The Cold Fusion Phenomenon as a Complexity (1)

Size: px
Start display at page:

Download "The Cold Fusion Phenomenon as a Complexity (1)"

Transcription

1 Proc. JCF6, (April 27 28, 2005, Tokyo, Japan), pp (2005) The Cold Fusion Phenomenon as a Complexity (1) Complexity in the Cold Fusion Phenomenon Hideo Kozima Cold Fusion Research Laboratory, , Yatsu, Aoi, Shizuoka , Japan ; cf-lab.kozima@nifty.com, Website; Abstract The science of complex systems treats such problems as why simple particles organize themselves spontaneously complex structures like stars, galaxies, hurricanes, and Coulomb lattices of neutron and proton clusters surrounded by a dilute neutron gas in the neutron star matter, as what is the cause of 1/f fluctuation, and as what means the edge of chaos. The cold fusion phenomenon (CFP) has revealed such nature of many-particle effects as a complexity as shown by various experimental results as the stability effect in the nuclear transmutation and the inverse-power law in the excess power generation. The complexity of the cold fusion phenomenon originates in the non-linear interactions between millions of agents (component particles in the cold fusion materials) and is magnified by enormous energy difference (about an order of 10 8 ) of the cause (atomic) and the effect (nuclear). Existence of complexity in the cold fusion phenomenon is explained in this paper. 1. Introduction The cold fusion phenomenon (CFP) was explicitly announced its discovery in 1989 by Fleischmann and Pons [1] as huge excess heat accompanying tritium and neutron productions in an electrolytic system with Pd metal anodes and Pt wire cathodes in the electrolytic solution D2O + LiOD. The motivation of their experiments was the Fleischmann s hypothesis that the Pd lattice gives enormous effect on the d-d fusion reactions in the transition-metal deuteride PdDx (x 1), [2] which the name cold fusion originates from. The history of CFP research in the past 16 years revealed, however, that the Fleischmann s hypothesis should not be essential to CFP as a whole due to following facts; CFP occurs not only in deuterium systems but also in protium systems, there are too various events [4] and too various nuclear products to be explained by simple d-d 1

2 fusion reactions. Furthermore, numerical relations between amounts of products [4] contradict with those expected from the d-d fusion reactions known in nuclear physics. It has been known that existence of the ambient thermal neutrons is one of necessary conditions for CFP. Therefore, the name cold fusion phenomenon (CFP) should be used as one to signify a phenomenon including nuclear reactions and accompanying events occurring in solids with high densities of hydrogen isotopes (H and/or D) in ambient radiation when dynamical conditions are imposed on them. Fields and products of CFP observed by now are tabulated in Table 1. [3] In this table, matrix substances and agent nuclei comprise the field where occurs CFP. It is not designated in the table but should be emphasized that CFP occurs more frequently in dynamical, stationary, or non-static conditions than in the static one. Table 1. Matrix Substances, Agent nuclei, Direct and Indirect Evidence of nuclear reactions in cold fusion phenomenon (CFP). Q is for the excess heat and NT for the nuclear transmutation. Dependences of products on energyε and position r, decay time shortening of radioactive nuclides, and fission-barrier lowering of compound nuclides give direct information of nuclear reactions in CFP. Matrix Substances Agents Direct Evidences Indirect Evidences Transition metals (Ti, Ni, Mo, Pd, Pt, etc.), Proton Conductors (SrCeO3, REBa2Cu3O7, AlLaO3), Ferroelectrics (KD2PO4, TGS, etc.), Others (C, NaxWO3, Stainless Steel, etc.) 1 0n, 1 1H, 2 1H, ( 16 8O), 6 3Li, 10 5B, 23 11Na, 39 19K, 85 37Rb, 87 37Rb, SO4 2, etc. Neutron energy spectrum n(ε), Gamma rays γ(ε), Spatial distribution of NT products ( A Z X(r)), Decay time shortening, Fission barrier decrease Excess Heat Q, Number of neutrons Nn, Number of tritons Nt, Number of 4 2He NHe4, Number of NT products NNT (for NTD, NTF, NTA, and NTT), X-ray spectra X(ε) The TNCF (trapped neutron catalyzed fusion) model proposed by the author in 1994 [4] has been one of successful approaches to qualitative and semi-quantitative explanations of several events in CFP and has given several numerical relations between amounts of products consistent with experiments. Basic assumptions of the model are based on the many-particle nature of the CF system where occurs CFP. Existence of the trapped thermal neutrons in CF materials, one of the basic assumptions in the TCNF model, is clearly a result of many-particle interactions in the solids if the assumption has any reality behind it. [5] These facts clearly show that CFP is a phenomenon conditioned by multi-component, dynamical and/or stationary properties of systems composed of transition metals and hydrogen isotopes under influence of ambient thermal neutrons. 2

