Chapter 18 Section 8.5 Fault Trees Analysis (FTA) Don t get caught out on a limb of your fault tree.

Size: px
Start display at page:

Download "Chapter 18 Section 8.5 Fault Trees Analysis (FTA) Don t get caught out on a limb of your fault tree."

Transcription

1 Chapter 18 Section 8.5 Fault Trees Analysis (FTA) Don t get caught out on a limb of your fault tree. C. Ebeling, Intro to Reliability & Maintainability Engineering, 2 nd ed. Waveland Press, Inc. Copyright 2010

2 Characteristics Graphical design technique Alternative to reliability block diagrams Broader in scope Perspective on faults rather than reliability Model events rather than components Faults include failures Focus on a catastrophic event (top event) Top-down deductive analysis FTA 2

3 The Four Steps to a FTA (1) Define the system, its boundaries, and the top event, (2) Construct the fault tree representing symbolically the system and its relevant events, (3) Perform a qualitative evaluation by identifying those combinations of events which will cause the top event, (4) Perform a quantitative evaluation by assigning failure probabilities or unavailabilities to the basic events and computing the probability of the top event. FTA 3

4 Fault Tree Symbols gate - a logic gate where an output event occurs only when all the input events have occurred. gate - a logic gate where an output event occurs if at least one of the input events have occurred. Resultant event - a fault event resulting from the logical combination of other fault events and usually an output to a logic gate. Basic event - an elementary event representing a basic fault or component failure. Incomplete event - an event that has not been fully developed because of lack of knowledge or its unimportance. FTA 4

5 General Structure of a Fault Tree Top Event System Failure Resultant Events / gates Basic Events FTA 5

6 Example of / Gates Tank Ruptures Overpressure Overpressure Wall Fatigue Failure Excessive Temperature Relief Valve Fails (a) (b) FTA 6

7 Example of / Gates Tank Ruptures Overpressure Wall Fatigue Failure Excessive Temperature Relief Valve Fails (c) FTA 7

8 Alarm System Example meter observer switch alarm backup power power source automatic sensor FTA 8

9 Alarm System Fault Tree T- Alarm Failure A-Power Failure B-Sensor Failure C-Alarm Failure D Secondary alarm failure E-Primary power fails F-Backup fails G-Manual Alarm Failure H-Auto Sensor Fails I-Human Error J-Switch fails K-Meter Fails FTA 9

10 Boolean representation of Top Event T- Alarm Failure A-Power Failure B-Sensor Failure C-Alarm Failure D-Secondary alarm failure E-Primary power fails F-Backup fails G-Manual Alarm Failure H-Auto Sensor Fails T = A B C D = ( E F ) ( G H ) C D I-Human Error J-Switch fails K-Meter Fails = ( E F ) [ (I J K ) H ] C D FTA 10

11 Example A Top Event Event B Event C Event D T = A B = A ( C D ) = A [ (E F ) ( E A )] = A [ E (F A)] = A E since A (F A) = A E F E A FTA 11

12 Example Equivalent Fault Tree T = A U E Top Event Event A Event E FTA 12

13 Minimal Cut Sets A cut set is a collection of basic events which will cause the top event. A minimal cut set is one with no unnecessary events. That is, all the events within the cut set must occur to cause the top event M1 Top Event M2 MK E1 E2 En T = M 1 M 2... M k where M i = E 1 E 2... E ni and E i are basic events. FTA 13

14 Example T- Alarm Failure A-Power Failure E-Primary power fails F-Backup fails I-Human Error B-Sensor Failure G-Manual Alarm Failure J-Switch fails H-Auto Sensor Fails C-Alarm Failure K-Meter Fails D-Secondary alarm failure A B C E,F G,H C E,F I,H J,H K,H C D D D T = (E F) (I H) (J H) (K H) C D FTA 14

15 Example Cut Sets A A A A A B C, D E, D E, E E F, D E, A F, E F, A A Top Event Event B Event C Event D E F E A since E E = E, E A A, F E E, and F A A. Therefore T = A E FTA 15

16 Quantitative Analysis If cut sets are mutually exclusive: If P(M) < 10-3 P(T) = P( M 1 U M 2 U U M k ) = P(M 1 ) + P(M 2 ) P(M k ) If not: P(T) = P(A E) = P(A) + P(E) - P(A E). P(T) = P(M 1 ) +P(M 2 ) - P(M 1 ) P(M 2 ) + etc. P(M i ) = P(E 1 E 2... E ni ) = P(E 1 ) P(E 2 )... P(E n1 ) Then P(M 1 ) P(M 2 ) < 10-6 if independent FTA 16

17 Example P(T) = P{ ( E F ) [ (I J K ) H ] C D } P( E F) + P [ (I J K ) H ] + P(C) +P(D) P(E) P(F) + [ P(I) + P(J) +P(K) ] P(H) + P(C) + P(D) If each basic event has a probability of.01, then P(T) (.01) 2 + ( ) (.01) =.0204 FTA 17

