

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180 Course plan 201-201 Academic Year Qualification MSc on Bioinformatics for Health Sciences 1. Description of the subject Subject name: Code: 30180 Total credits: 5 Workload: 125 hours Year: 1st Term: 3

More information

Level 3 Proposals/Qualitative Models

Level 3 Proposals/Qualitative Models Proposal title Qualitative Models (qual) Proposal authors a Duncan Berenguier TAGC INSERM U928 and IML CNRS UMR 6206, Luminy, 163 av. de Luminy 13288 Marseille, France Claudine Chaouiya IGC Rua da Quinta

More information

MODELING AND SIMULATION BY HYBRID PETRI NETS. systems, communication systems, etc). Continuous Petri nets (in which the markings are real

MODELING AND SIMULATION BY HYBRID PETRI NETS. systems, communication systems, etc). Continuous Petri nets (in which the markings are real Proceedings of the 2012 Winter Simulation Conference C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, eds. MODELING AND SIMULATION BY HYBRID PETRI NETS Hassane Alla Latéfa Ghomri

More information

Proxel-Based Simulation of Stochastic Petri Nets Containing Immediate Transitions

Proxel-Based Simulation of Stochastic Petri Nets Containing Immediate Transitions Electronic Notes in Theoretical Computer Science Vol. 85 No. 4 (2003) URL: http://www.elsevier.nl/locate/entsc/volume85.html Proxel-Based Simulation of Stochastic Petri Nets Containing Immediate Transitions

More information

GReg : a domain specific language for the modeling of genetic regulatory mechanisms

GReg : a domain specific language for the modeling of genetic regulatory mechanisms Proceedings of the 2nd International Workshop on Biological Processes & Petri Nets (BioPPN2011) online: http://ceur-ws.org/vol-724 pp.21-35 GReg : a domain specific language for the modeling of genetic

More information

Reliability of Technical Systems. Advanced Methods for Systems Modelling and Simulation I : Petri Nets

Reliability of Technical Systems. Advanced Methods for Systems Modelling and Simulation I : Petri Nets Reliability of Technical Systems Advanced Methods for Systems Modelling and Simulation I : Petri Nets Petri Nets - Overview Introduction Basic elements and rules Notation Extensions/Tools Applications

More information

Biopathways Representation and Simulation on Hybrid Functional Petri Net

Biopathways Representation and Simulation on Hybrid Functional Petri Net Software Tools for Technology Transfer manuscript No. (will be inserted by the editor) Biopathways Representation and Simulation on Hybrid Functional Petri Net Hiroshi Matsuno 1, Hitoshi Aoshima 1, Atsushi

More information

Reconstructing X -deterministic extended Petri nets from experimental time-series data X

Reconstructing X -deterministic extended Petri nets from experimental time-series data X econstructing X -deterministic extended Petri nets from experimental time-series data X Marie C.F. Favre, Annegret K. Wagler Laboratoire d Informatique, de Modélisation et d Optimisation des Systèmes (LIMOS,

More information

Chapter 8: An Introduction to Metabolism. 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways

Chapter 8: An Introduction to Metabolism. 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways Chapter 8: An Introduction to Metabolism 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways 1. Energy & Chemical Reactions 2 Basic Forms of Energy Kinetic Energy (KE) energy in motion

More information

Modelling the Randomness in Biological Systems

Modelling the Randomness in Biological Systems Modelling the Randomness in Biological Systems Ole Schulz-Trieglaff E H U N I V E R S I T Y T O H F R G E D I N B U Master of Science School of Informatics University of Edinburgh 2005 Abstract This dissertation

More information

2 4 Chemical Reactions and Enzymes Chemical Reactions

2 4 Chemical Reactions and Enzymes Chemical Reactions Chemical Reactions A chemical reaction occurs when chemical bonds are broken and reformed. Rust forms very slowly, while rocket fuel combustion is explosive! The significance of this comparison is that

More information

Stochastic Simulation.

Stochastic Simulation. Stochastic Simulation. (and Gillespie s algorithm) Alberto Policriti Dipartimento di Matematica e Informatica Istituto di Genomica Applicata A. Policriti Stochastic Simulation 1/20 Quote of the day D.T.