3 There are discovered a few characteristics and few laws in CFP. Following characteristics are essential factors in CFP to study its physics; qualitative reproducibility and sporadicity of events, favorable combinations of a cathode, a hydrogen isotope, and an electrolyte (e.g. Pd, D, Li; Ni, H, K). Two laws were recently discovered in CFP; the stability effect in the nuclear transmutation [3,6] and the inverse-power law of excess heat generation. [3,7] These characteristics and laws in CFP show clearly that the entirety of CFP should be treated as a kind of complexity as explained below. 2. Many-particle Effects in CF Materials Resulting in Complexity In this section, we explain a general nature of the complex system with non-linear interactions between its agents first and then explain the nature of the cold fusion phenomenon (CFP) in relation with complexity. 2.1 Complex System, Complexity and 1/f Fluctuation In a complex system (system composed of many components (agents) interacting with nonlinear forces), there occur various phenomena alien from those in simple systems that have been the main objects of modern science until 20 th century. The science of the complex system has developed in recent twenty years and includes several new branches as synergetics, self-organization, fractals, chaos, emergence, complexity and so on named by pioneering scientists according to their points of view. To make our discussion clear, we will use a terminology defined below referring to the Waldrop s book [8] as follows: the science of complex systems are divided into three classes; A. self-organization, B. chaos and C. complexity. These classes, A, B and C, correspond Wolfram s universality classes, I and II, III and IV, respectively, in relation with the cellular automata rules of S. Wolfram. The Wolfram s classes are, on the other hand, characterized by the Langton s λ parameter in a von Neumann universe; Wolfram s classes, I and II, III and IV, correspond toλ s in following regions, 0.0 λ λc with a critical value λc 0.275, λc λ 0.50, and λ λc, respectively. There is another interesting phenomenon, 1/f fluctuations, closely related with CFP. The 1/f fluctuations of the power spectrum in thermionic tube was discovered in 1925 by J.B. Johnson [9] and now recognized ubiquitous in many different phenomena. [10] It is interesting to notice that there is an attempt (self-organized criticality or SOC) to explain the 1/f fluctuations in relation with a nonlinear process that had fractal characteristics. [10] If this explanation applies to CFP, characteristics of CFP are explained in the frame of many-particle dynamics with nonlinear interactions among 3