18 One Last Example Top Event T = A B C = (D E) (H I) (L M N) D A B C E H I L M N = [D (F G) [H (J k)] [L (P Q) N] = [D (F G) [H (J k)] [L (R S Q) N] F G J K Q P R S P(T) P(D) [P(F) + P(G)] + P(H) + P(J)P(K) + P(L) [ P(R) + P(S) + P(Q)] P(N) FTA 19

19 The Cut Sets Top Event #1 #2 #3 #4 A B C A D,E D,F D,F D,G D F E G H I L M N J K Q P B C H I L,M,N H J,K L,P,N L,Q,N H J,K L,R,N L,S,N L,Q,N R S FTA 20

12 - The Tie Set Method

12 - The Tie Set Method 12 - The Tie Set Method Definitions: A tie set V is a set of components whose success results in system success, i.e. the presence of all components in any tie set connects the input to the output in the

More information

Risk Analysis of Highly-integrated Systems

Risk Analysis of Highly-integrated Systems Risk Analysis of Highly-integrated Systems RA II: Methods (FTA, ETA) Fault Tree Analysis (FTA) Problem description It is not possible to analyse complicated, highly-reliable or novel systems as black box

More information

Failures in Process Industries

Failures in Process Industries Fault Tree Analysis Failures in Process Industries Single Component Failure Data for failure rates are compiled by industry Single component or single action Multiple Component Failure Failures resulting

More information

On Qualitative Analysis of Fault Trees Using Structurally Persistent Nets

On Qualitative Analysis of Fault Trees Using Structurally Persistent Nets On Qualitative Analysis of Fault Trees Using Structurally Persistent Nets Ricardo J. Rodríguez rj.rodriguez@unileon.es Research Institute of Applied Sciences in Cybersecurity University of León, Spain

More information

Nuclear reliability: system reliabilty

Nuclear reliability: system reliabilty Nuclear reliability: system reliabilty Dr. Richard E. Turner (ret26@cam.ac.uk) December 3, 203 Goal of these two lectures failures are inevitable: need methods for characterising and quantifying them LAST

More information

PROBABILISTIC AND POSSIBILISTIC FAULT TREE ANALYSIS

PROBABILISTIC AND POSSIBILISTIC FAULT TREE ANALYSIS PROBABILISTIC AD POSSIBILISTIC FAULT TREE AALYSIS M. Ragheb 12/28/2017 ITRODUCTIO In the design of nuclear power plants, it is important to analyze the probable and possible mechanisms of failure. Fault

More information

Overview of Control System Design

Overview of Control System Design Overview of Control System Design General Requirements 1. Safety. It is imperative that industrial plants operate safely so as to promote the well-being of people and equipment within the plant and in

More information

200 2 10 17 5 5 10 18 12 1 10 19 960 1 10 21 Deductive Logic Probability Theory π X X X X = X X = x f z x Physics f Sensor z x f f z P(X = x) X x X x P(X = x) = 1 /6 P(X = x) P(x) F(x) F(x) =

More information

Module No. # 03 Lecture No. # 11 Probabilistic risk analysis

Module No. # 03 Lecture No. # 11 Probabilistic risk analysis Health, Safety and Environmental Management in Petroleum and offshore Engineering Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Module No. #

More information

Causal & Frequency Analysis

Causal & Frequency Analysis Causal & Frequency Analysis Arshad Ahmad arshad@utm.my Fishbone Diagram 2 The Cause and Effect (CE) Diagram (Ishikawa Fishbone) Created in 1943 by Professor Kaoru Ishikawa of Tokyo University Used to investigate

More information

Quantitative Reliability Analysis

Quantitative Reliability Analysis Quantitative Reliability Analysis Moosung Jae May 4, 2015 System Reliability Analysis System reliability analysis is conducted in terms of probabilities The probabilities of events can be modelled as logical

More information

EE 445 / 850: Final Examination

EE 445 / 850: Final Examination EE 445 / 850: Final Examination Date and Time: 3 Dec 0, PM Room: HLTH B6 Exam Duration: 3 hours One formula sheet permitted. - Covers chapters - 5 problems each carrying 0 marks - Must show all calculations

More information

Number, Number Sense, and Operations Data Analysis and Probability

Number, Number Sense, and Operations Data Analysis and Probability Algebra 1 Unit 1 Numbers 3 weeks Number, Number Sense, and Operations Data Analysis and Probability NC Apply properties of operations and the real number system, and justify when they hold for a set of

More information

RISK-INFORMED OPERATIONAL DECISION MANAGEMENT (RIODM): RISK, EVENT TREES AND FAULT TREES

RISK-INFORMED OPERATIONAL DECISION MANAGEMENT (RIODM): RISK, EVENT TREES AND FAULT TREES 22.38 PROBABILITY AND ITS APPLICATIONS TO RELIABILITY, QUALITY CONTROL AND RISK ASSESSMENT Fall 2005, Lecture 1 RISK-INFORMED OPERATIONAL DECISION MANAGEMENT (RIODM): RISK, EVENT TREES AND FAULT TREES