More information

CSL model checking of biochemical networks with Interval Decision Diagrams

CSL model checking of biochemical networks with Interval Decision Diagrams CSL model checking of biochemical networks with Interval Decision Diagrams Brandenburg University of Technology Cottbus Computer Science Department http://www-dssz.informatik.tu-cottbus.de/software/mc.html

More information

From Petri Nets to Differential Equations - an Integrative Approach for Biochemical Network Analysis

From Petri Nets to Differential Equations - an Integrative Approach for Biochemical Network Analysis From Petri Nets to Differential Equations - an Integrative Approach for Biochemical Network Analysis David Gilbert 1 and Monika Heiner 2 1 Bioinformatics Research Centre, University of Glasgow Glasgow

More information

2. Mathematical descriptions. (i) the master equation (ii) Langevin theory. 3. Single cell measurements

2. Mathematical descriptions. (i) the master equation (ii) Langevin theory. 3. Single cell measurements 1. Why stochastic?. Mathematical descriptions (i) the master equation (ii) Langevin theory 3. Single cell measurements 4. Consequences Any chemical reaction is stochastic. k P d φ dp dt = k d P deterministic

More information

Petri Net Representations in Metabolic Pathways

Petri Net Representations in Metabolic Pathways From: ISMB-93 Proceedings. Copyright 1993, AAAI (www.aaai.org). All rights reserved. Petri Net Representations in Metabolic Pathways Venkatramana N. Reddy*, Michael L. Mavrovouniotis*, and Michael N. Liebmant

More information

Lecture 7: Simple genetic circuits I

Lecture 7: Simple genetic circuits I Lecture 7: Simple genetic circuits I Paul C Bressloff (Fall 2018) 7.1 Transcription and translation In Fig. 20 we show the two main stages in the expression of a single gene according to the central dogma.

More information

Cellular Systems Biology or Biological Network Analysis

Cellular Systems Biology or Biological Network Analysis Cellular Systems Biology or Biological Network Analysis Joel S. Bader Department of Biomedical Engineering Johns Hopkins University (c) 2012 December 4, 2012 1 Preface Cells are systems. Standard engineering

More information

Qualitative dynamics semantics for SBGN process description

Qualitative dynamics semantics for SBGN process description Qualitative dynamics semantics for SBGN process description Adrien Rougny, Christine Froidevaux, Laurence Calzone, Loïc Paulevé To cite this version: Adrien Rougny, Christine Froidevaux, Laurence Calzone,

More information

MODEL CHECKING - PART I - OF CONCURRENT SYSTEMS. Petrinetz model. system properties. Problem system. model properties

MODEL CHECKING - PART I - OF CONCURRENT SYSTEMS. Petrinetz model. system properties. Problem system. model properties BTU COTTBUS, C, PHD WORKSHOP W JULY 2017 MODEL CHECKING OF CONCURRENT SYSTEMS - PART I - Monika Heiner BTU Cottbus, Computer Science Institute MODEL-BASED SYSTEM ANALYSIS Problem system system properties

More information

SPN 2003 Preliminary Version. Translating Hybrid Petri Nets into Hybrid. Automata 1. Dipartimento di Informatica. Universita di Torino

SPN 2003 Preliminary Version. Translating Hybrid Petri Nets into Hybrid. Automata 1. Dipartimento di Informatica. Universita di Torino SPN 2003 Preliminary Version Translating Hybrid Petri Nets into Hybrid Automata 1 Marco Gribaudo 2 and Andras Horvath 3 Dipartimento di Informatica Universita di Torino Corso Svizzera 185, 10149 Torino,

More information

7. Queueing Systems. 8. Petri nets vs. State Automata

7. Queueing Systems. 8. Petri nets vs. State Automata Petri Nets 1. Finite State Automata 2. Petri net notation and definition (no dynamics) 3. Introducing State: Petri net marking 4. Petri net dynamics 5. Capacity Constrained Petri nets 6. Petri net models

More information

An introduction to biochemical reaction networks

An introduction to biochemical reaction networks Chapter 1 An introduction to biochemical reaction networks (This part is discussed in the slides). Biochemical reaction network distinguish themselves from general chemical reaction networks in that the

More information

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 8 Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge Roadmap 8 In this chapter you will learn how Enzymes use

More information

Discrete-Time Leap Method for Stochastic Simulation

Discrete-Time Leap Method for Stochastic Simulation Discrete- Leap Method for Stochastic Simulation Christian Rohr Brandenburg University of Technology Cottbus-Senftenberg, Chair of Data Structures and Software Dependability, Postbox 1 13 44, D-313 Cottbus,