4 agents as investigated below. These interesting features of the complex system may appear in the cold fusion phenomenon (CFP) if CFP is characterized by many-particle effects in the CF materials where observed various events, which will be classified similarly as phenomena in the complex system. 2.2 Cold Fusion Phenomenon (CFP) and Complexity There are several evidences showing that CFP should be treated in the science of complex systems. First of all, the irreproducibility and sporadicity of CP events suggest chaotic nature of the process realizing CFP. Second, there is an evidence of possible existence of self-organization in CFP. Negele and Vautherin [11] had shown that there appears a lattice of neutron-proton cluster, the Coulomb lattice, in a thin neutron star matter. In boundary and surface regions of CF materials, there occurs a situation where neutrons in a neutron band accumulate to form a high-density state due to the local coherence realized by a dispersion relation of the band. [12,13] The density of neutrons approaches to the lower limit of the density used in the simulation by Negele and Vautherin [11] showing possible self-organization of the Coulomb lattice in CF materials even if there are crystal lattices of the host elements (e.g. Pd) that does not exist in the neutron star matter. Existence of the crystal lattice may intensify the self-organization process. Third, in addition to this theoretical analogy of CF material to the neutron star matter where many-particle effect plays essential role, there is experimental evidence showing many-particle effect of nucleons in CF materials; the stability effect in products of the nuclear transmutation in CFP, the first statistical law in CFP, discovered in [5,3] Counting a number of observations Nob(Z) of an element with an atomic number Z, from papers published in over ten years, we compared Nob(Z) with the logarithmic abundance of the element log H(Z). [14] Even if the numerical values of Nob(Z) are small and the comparison is between Nob(Z) (not log Nob(Z)) and log H(Z), there is an excellent coincidence between them except few cases at several values of Z s with such reasonable explanations for discrepancies as follows; a large value of Nob(Z) at Z = 47 (Ag) next to Pd (a major element in the system) in the periodic table and absence of Nob(Z) for noble gases Z = 10, 18, 36 (Ne, Ar, Kr) which were not tried to detect intentionally without expectation. [5] This coincidence of Nob(Z) and log H(Z) clearly shows existence of a state where nucleons interact together to form stable groups as if they are in the process realized in the evolution of stars to produce elements in the universe from the lightest component, 4

5 proton, up to the heaviest, uranium. Possible cause of this coincidence could be given by the above-mentioned self-organization in the cf materials with high-density neutrons. Fourth, the inverse power law of the power spectrum of the excess heat generation, the second law in CFP, discovered in 2004, shows another evidence of the complex nature of CFP if SOC mechanism applies. [6,3] Referring to the explanation of 1/f fluctuations in terms of the fractal, the inverse power law may also relate CFP with self-organization. Fifth, the success of the TNCF model shows complex nature of CFP on which the model based. There are numerical relations between numbers NX of events X in CFP: Nt = NQ, NNT = NQ, NHe4 = NQ, Nn / Nt 10 6, NQ Q (MeV)/5 MeV, where NQ is defined as above. These relations were semi-quantitatively explained by the TNCF model that assumes thermal neutrons in CF materials based on many-particle nature. 3. Conclusion From explanations of the complex system in general in subsection 2.1 and of the cold fusion phenomenon (CFP) in 2.2, we can guess that essential features of CFP may have close relation with the science of the complex system. These experimental facts explained in 2.2 (varieties of fields and products of CFP, numerical relations of numbers of events and two laws relating complex nature of CFP) clearly show that many-particle effects cause the cold fusion phenomenon in complex systems composed of transition metals, hydrogen isotopes, some minor elements appropriate for the transition metals, and/or hydrogen isotopes, and the background thermal neutrons. The nature of complexity will give an explanation of the large value of the excess heat Q in CFP showing 1/f fluctuation. Usually, fluctuations of a physical quantity in a system composed of a large number of particles (agents) are negligibly small. The relative fluctuations of a quantity G will usually given by an equation of the type (<G 2 > <G> 2 )/ <G> 2 = 1/<G> where the < > indicate average values and will usually be very small due to a large value of <G> in the many-particle system. However, it becomes very large near a critical point where <G> becomes very small as at the second-order phase transition. The Langton s critical parameter λc is another example to specify a point where fluctuations become very large. This is one cause of large Q if CFP is a complexity. It should be pointed out another cause to make the excess heat Q very large. There is 5