More information

ASTRA 3.0: LOGICAL AND PROBABILISTIC ANALYSIS METHODS

ASTRA 3.0: LOGICAL AND PROBABILISTIC ANALYSIS METHODS ASTRA 3.: LOGICAL AND PROBABILISTIC ANALYSIS METHODS Description of the main phases and algorithms of the fault tree analysis procedure implemented in ASTRA 3. Sergio Contini and Vaidas Matuzas EUR 2452

More information

The following number (percentage) of students scored in the following ranges:

The following number (percentage) of students scored in the following ranges: The following number (percentage) of students scored in the following ranges: 100: 6 (18%) 95-99: 11 (33%) 90-94: 5 (15%) [22 (67%) scored 90 or better] 85-89: 3 (9%) 80-84: 3 (9%) [28 (85%) scored 80

More information

Engineering Risk Benefit Analysis

Engineering Risk Benefit Analysis Engineering Risk enefit nalysis.55, 2.943, 3.577, 6.938, 0.86, 3.62, 6.862, 22.82 ESD.72J, ESD.72 RPR. The Logic of ertainty George E. postolakis Massachusetts Institute of Technology Spring 2007 RPR.

More information

Reliability of Technical Systems

Reliability of Technical Systems Reliability of Technical Systems Main Topics 1. Short Introduction, Reliability Parameters: Failure Rate, Failure Probability, etc. 2. Some Important Reliability Distributions 3. Component Reliability

More information

Conditional Probability. CS231 Dianna Xu

Conditional Probability. CS231 Dianna Xu Conditional Probability CS231 Dianna Xu 1 Boy or Girl? A couple has two children, one of them is a girl. What is the probability that the other one is also a girl? Assuming 50/50 chances of conceiving

More information

Chapter 5 Reliability of Systems

Chapter 5 Reliability of Systems Chapter 5 Reliability of Systems Hey! Can you tell us how to analyze complex systems? Serial Configuration Parallel Configuration Combined Series-Parallel C. Ebeling, Intro to Reliability & Maintainability

More information

Chapter 6. a. Open Circuit. Only if both resistors fail open-circuit, i.e. they are in parallel.

Chapter 6. a. Open Circuit. Only if both resistors fail open-circuit, i.e. they are in parallel. Chapter 6 1. a. Section 6.1. b. Section 6.3, see also Section 6.2. c. Predictions based on most published sources of reliability data tend to underestimate the reliability that is achievable, given that

More information

Assessing system reliability through binary decision diagrams using bayesian techniques.

Assessing system reliability through binary decision diagrams using bayesian techniques. Loughborough University Institutional Repository Assessing system reliability through binary decision diagrams using bayesian techniques. This item was submitted to Loughborough University's Institutional

More information

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University A Gentle Introduction to Gradient Boosting Cheng Li chengli@ccs.neu.edu College of Computer and Information Science Northeastern University Gradient Boosting a powerful machine learning algorithm it can

More information

Axioms of Probability

Axioms of Probability Sample Space (denoted by S) The set of all possible outcomes of a random experiment is called the Sample Space of the experiment, and is denoted by S. Example 1.10 If the experiment consists of tossing

More information

Chapter 12. Spurious Operation and Spurious Trips

Chapter 12. Spurious Operation and Spurious Trips Chapter 12. Spurious Operation and Spurious Trips Mary Ann Lundteigen Marvin Rausand RAMS Group Department of Mechanical and Industrial Engineering NTNU (Version 0.1) Lundteigen& Rausand Chapter 12.Spurious

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 3 Probability Contents 1. Events, Sample Spaces, and Probability 2. Unions and Intersections 3. Complementary Events 4. The Additive Rule and Mutually Exclusive

More information

WYOMING COMMUNITY DEVELOPMENT AUTHORITY DISCLOSURE REPORT FOR THE 1994 INDENTURE SINGLE FAMILY HOUSING REVENUE BOND SERIES

WYOMING COMMUNITY DEVELOPMENT AUTHORITY DISCLOSURE REPORT FOR THE 1994 INDENTURE SINGLE FAMILY HOUSING REVENUE BOND SERIES WYOMING COMMUNITY DEVELOPMENT AUTHORITY DISCLOSURE REPORT FOR THE 1994 INDENTURE SINGLE FAMILY HOUSING REVENUE BOND SERIES 1994-1&2 THROUGH 2014-1, 2, 3, 4 & 5 AS OF SEPTEMBER 30, 2014 INDENTURE 007 IND.