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Modeling (bio-)chemical reaction networks

Modeling (bio-)chemical reaction networks Mathematical iology: Metabolic Network nalysis Interdisciplinary lecture series for ioinformatics, Mathematics, iology and/or Life Science & Technology dr. Sander Hille shille@math.leidenuniv.nl http://pub.math.leidenuniv.nl/~hillesc

More information

Integrating prior knowledge in Automatic Network Reconstruction

Integrating prior knowledge in Automatic Network Reconstruction Integrating prior knowledge in Automatic Network Reconstruction M. Favre W. Marwan A. Wagler Laboratoire d Informatique, de Modélisation et d Optimisation des Systèmes (LIMOS) UMR CNRS 658 Université Blaise

More information

Written Exam 15 December Course name: Introduction to Systems Biology Course no

Written Exam 15 December Course name: Introduction to Systems Biology Course no Technical University of Denmark Written Exam 15 December 2008 Course name: Introduction to Systems Biology Course no. 27041 Aids allowed: Open book exam Provide your answers and calculations on separate

More information

Energy and Cellular Metabolism

Energy and Cellular Metabolism 1 Chapter 4 About This Chapter Energy and Cellular Metabolism 2 Energy in biological systems Chemical reactions Enzymes Metabolism Figure 4.1 Energy transfer in the environment Table 4.1 Properties of

More information

A New Method to Build Gene Regulation Network Based on Fuzzy Hierarchical Clustering Methods

A New Method to Build Gene Regulation Network Based on Fuzzy Hierarchical Clustering Methods International Academic Institute for Science and Technology International Academic Journal of Science and Engineering Vol. 3, No. 6, 2016, pp. 169-176. ISSN 2454-3896 International Academic Journal of

More information

A REACHABLE THROUGHPUT UPPER BOUND FOR LIVE AND SAFE FREE CHOICE NETS VIA T-INVARIANTS

A REACHABLE THROUGHPUT UPPER BOUND FOR LIVE AND SAFE FREE CHOICE NETS VIA T-INVARIANTS A REACHABLE THROUGHPUT UPPER BOUND FOR LIVE AND SAFE FREE CHOICE NETS VIA T-INVARIANTS Francesco Basile, Ciro Carbone, Pasquale Chiacchio Dipartimento di Ingegneria Elettrica e dell Informazione, Università

More information

Networks & pathways. Hedi Peterson MTAT Bioinformatics

Networks & pathways. Hedi Peterson MTAT Bioinformatics Networks & pathways Hedi Peterson (peterson@quretec.com) MTAT.03.239 Bioinformatics 03.11.2010 Networks are graphs Nodes Edges Edges Directed, undirected, weighted Nodes Genes Proteins Metabolites Enzymes

More information

A Unifying Framework for Modelling and Analysing Biochemical Pathways Using Petri Nets

A Unifying Framework for Modelling and Analysing Biochemical Pathways Using Petri Nets A Unifying Framework for Modelling and Analysing Biochemical Pathways Using Petri Nets Groningen, NL, London, UK, Cottbus, DE BME Tutorial, Part 4 Paris, June 2009 Framework Qualitative Stochastic Continuous

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Systems biology Introduction to Bioinformatics Systems biology: modeling biological p Study of whole biological systems p Wholeness : Organization of dynamic interactions Different behaviour of the individual

More information

New Computational Methods for Systems Biology

New Computational Methods for Systems Biology New Computational Methods for Systems Biology François Fages, Sylvain Soliman The French National Institute for Research in Computer Science and Control INRIA Paris-Rocquencourt Constraint Programming

More information

Analysis and Simulation of Manufacturing Systems using SimHPN toolbox

Analysis and Simulation of Manufacturing Systems using SimHPN toolbox Analysis and Simulation of Manufacturing Systems using SimHPN toolbox Jorge Júlvez, Cristian Mahulea, and Carlos-Renato Vázquez Abstract SimHP N is a software tool embedded in MAT- LAB that has been developed

More information

Analysing Signal-Net Systems

Analysing Signal-Net Systems Analysing Signal-Net Systems Peter H. Starke, Stephan Roch Humboldt-Universität zu Berlin Institut für Informatik Unter den Linden 6, D-10099 Berlin {starke,roch}@informatik.hu-berlin.de September 2002

More information

Computational Cell Biology Lecture 4

Computational Cell Biology Lecture 4 Computational Cell Biology Lecture 4 Case Study: Basic Modeling in Gene Expression Yang Cao Department of Computer Science DNA Structure and Base Pair Gene Expression Gene is just a small part of DNA.