6 a tremendous difference in energy of the cause (atomic) and the effect (nuclear); nuclear energy output is 10 8 times larger than atomic energy input. The small fluctuation in atomic processes that ignite nuclear reactions may induce a huge effect due to this difference. This is the second possible cause of the large Q that together with peculiar nuclear products troubled people to understand its nature for such a long period. The nature of the complexity of CFP will be the main theme of the forthcoming investigation. References [1] M. Fleischmann, S. Pons and M. Hawkins, "Electrochemically induced Nuclear Fusion of Deuterium", J. Electroanal. Chem., 261, 301 (1989). [2] M. Fleischmann, "Cold Fusion: Past, Present and Future", Proc. ICCF7 pp (1998). [3] H. Kozima, Cold Fusion Phenomenon Rep. Fac. Science, Shizuoka University 39, (2005). [4] H. Kozima, Discovery of the Cold Fusion Phenomenon - Evolution of the Solid State-Nuclear Physics and the Energy Crisis in 21st Century, Ohtake Shuppan KK. Tokyo, Japan, ISBN [5] H. Kozima, Quantum Physics of the Cold Fusion Phenomenon in Developments in Quantum Physics, ed. F. Columbus and V. Krasnoholovets, Nova Science, New York, ISBN [6] H. Kozima, CF-Matter and the Cold Fusion Phenomenon Proc. ICCF10 (Aug , 2003, Cambridge, MA, USA) (to be published). [7] H. Kozima, Cold Fusion Phenomenon and Solid State-Nuclear Physics Proc. ICCF11 (Oct. 31 Nov. 5, 2004, Marseille, France) (to be published). [8] M.M. Waldrop, Complexity The Emerging Science at the Edge of Order and Chaos, Simon and Shuster, New York, ISBN [9] J.B. Johnson, Phys. Rev. 26, 71 (1925). [10] E. Milotti, 1/f noise: a pedagogical review [11] J.W. Negele and D. Vautherin, "Neutron Star Matter at Sub-nuclear Densities" Nuclear Physics, A207, (1973). [12] H. Kozima, "Neutron Drop; Condensation of Neutrons in Metal Hydrides and Deuterides", Fusion Technol. 37, (2000). [13] H. Kozima, Excited States of Nucleons in a Nucleus and Cold Fusion Phenomenon in Transition-Metal Hydrides and Deuterides Proc. ICCF9 (May 19-24, 2002, Beijing, China), pp (2002). [14] H.E. Suess and H.C. Urey, Abundances of the Elements Rev. Mod. Phys. 28, (1956). 6

Elemental Transmutation in Biological and Chemical Systems,

Elemental Transmutation in Biological and Chemical Systems, Cold Fusion 16, 30 32 (1996). ISSN 1074-5610. Elemental Transmutation in Biological and Chemical Systems, H. Kozima, K. Hiroe, M. Nomura, M. Ohta Department of Physics, Faculty of Science, Shizuoka University,

More information

Analysis of Nickel - Hydrogen Isotope System on T

Analysis of Nickel - Hydrogen Isotope System on T Analysis of Nickel - Hydrogen Isotope System on T CF Model KOZIMA Hideo, OHTA Masayuki, NOMURA Masahiro and HIROE K.tsuhiko Department of Physics, Faculty of Science, Shizuoka University 836 Oya, Shi.uoka

More information

Analysis of Nuclear Transmutation Induced from Metal Plus Multibody-Fusion-Products Reaction

Analysis of Nuclear Transmutation Induced from Metal Plus Multibody-Fusion-Products Reaction Ohta, M. and A. Takahashi. Analysis of Nuclear Transmutation Induced from Metal Plus Multibody-Fusion- Products Reaction. in Tenth International Conference on Cold Fusion. 2003. Cambridge, MA: LENR- CANR.org.

More information

Nuclear Transmutations (NTs) in Cold Fusion Phenomenon (CFP) and Nuclear Physics

Nuclear Transmutations (NTs) in Cold Fusion Phenomenon (CFP) and Nuclear Physics Proc. JCF14:14-15, pp. 168-202 (2014). ISSN 2187-2260 Nuclear Transmutations (NTs) in Cold Fusion Phenomenon (CFP) and Nuclear Physics H. Kozima Cold Fusion Research Laboratory, 597-16 Yatsu, Aoi, Shizuoka,

More information

Characterization of distinctive materials with which to generate nuclear transmutation *

Characterization of distinctive materials with which to generate nuclear transmutation * Reports of CFRL (Cold Fusion Research Laboratory), 9-1, pp. 1 12 (January, 2009) Characterization of distinctive materials with which to generate nuclear transmutation * Hideo Kozima Cold Fusion Research

More information

PRECISION MEASUREMENT OF EXCESS ENERGY IN ELECTROLYTIC SYSTEM Pd/D/H 2 SO 4 AND INVERSE-POWER DISTRIBUTION OF ENERGY PULSES VS.