More information

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211)

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211) An-Najah National University Faculty of Engineering Industrial Engineering Department Course : Quantitative Methods (65211) Instructor: Eng. Tamer Haddad 2 nd Semester 2009/2010 Chapter 2 Probability 2-1

More information

Chapter 3 : Conditional Probability and Independence

Chapter 3 : Conditional Probability and Independence STAT/MATH 394 A - PROBABILITY I UW Autumn Quarter 2016 Néhémy Lim Chapter 3 : Conditional Probability and Independence 1 Conditional Probabilities How should we modify the probability of an event when

More information

Lecture 5 Probability

Lecture 5 Probability Lecture 5 Probability Dr. V.G. Snell Nuclear Reactor Safety Course McMaster University vgs 1 Probability Basic Ideas P(A)/probability of event A 'lim n64 ( x n ) (1) (Axiom #1) 0 # P(A) #1 (1) (Axiom #2):

More information

COMP538: Introduction to Bayesian Networks

COMP538: Introduction to Bayesian Networks COMP538: Introduction to ayesian Networks Lecture 4: Inference in ayesian Networks: The VE lgorithm Nevin L. Zhang lzhang@cse.ust.hk Department of Computer Science and Engineering Hong Kong University

More information

Will Monroe July 5, with materials by Mehran Sahami and Chris Piech. image: Therightclicks. Independence

Will Monroe July 5, with materials by Mehran Sahami and Chris Piech. image: Therightclicks. Independence Will Monroe July 5, 2017 with materials by Mehran Sahami and Chris Piech image: Therightclicks Independence Announcements: Problem Set 1 due! Solutions to be posted next Wednesday (no submissions allowed

More information

Safety analysis and standards Analyse de sécurité et normes Sicherheitsanalyse und Normen

Safety analysis and standards Analyse de sécurité et normes Sicherheitsanalyse und Normen Industrial Automation Automation Industrielle Industrielle Automation 9.6 Safety analysis and standards Analyse de sécurité et normes Sicherheitsanalyse und Normen Prof Dr. Hubert Kirrmann & Dr. B. Eschermann

More information

CS626 Data Analysis and Simulation

CS626 Data Analysis and Simulation CS626 Data Analysis and Simulation Instructor: Peter Kemper R 104A, phone 221-3462, email:kemper@cs.wm.edu Today: Probability Primer Quick Reference: Sheldon Ross: Introduction to Probability Models 9th

More information

Bayesian networks. Instructor: Vincent Conitzer

Bayesian networks. Instructor: Vincent Conitzer Bayesian networks Instructor: Vincent Conitzer Rain and sprinklers example raining (X) sprinklers (Y) P(X=1) =.3 P(Y=1) =.4 grass wet (Z) Each node has a conditional probability table (CPT) P(Z=1 X=0,

More information

Reliability Analysis of Hydraulic Steering System with DICLFL Considering Shutdown Correlation Based on GO Methodology

Reliability Analysis of Hydraulic Steering System with DICLFL Considering Shutdown Correlation Based on GO Methodology 2015 ICRSE&PHM-Beijing Reliability Analysis of Hydraulic Steering System with DICLFL Considering Shutdown Correlation Based on GO Methodology YI Xiaojian, SHI Jian, MU Huina, DONG Haiping, GUO Shaowei

More information

Analysis methods for fault trees that contain secondary failures

Analysis methods for fault trees that contain secondary failures Loughborough University Institutional Repository Analysis methods for fault trees that contain secondary failures This item was submitted to Loughborough University's Institutional Repository by the/an

More information

Chapter 8. Calculation of PFD using FTA

Chapter 8. Calculation of PFD using FTA Chapter 8. Calculation of PFD using FTA Mary Ann Lundteigen Marvin Rausand RAMS Group Department of Mechanical and Industrial Engineering NTNU (Version 0.1) Lundteigen& Rausand Chapter 8.Calculation of

More information

Lecture 4. Selected material from: Ch. 6 Probability

Lecture 4. Selected material from: Ch. 6 Probability Lecture 4 Selected material from: Ch. 6 Probability Example: Music preferences F M Suppose you want to know what types of CD s males and females are more likely to buy. The CD s are classified as Classical,

More information

DIN 2445 Part-2 SEAMLESS STEEL TUBES FOR DYNAMIC LOADS SUPPLEMENT BASIS FOR CALUCULATION OF STRAIGHT TUBES

DIN 2445 Part-2 SEAMLESS STEEL TUBES FOR DYNAMIC LOADS SUPPLEMENT BASIS FOR CALUCULATION OF STRAIGHT TUBES DIN Part- SEAMLESS STEEL TUBES FOR DYNAMIC LOADS SUPPLEMENT BASIS FOR CALUCULATION OF STRAIGHT TUBES. General information During the operation of hydraulic installations, when the control valve is operated

More information

Chapter 3. P{E has 3, N S has 8} P{N S has 8}

Chapter 3. P{E has 3, N S has 8} P{N S has 8} Instant download and all chapters SOLUTIONS MANUAL A First Course in Probability 9th Edition Sheldon Ross https://testbankdata.com/download/solutions-manual-a-first-course-in-probability-9th-edition-sheldon-ross