More information

Hierarchical Petri Nets for Modeling Metabolic Phenotype in Prokaryotes

Hierarchical Petri Nets for Modeling Metabolic Phenotype in Prokaryotes 2218 Ind. Eng. Chem. Res. 2005, 44, 2218-2240 Hierarchical Petri Nets for Modeling Metabolic Phenotype in Prokaryotes N. Balasubramanian, Ming-Li Yeh, and Chuei-Tin Chang* Department of Chemical Engineering,

More information

ANALYSIS OF BIOLOGICAL NETWORKS USING HYBRID SYSTEMS THEORY. Nael H. El-Farra, Adiwinata Gani & Panagiotis D. Christofides

ANALYSIS OF BIOLOGICAL NETWORKS USING HYBRID SYSTEMS THEORY. Nael H. El-Farra, Adiwinata Gani & Panagiotis D. Christofides ANALYSIS OF BIOLOGICAL NETWORKS USING HYBRID SYSTEMS THEORY Nael H El-Farra, Adiwinata Gani & Panagiotis D Christofides Department of Chemical Engineering University of California, Los Angeles 2003 AIChE

More information

Modeling biological systems with uncertain kinetic data using fuzzy continuous Petri nets

Modeling biological systems with uncertain kinetic data using fuzzy continuous Petri nets Liuet al. BMC Systems Biology 2018, 12(Suppl 4):42 https://doi.org/10.1186/s12918-018-0568-8 RESEARCH Open Access Modeling biological systems with uncertain kinetic data using fuzzy continuous Petri nets

More information

Coloured Petri Nets Based Diagnosis on Causal Models

Coloured Petri Nets Based Diagnosis on Causal Models Coloured Petri Nets Based Diagnosis on Causal Models Soumia Mancer and Hammadi Bennoui Computer science department, LINFI Lab. University of Biskra, Algeria mancer.soumia@gmail.com, bennoui@gmail.com Abstract.

More information

1. sort of tokens (e.g. indistinguishable (black), coloured, structured,...),

1. sort of tokens (e.g. indistinguishable (black), coloured, structured,...), 7. High Level Petri-Nets Definition 7.1 A Net Type is determined if the following specification is given: 1. sort of tokens (e.g. indistinguishable (black), coloured, structured,...), 2. sort of labeling

More information

REGULATION OF GENE EXPRESSION. Bacterial Genetics Lac and Trp Operon

REGULATION OF GENE EXPRESSION. Bacterial Genetics Lac and Trp Operon REGULATION OF GENE EXPRESSION Bacterial Genetics Lac and Trp Operon Levels of Metabolic Control The amount of cellular products can be controlled by regulating: Enzyme activity: alters protein function

More information

Dependent Shrink of Transitions for Calculating Firing Frequencies in Signaling Pathway Petri Net Model

Dependent Shrink of Transitions for Calculating Firing Frequencies in Signaling Pathway Petri Net Model algorithms Article Dependent Shrink of Transitions for Calculating Firing Frequencies in Signaling Pathway Petri Net Model Atsushi Mizuta 1, Qi-Wei Ge 2 and Hiroshi Matsuno 3, * 1 Graduate School of Science

More information

Name Period The Control of Gene Expression in Prokaryotes Notes

Name Period The Control of Gene Expression in Prokaryotes Notes Bacterial DNA contains genes that encode for many different proteins (enzymes) so that many processes have the ability to occur -not all processes are carried out at any one time -what allows expression

More information

Petri nets analysis using incidence matrix method inside ATOM 3

Petri nets analysis using incidence matrix method inside ATOM 3 Petri nets analysis using incidence matrix method inside ATOM 3 Alejandro Bellogín Kouki Universidad Autónoma de Madrid alejandro. bellogin @ uam. es June 13, 2008 Outline 1 Incidence matrix Tools 2 State

More information

Notes for Math 450 Stochastic Petri nets and reactions

Notes for Math 450 Stochastic Petri nets and reactions Notes for Math 450 Stochastic Petri nets and reactions Renato Feres Petri nets Petri nets are a special class of networks, introduced in 96 by Carl Adam Petri, that provide a convenient language and graphical