PRECISION MEASUREMENT OF EXCESS ENERGY IN ELECTROLYTIC SYSTEM Pd/D/H 2 SO 4 AND INVERSE-POWER DISTRIBUTION OF ENERGY PULSES VS. Proc. ICCF13, Sochi, Russia, 2007 (to be published) PRECISION MEASUREMENT OF EXCESS ENERGY IN ELECTROLYTIC SYSTEM Pd/D/H 2 SO 4 AND INVERSE-POWER DISTRIBUTION OF ENERGY PULSES VS. EXCESS ENERGY H. Kozima

More information

PRECISION MEASUREMENT OF EXCESS ENERGY IN ELECTROLYTIC SYSTEM Pd/D/H2SO4 AND INVERSE-POWER DISTRIBUTION OF ENERGY PULSES VS.

PRECISION MEASUREMENT OF EXCESS ENERGY IN ELECTROLYTIC SYSTEM Pd/D/H2SO4 AND INVERSE-POWER DISTRIBUTION OF ENERGY PULSES VS. The 13th International Conference on Condensed Matter Nuclear Science. 2007. Sochi, Russia. PRECISION MEASUREMENT OF EXCESS ENERGY IN ELECTROLYTIC SYSTEM Pd/D/H2SO4 AND INVERSE-POWER DISTRIBUTION OF ENERGY

More information

Phenomenological model of collective Low Energy Nuclear Reactions (Transformation)

Phenomenological model of collective Low Energy Nuclear Reactions (Transformation) Phenomenological model of collective Low Energy Nuclear Reactions (Transformation) Introduction After the famous press conference of Fleischmann and Pons, the term "cold fusion" ingrained behind the physical

More information

Nuclear Transmutations in Polyethylene (XLPE) Films and Water

Nuclear Transmutations in Polyethylene (XLPE) Films and Water Reports of CFRL (Cold Fusion Research Laboratory), 8-2, pp. 1 16 (August, 2008) Nuclear Transmutations in Polyethylene (XLPE) Films and Water Tree Generation in Them + Hideo Kozima and Hiroshi Date* Cold

More information

Nuclear Physics and Nuclear Reactions

Nuclear Physics and Nuclear Reactions Slide 1 / 33 Nuclear Physics and Nuclear Reactions The Nucleus Slide 2 / 33 Proton: The charge on a proton is +1.6x10-19 C. The mass of a proton is 1.6726x10-27 kg. Neutron: The neutron is neutral. The

More information

Methodology of the Cold Fusion Research +

Methodology of the Cold Fusion Research + Reports of CFRL (Cold Fusion Research Laboratory), 8-5, pp. 1 27 (December, 2008) Methodology of the Cold Fusion Research + Hideo Kozima* Low Energy Nuclear Laboratory, Portland State University, Portland,

More information

CF-MATTER AND THE COLD FUSION PHENOMENON *

CF-MATTER AND THE COLD FUSION PHENOMENON * CF-MATTER AND THE COLD FUSION PHENOMENON * HIDEO KOZIMA Physics Department, Portland State University Portland, OR9707-075, USA Email address: cf-lab.kozima@nifty.ne.jp The working concept of cf-matter,

More information

Solid State-Nuclear Physics of Cold Fusion Phenomenon

Solid State-Nuclear Physics of Cold Fusion Phenomenon Report of Cold Fusion Research Laboratory 2-1, 1 35 (2004) Solid State-Nuclear Physics of Cold Fusion Phenomenon Hideo Kozima Cold Fusion Research Laboratory, Yatsu 597-16, Aoi, Shizuoka 421-1202, Japan

More information

The Cold Fusion Phenomenon and Neutrons in Solids

The Cold Fusion Phenomenon and Neutrons in Solids Proc. JCF16, 16-14, pp. 158 198 (2016). ISSN 2187-2260 The Cold Fusion Phenomenon and Neutrons in Solids Hideo Kozima and Kaori Kaki * Cold Fusion Research Laboratory http://www.geocities.jp/hjrfq930/

More information

The Cold Fusion Phenomenon in Hydrogen-graphites

The Cold Fusion Phenomenon in Hydrogen-graphites Proc. JCF12-2, pp. 77 92 (2012) The Cold Fusion Phenomenon in Hydrogen-graphites Hideo Kozima* and Masahito Tada** *Cold Fusion Research Laboratory, 597-16 Yatsu, Aoi, Shizuoka, 421-1202 Japan **Institute

More information

Are Nuclear Transmutations Observed At Low Energies Consequences Of Qed Coherence?