More information

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues Content What are Events? Examples for Problematic Event Semantics Inhibit, Enabler / Conditioning

More information

Common Cause Failure (CCF)

Common Cause Failure (CCF) Common Cause Failure (CCF) 건국대학교컴퓨터공학과 UC Lab. 정혁준 & 박경식 amitajung@naver.com, kyeongsik@konkuk.ac.kr Contents Common Cause Failure (CCF) Types of CCF Examples Reducing CCF Common Cause Failure (CCF) Definition

More information

Common Cause Failures: Extended Alpha Factor method and its Implementation

Common Cause Failures: Extended Alpha Factor method and its Implementation Common Cause Failures: Extended Alpha Factor method and its Implementation Alexandra Sitdikova Reactor Engineering Division, Jožef Stefan Institute Jamova 39, SI-1000 Ljubljana, Slovenia Institute of Physics

More information

Introduction to Probability 2017/18 Supplementary Problems

Introduction to Probability 2017/18 Supplementary Problems Introduction to Probability 2017/18 Supplementary Problems Problem 1: Let A and B denote two events with P(A B) 0. Show that P(A) 0 and P(B) 0. A A B implies P(A) P(A B) 0, hence P(A) 0. Similarly B A

More information

Chapter 9 Part II Maintainability

Chapter 9 Part II Maintainability Chapter 9 Part II Maintainability 9.4 System Repair Time 9.5 Reliability Under Preventive Maintenance 9.6 State-Dependent Systems with Repair C. Ebeling, Intro to Reliability & Maintainability Chapter

More information

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)...

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)... Math 020, Exam II October, 206 The Honor Code is in effect for this examination. All work is to be your own. You may use a calculator. The exam lasts for hour 5 minutes. Be sure that your name is on every

More information

Law of Total Probability and Bayes Rule

Law of Total Probability and Bayes Rule MATH 382 Law of Total Probability and Bayes Rule Dr Neal, WKU Law of Total Probability: Suppose events A 1, A 2,, A n form a partition of Ω That is, the events are mutually disjoint and their union is

More information

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail}

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail} Random Experiment In random experiments, the result is unpredictable, unknown prior to its conduct, and can be one of several choices. Examples: The Experiment of tossing a coin (head, tail) The Experiment

More information

Digital Secondary Control Architecture for Aircraft Application

Digital Secondary Control Architecture for Aircraft Application Digital Secondary Control Architecture for Aircraft Application PhD researchers: Henri C. Belan Cristiano C. Locateli Advisors (SAAB): Birgitta Lantto (LiU): Petter Krus (UFSC): Victor J. De Negri Introduction

More information

Reliability of Safety-Critical Systems Chapter 8. Probability of Failure on Demand using fault trees

Reliability of Safety-Critical Systems Chapter 8. Probability of Failure on Demand using fault trees Reliability of Safety-Critical Systems Chapter 8. Probability of Failure on Demand using fault trees Mary Ann Lundteigen and Marvin Rausand mary.a.lundteigen@ntnu.no &marvin.rausand@ntnu.no RAMS Group

More information

Quantification of Temporal Fault Trees Based on Fuzzy Set Theory

Quantification of Temporal Fault Trees Based on Fuzzy Set Theory Quantification of Temporal Fault Trees Based on Fuzzy Set Theory Sohag Kabir, Ernest Edifor, Martin Walker, Neil Gordon Department of Computer Science, University of Hull, Hull, UK {s.kabir@2012.,e.e.edifor@2007.,martin.walker@,n.a.gordon

More information

Part I: Propositional Calculus

Part I: Propositional Calculus Logic Part I: Propositional Calculus Statements Undefined Terms True, T, #t, 1 False, F, #f, 0 Statement, Proposition Statement/Proposition -- Informal Definition Statement = anything that can meaningfully

More information

Please do NOT write in this box. Multiple Choice Total

Please do NOT write in this box. Multiple Choice Total Name: Instructor: ANSWERS Bullwinkle Math 1010, Exam I. October 14, 014 The Honor Code is in effect for this examination. All work is to be your own. Please turn off all cellphones and electronic devices.

More information

STAT:5100 (22S:193) Statistical Inference I

STAT:5100 (22S:193) Statistical Inference I STAT:5100 (22S:193) Statistical Inference I Week 3 Luke Tierney University of Iowa Fall 2015 Luke Tierney (U Iowa) STAT:5100 (22S:193) Statistical Inference I Fall 2015 1 Recap Matching problem Generalized

More information

The Failure-tree Analysis Based on Imprecise Probability and its Application on Tunnel Project

The Failure-tree Analysis Based on Imprecise Probability and its Application on Tunnel Project 463 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 59, 2017 Guest Editors: Zhuo Yang, Junjie Ba, Jing Pan Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-49-5; ISSN 2283-9216 The Italian

More information

Reliability of Technical Systems

Reliability of Technical Systems Reliability of Technical Systems Main Topics. Short Introduction, Reliability Parameters: Failure Rate, Failure Probability, etc. 2. Some Important Reliability Distributions 3. Component Reliability 4.