More information

Encoding the dynamics of deterministic systems

Encoding the dynamics of deterministic systems Math Meth Oper Res (2011) 73:281 300 DOI 10.1007/s00186-011-0353-6 ORIGINAL ARTICLE Encoding the dynamics of deterministic systems Luis M. Torres Annegret K. Wagler Received: 4 November 2009 / Accepted:

More information

Genomic Data Assimilation for Estimating Hybrid Functional Petri Net from Time-Course Gene Expression Data

Genomic Data Assimilation for Estimating Hybrid Functional Petri Net from Time-Course Gene Expression Data 46 Genome Informatics 171): 46 61 2006) Genomic Data Assimilation for Estimating Hybrid Functional Petri et from Time-Course Gene Expression Data Masao agasaki 1 Rui Yamaguchi 1 Ryo Yoshida 1 masao@ims.u-tokyo.ac.jp

More information

Communication in Petri nets

Communication in Petri nets Communication in Petri nets Kamal Lodaya work in progress with Ramchandra Phawade The Institute of Mathematical Sciences, Chennai February 2010 Petri nets - introduction Mathematical model. Widely used

More information

Metabolic Networks analysis

Metabolic Networks analysis Metabolic Networks analysis Department of Computer Science, University of Verona, Italy Dynamics of membrane systems Courtesy of prof. Manca, Univ. VR, IT Metabolic Systems Dynamics of membrane systems

More information

Petri Net Modeling of Irrigation Canal Networks

Petri Net Modeling of Irrigation Canal Networks Petri Net Modeling of Irrigation Canal Networks Giorgio Corriga, Alessandro Giua, Giampaolo Usai DIEE: Dip. di Ingegneria Elettrica ed Elettronica Università di Cagliari P.zza d Armi 09123 CAGLIARI, Italy

More information

QUALITATIVE PATH ANALYSIS OF METABOLIC PATHWAYS USING PETRI NETS FOR GENERIC MODELLING

QUALITATIVE PATH ANALYSIS OF METABOLIC PATHWAYS USING PETRI NETS FOR GENERIC MODELLING BRANDENBURG UNIVERSITY OF TECHNOLOGY AT COTTBUS Faculty of Mathematics, Natural Sciences and Computer Science Institute of Computer Science COMPUTER SCIENCE REPORTS Report 03/04 August 2004 QUALITATIVE

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

MODELING A BACTERIUM'S LIFE: A PETRI-NET LIBRARY IN MODELICA

MODELING A BACTERIUM'S LIFE: A PETRI-NET LIBRARY IN MODELICA MODELING A BACTERIUM'S LIFE: A PETRI-NET LIBRARY IN MODELICA Sabrina Proß 1), Bernhard Bachmann 1), Ralf Hofestädt 2), Karsten Niehaus 2), Rainer Ueckerdt 1), Frank-Jörg Vorhölter 2), Petra Lutter 2) 1)

More information

Analog Electronics Mimic Genetic Biochemical Reactions in Living Cells

Analog Electronics Mimic Genetic Biochemical Reactions in Living Cells Analog Electronics Mimic Genetic Biochemical Reactions in Living Cells Dr. Ramez Daniel Laboratory of Synthetic Biology & Bioelectronics (LSB 2 ) Biomedical Engineering, Technion May 9, 2016 Cytomorphic

More information

Lecture 10: Cyclins, cyclin kinases and cell division

Lecture 10: Cyclins, cyclin kinases and cell division Chem*3560 Lecture 10: Cyclins, cyclin kinases and cell division The eukaryotic cell cycle Actively growing mammalian cells divide roughly every 24 hours, and follow a precise sequence of events know as

More information

Dynamical Modeling in Biology: a semiotic perspective. Junior Barrera BIOINFO-USP

Dynamical Modeling in Biology: a semiotic perspective. Junior Barrera BIOINFO-USP Dynamical Modeling in Biology: a semiotic perspective Junior Barrera BIOINFO-USP Layout Introduction Dynamical Systems System Families System Identification Genetic networks design Cell Cycle Modeling

More information

Modelling the cell cycle regulatory network

Modelling the cell cycle regulatory network Chapter 3 Modelling the cell cycle regulatory network 3.1 Dynamical modelling Dynamical properties of a system arise from the interaction of its components. In the case of the cell division cycle, cellular

More information