Are Nuclear Transmutations Observed At Low Energies Consequences Of Qed Coherence? Del Giudice, E. and A. De Ninno. Are Nuclear Transmutations Observed At Low Energies Consequences Of Qed Coherence? in Tenth International Conference on Cold Fusion. 2003. Cambridge, MA: LENR-CANR.org.

More information

Unit 1 Atomic Structure

Unit 1 Atomic Structure Unit 1 Atomic Structure 3-1 The Atom: From Philosophical Idea to Scientific Theory I. Atomic Theory A. Modern Atomic Theory 1. All matter is made up of very tiny particles called atoms 2. Atoms of the

More information

Palladium fission triggered by polyneutrons

Palladium fission triggered by polyneutrons Palladium fission triggered by polyneutrons John C. Fisher 600 Arbol Verde, Carpinteria, CA 93013 (Dated: September 29, 2006) 1 Abstract Polyneutron theory is applied to experiments of Iwamura et al. [1]

More information

Unit 1 Atomic Structure

Unit 1 Atomic Structure Unit 1 Atomic Structure Defining the Atom I. Atomic Theory A. Modern Atomic Theory 1. All matter is made up of very tiny particles called atoms 2. Atoms of the same element are chemically alike 3. Individual

More information

Unit 2: Atomic Theory Notes

Unit 2: Atomic Theory Notes Unit 2: Atomic Theory Notes The changing of a substance into one or more new substances is known as a chemical reaction. Law of conservation of mass: mass is neither created nor destroyed during ordinary

More information

Chem 481 Lecture Material 1/23/09

Chem 481 Lecture Material 1/23/09 Chem 481 Lecture Material 1/23/09 Nature of Radioactive Decay Radiochemistry Nomenclature nuclide - This refers to a nucleus with a specific number of protons and neutrons. The composition of a nuclide

More information

PHYSICS OF THE COLD FUSION PHENOMENON

PHYSICS OF THE COLD FUSION PHENOMENON Proc. ICCF13, Sochi, Russia, 2007 (to be published) PHYSICS OF THE COLD FUSION PHENOMENON Hideo Kozima Cold Fusion Research Laboratory Oya 597-16, Aoi, Shizuoka, 421-1202, Japan Abstract The cold fusion

More information

An update on Condensed Matter Nuclear Science (cold fusion) JEAN-PAUL BIBERIAN, a NICOLAS ARMAMET b

An update on Condensed Matter Nuclear Science (cold fusion) JEAN-PAUL BIBERIAN, a NICOLAS ARMAMET b Annales Fondation Louis de Broglie, Volume 33, no 1-2, 2008 45 An update on Condensed Matter Nuclear Science (cold fusion) JEAN-PAUL BIBERIAN, a NICOLAS ARMAMET b Faculté des Sciences de Luminy, Université

More information

= : K A

= : K A Atoms and Nuclei. State two limitations of JJ Thomson s model of atom. 2. Write the SI unit for activity of a radioactive substance. 3. What observations led JJ Thomson to conclusion that all atoms have

More information

ANALYSIS OF NUCLEAR TRANSMUTATION INDUCED FROM METAL PLUS MULTIBODY-FUSION- PRODUCTS REACTION

ANALYSIS OF NUCLEAR TRANSMUTATION INDUCED FROM METAL PLUS MULTIBODY-FUSION- PRODUCTS REACTION Ohta, M. and A. Takahashi. Analysis Of Nuclear Transmutation Induced From Metal Plus Multibody-Fusion- Products, Reaction PowerPoint slides. in Tenth International Conference on Cold Fusion. 23. Cambridge,