More information

Fault-Tolerant Computer System Design ECE 60872/CS 590. Topic 2: Discrete Distributions

Fault-Tolerant Computer System Design ECE 60872/CS 590. Topic 2: Discrete Distributions Fault-Tolerant Computer System Design ECE 60872/CS 590 Topic 2: Discrete Distributions Saurabh Bagchi ECE/CS Purdue University Outline Basic probability Conditional probability Independence of events Series-parallel

More information

CSE 311: Foundations of Computing. Lecture 14: Induction

CSE 311: Foundations of Computing. Lecture 14: Induction CSE 311: Foundations of Computing Lecture 14: Induction Mathematical Induction Method for proving statements about all natural numbers A new logical inference rule! It only applies over the natural numbers

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017 Lecture 4 Ana Bove March 24th 2017 Structural induction; Concepts of automata theory. Overview of today s lecture: Recap: Formal Proofs

More information

Chapter 5. System Reliability and Reliability Prediction.

Chapter 5. System Reliability and Reliability Prediction. Chapter 5. System Reliability and Reliability Prediction. Problems & Solutions. Problem 1. Estimate the individual part failure rate given a base failure rate of 0.0333 failure/hour, a quality factor of

More information

Overview of Control System Design

Overview of Control System Design Overview of Control System Design Introduction Degrees of Freedom for Process Control Selection of Controlled, Manipulated, and Measured Variables Process Safety and Process Control 1 General Requirements

More information

Chapter. Probability

Chapter. Probability Chapter 3 Probability Section 3.1 Basic Concepts of Probability Section 3.1 Objectives Identify the sample space of a probability experiment Identify simple events Use the Fundamental Counting Principle

More information

ENGI 4421 Introduction to Probability; Sets & Venn Diagrams Page α 2 θ 1 u 3. wear coat. θ 2 = warm u 2 = sweaty! θ 1 = cold u 3 = brrr!

ENGI 4421 Introduction to Probability; Sets & Venn Diagrams Page α 2 θ 1 u 3. wear coat. θ 2 = warm u 2 = sweaty! θ 1 = cold u 3 = brrr! ENGI 4421 Introduction to Probability; Sets & Venn Diagrams Page 2-01 Probability Decision trees u 1 u 2 α 2 θ 1 u 3 θ 2 u 4 Example 2.01 θ 1 = cold u 1 = snug! α 1 wear coat θ 2 = warm u 2 = sweaty! θ

More information

Reliability of sequential systems using the causeconsequence diagram method

Reliability of sequential systems using the causeconsequence diagram method Loughborough University Institutional Repository Reliability of sequential systems using the causeconsequence diagram method This item was submitted to Loughborough University's Institutional Repository

More information

ENGI 3423 Introduction to Probability; Sets & Venn Diagrams Page 3-01

ENGI 3423 Introduction to Probability; Sets & Venn Diagrams Page 3-01 ENGI 3423 Introduction to Probability; Sets & Venn Diagrams Page 3-01 Probability Decision trees θ 1 u 1 α 1 θ 2 u 2 Decision α 2 θ 1 u 3 Actions Chance nodes States of nature θ 2 u 4 Consequences; utility

More information

Independence 1 2 P(H) = 1 4. On the other hand = P(F ) =

Independence 1 2 P(H) = 1 4. On the other hand = P(F ) = Independence Previously we considered the following experiment: A card is drawn at random from a standard deck of cards. Let H be the event that a heart is drawn, let R be the event that a red card is

More information

Math Exam 1 Review. NOTE: For reviews of the other sections on Exam 1, refer to the first page of WIR #1 and #2.

Math Exam 1 Review. NOTE: For reviews of the other sections on Exam 1, refer to the first page of WIR #1 and #2. Math 166 Fall 2008 c Heather Ramsey Page 1 Math 166 - Exam 1 Review NOTE: For reviews of the other sections on Exam 1, refer to the first page of WIR #1 and #2. Section 1.5 - Rules for Probability Elementary

More information

Application of the Cause-Consequence Diagram Method to Static Systems

Application of the Cause-Consequence Diagram Method to Static Systems Application of the ause-onsequence Diagram Method to Static Systems L.M.Ridley and J.D.Andrews Department of Mathematical Sciences Loughborough University Loughborough Leicestershire LE11 3TU Keywords:

More information

System Reliability Analysis. CS6323 Networks and Systems

System Reliability Analysis. CS6323 Networks and Systems System Reliability Analysis CS6323 Networks and Systems Topics Combinatorial Models for reliability Topology-based (structured) methods for Series Systems Parallel Systems Reliability analysis for arbitrary

More information

of an algorithm for automated cause-consequence diagram construction.

of an algorithm for automated cause-consequence diagram construction. Loughborough University Institutional Repository Development of an algorithm for automated cause-consequence diagram construction. This item was submitted to Loughborough University's Institutional Repository

More information

The Applications of Inductive Method in the Construction of Fault Trees MENG Qinghe 1,a, SUN Qin 2,b

The Applications of Inductive Method in the Construction of Fault Trees MENG Qinghe 1,a, SUN Qin 2,b The Applications of Inductive Method in the Construction of Fault Trees MENG Qinghe 1,a, SUN Qin 2,b 1 School of Aeronautics, Northwestern Polytechnical University, Xi an 710072, China 2 School of Aeronautics,

More information

Boosting. 1 Boosting. 2 AdaBoost. 2.1 Intuition

Boosting. 1 Boosting. 2 AdaBoost. 2.1 Intuition Boosting 1 Boosting Boosting refers to a general and effective method of producing accurate classifier by combining moderately inaccurate classifiers, which are called weak learners. In the lecture, we

More information

Introduction to Probabilistic Reasoning. Image credit: NASA. Assignment

Introduction to Probabilistic Reasoning. Image credit: NASA. Assignment Introduction to Probabilistic Reasoning Brian C. Williams 16.410/16.413 November 17 th, 2010 11/17/10 copyright Brian Williams, 2005-10 1 Brian C. Williams, copyright 2000-09 Image credit: NASA. Assignment

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Code Converters CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev HW

More information

Markov Reliability and Availability Analysis. Markov Processes

Markov Reliability and Availability Analysis. Markov Processes Markov Reliability and Availability Analysis Firma convenzione Politecnico Part II: Continuous di Milano e Time Veneranda Discrete Fabbrica State del Duomo di Milano Markov Processes Aula Magna Rettorato

More information

Conditional Statement: Statements in if-then form are called.

Conditional Statement: Statements in if-then form are called. Monday 9/21 2.2 and 2.4 Wednesday 9/23 2.5 and 2.6 Conditional and Algebraic Proofs Algebraic Properties and Geometric Proofs Unit 2 Angles and Proofs Packet pages 1-3 Textbook Pg 85 (14, 17, 20, 25, 27,

More information

P B A. conditional probabilities A B and unconditional probabilities are neither 0 nor 1, this note demonstrates two consequences when

P B A. conditional probabilities A B and unconditional probabilities are neither 0 nor 1, this note demonstrates two consequences when 1 When P P A 1. Introduction Many students encountering probability theory for the first time have difficulty distinguishing conditional probabilities from joint or unconditional probabilities and they

More information

Sixth Edition. Chapter 2 Probability. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Probability

Sixth Edition. Chapter 2 Probability. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Probability Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 2 Probability 2 Probability CHAPTER OUTLINE 2-1 Sample Spaces and Events 2-1.1 Random Experiments

More information

Introduction to Probability. Experiments. Sample Space. Event. Basic Requirements for Assigning Probabilities. Experiments

Introduction to Probability. Experiments. Sample Space. Event. Basic Requirements for Assigning Probabilities. Experiments Introduction to Probability Experiments These are processes that generate welldefined outcomes Experiments Counting Rules Combinations Permutations Assigning Probabilities Experiment Experimental Outcomes

More information

Conditional Probability P( )

Conditional Probability P( ) Conditional Probability P( ) 1 conditional probability and the chain rule General defn: where P(F) > 0 Implies: P(EF) = P(E F) P(F) ( the chain rule ) General definition of Chain Rule: 2 Best of 3 tournament

More information

Engineering Risk Benefit Analysis

Engineering Risk Benefit Analysis Engineering Risk Benefit Analysis 1.155, 2.943, 3.577, 6.938, 10.816, 13.621, 16.862, 22.82, ESD.72, ESD.721 RPRA 3. Probability Distributions in RPRA George E. Apostolakis Massachusetts Institute of Technology

More information

Mutually Exclusive Events

Mutually Exclusive Events 172 CHAPTER 3 PROBABILITY TOPICS c. QS, 7D, 6D, KS Mutually Exclusive Events A and B are mutually exclusive events if they cannot occur at the same time. This means that A and B do not share any outcomes

More information

Lecture 10: 09//25/03 A.R. Neureuther Version Date 09/14/03 EECS 42 Introduction to Digital Electronics Andrew R. Neureuther

Lecture 10: 09//25/03 A.R. Neureuther Version Date 09/14/03 EECS 42 Introduction to Digital Electronics Andrew R. Neureuther EECS 42 Intro. Digital Electronics Fall 23 Lecture : 9//25/3.R. Neureuther Version Date 9/4/3 EECS 42 Introduction to Digital Electronics ndrew R. Neureuther Lecture # Prof. King: asic Digital locks 2

More information

PHM Engineering Perspectives, Challenges and Crossing the Valley of Death. 30 September, 2009 San Diego, CA

PHM Engineering Perspectives, Challenges and Crossing the Valley of Death. 30 September, 2009 San Diego, CA PHM Engineering Perspectives, Challenges and Crossing the Valley of Death 30 September, 2009 San Diego, CA The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter

More information

COMPSCI 276 Fall 2007

COMPSCI 276 Fall 2007 Exact Inference lgorithms for Probabilistic Reasoning; OMPSI 276 Fall 2007 1 elief Updating Smoking lung ancer ronchitis X-ray Dyspnoea P lung cancer=yes smoking=no, dyspnoea=yes =? 2 Probabilistic Inference

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

CSSTP. Given CSSTP. Statements Reasons. Given CSSTP. Mult. Prop. = Div. Prop. = Sym. Prop. = or 1 Mult. Prop. = Div. Prop. =

CSSTP. Given CSSTP. Statements Reasons. Given CSSTP. Mult. Prop. = Div. Prop. = Sym. Prop. = or 1 Mult. Prop. = Div. Prop. = : If the triangles are similar (~), then all of the sides must be congruent proportional (create equal scale fractions). Example: A~ F Before you start your proof, it is important to plan! Setup the three

More information

Introduction and basic definitions

Introduction and basic definitions Chapter 1 Introduction and basic definitions 1.1 Sample space, events, elementary probability Exercise 1.1 Prove that P( ) = 0. Solution of Exercise 1.1 : Events S (where S is the sample space) and are

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP Recap: Logic, Sets, Relations, Functions

Finite Automata Theory and Formal Languages TMV027/DIT321 LP Recap: Logic, Sets, Relations, Functions Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017 Formal proofs; Simple/strong induction; Mutual induction; Inductively defined sets; Recursively defined functions. Lecture 3 Ana Bove

More information

Reliability Analysis of Electronic Systems using Markov Models

Reliability Analysis of Electronic Systems using Markov Models Reliability Analysis of Electronic Systems using Markov Models István Matijevics Polytechnical Engineering College, Subotica, Serbia and Montenegro, matistvan@yahoo.com Zoltán Jeges Polytechnical Engineering

More information

Exam 1 - Math Solutions

Exam 1 - Math Solutions Exam 1 - Math 3200 - Solutions Spring 2013 1. Without actually expanding, find the coefficient of x y 2 z 3 in the expansion of (2x y z) 6. (A) 120 (B) 60 (C) 30 (D) 20 (E) 10 (F) 10 (G) 20 (H) 30 (I)

More information

Probability COMP 245 STATISTICS. Dr N A Heard. 1 Sample Spaces and Events Sample Spaces Events Combinations of Events...

Probability COMP 245 STATISTICS. Dr N A Heard. 1 Sample Spaces and Events Sample Spaces Events Combinations of Events... Probability COMP 245 STATISTICS Dr N A Heard Contents Sample Spaces and Events. Sample Spaces........................................2 Events........................................... 2.3 Combinations

More information

Intro to Probability Day 4 (Compound events & their probabilities)

Intro to Probability Day 4 (Compound events & their probabilities) Intro to Probability Day 4 (Compound events & their probabilities) Compound Events Let A, and B be two event. Then we can define 3 new events as follows: 1) A or B (also A B ) is the list of all outcomes

More information

Cogs 14B: Introduction to Statistical Analysis

Cogs 14B: Introduction to Statistical Analysis Cogs 14B: Introduction to Statistical Analysis Statistical Tools: Description vs. Prediction/Inference Description Averages Variability Correlation Prediction (Inference) Regression Confidence intervals/

More information

r. Matthias Bretschneider amburg - Dept. Safety Fehleranalyse mit Hilfe von Model Checkern

r. Matthias Bretschneider amburg - Dept. Safety Fehleranalyse mit Hilfe von Model Checkern r. Matthias Bretschneider amburg - Dept. Safety Fehleranalyse mit Hilfe von Model Checkern otivation: Design of safe embedded systems X y Sensor(s) Controller Actuator Design Phase Study the effect of

More information

= (, ) V λ (1) λ λ ( + + ) P = [ ( ), (1)] ( ) ( ) = ( ) ( ) ( 0 ) ( 0 ) = ( 0 ) ( 0 ) 0 ( 0 ) ( ( 0 )) ( ( 0 )) = ( ( 0 )) ( ( 0 )) ( + ( 0 )) ( + ( 0 )) = ( + ( 0 )) ( ( 0 )) P V V V V V P V P V V V

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Decoders and Encoders CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

STAT 516: Basic Probability and its Applications

STAT 516: Basic Probability and its Applications Lecture 3: Conditional Probability and Independence Prof. Michael September 29, 2015 Motivating Example Experiment ξ consists of rolling a fair die twice; A = { the first roll is 6 } amd B = { the sum

More information

Quantitative Methods for Decision Making

Quantitative Methods for Decision Making January 14, 2012 Lecture 3 Probability Theory Definition Mutually exclusive events: Two events A and B are mutually exclusive if A B = φ Definition Special Addition Rule: Let A and B be two mutually exclusive

More information