More information

A.DE NINNO, A. FRATTOLILLO, A. RIZZO. ENEA C.R. Frascati,Via E. Fermi 45, Frascati (Rome), Italy E. DEL GIUDICE

A.DE NINNO, A. FRATTOLILLO, A. RIZZO. ENEA C.R. Frascati,Via E. Fermi 45, Frascati (Rome), Italy E. DEL GIUDICE De Ninno, A., et al. 4He Detection In A Cold Fusion Experiment. in Tenth International Conference on Cold Fusion. 2003. Cambridge, MA: LENR-CANR.org. This paper was presented at the 10th International

More information

Unit 2 Atomic Structure and Nuclear Chemistry

Unit 2 Atomic Structure and Nuclear Chemistry Chemistry 1 West Linn High School Unit 2 Packet and Goals Name: Period: Unit 2 Atomic Structure and Nuclear Chemistry Unit Goals: As you work through this unit, you should be able to: 1. describe Dalton

More information

Theoretical basics and modern status of radioactivity studies

Theoretical basics and modern status of radioactivity studies Leonid Grigorenko Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research Dubna, Russia Theoretical basics and modern status of radioactivity studies Lecture 2: Radioactivity Coefficients

More information

Mass number i. Example U (uranium 235) and U (uranium 238) atomic number e. Average atomic mass weighted of the isotopes of that element i.

Mass number i. Example U (uranium 235) and U (uranium 238) atomic number e. Average atomic mass weighted of the isotopes of that element i. CP NT Ch. 4&25 I. Atomic Theory and Structure of the Atom a. Democritus all matter consists of very small, indivisible particles, which he named i. Atom smallest particle of an element that retains all

More information

Chapter 10 Section 4 Notes

Chapter 10 Section 4 Notes Chapter 10 Section 4 Notes This painting of an alchemist s laboratory was made around 1570. For centuries, these early scientists, known as alchemists, tried to use chemical reactions to make gold. The

More information

SECTION A Quantum Physics and Atom Models

SECTION A Quantum Physics and Atom Models AP Physics Multiple Choice Practice Modern Physics SECTION A Quantum Physics and Atom Models 1. Light of a single frequency falls on a photoelectric material but no electrons are emitted. Electrons may

More information

CHAPTER 19 THE ATOMIC NUCLEUS NUCLEAR STRUCTURE The nucleus consists of protons and neutrons. A protonis a positively charged particle having mass 1.6726 x 10(-27) kg and charge 1.6 x 10(-19) coulomb.

More information

SEARCH FOR COHERENT DEUTERON FUSION BY BEAM AND ELECTROLYSIS EXPERIMENTS

SEARCH FOR COHERENT DEUTERON FUSION BY BEAM AND ELECTROLYSIS EXPERIMENTS Isobe, Y., et al. Search for Coherent Deuteron Fusion by Beam and Electrolysis Experiments. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna,

More information

Six Sketches on Complexity and Wavefunctions in

Six Sketches on Complexity and Wavefunctions in 1 Report of the Cold Fusion Research Laboratory 5-1, 1 (September, 2007) Six Sketches on Complexity and Wavefunctions in the Cold Fusion Phenomenon + Hideo Kozima* Low Energy Nuclear Laboratory, Portland

More information

CF-Matter and the Cold Fusion Phenomenon

CF-Matter and the Cold Fusion Phenomenon Kozima, H. CF-Matter and the Cold Fusion Phenomenon. in Tenth International Conference on Cold Fusion. 2003. Cambridge, MA: LENR-CANR.org. This paper was presented at the 0th International Conference on

More information

Search for Nuclear Reaction Products in Gas Phase Experiments - Deuterium Permeation and Absorption -

Search for Nuclear Reaction Products in Gas Phase Experiments - Deuterium Permeation and Absorption - Session 3 O_2 Nuclear Measurements (I) Search for Nuclear Reaction Products in Gas Phase Experiments - Deuterium Permeation and Absorption - A. Kitamura 1, Y. Sasaki 1, Y. Miyoshi 1, Y. Yamaguchi 1, A.

More information

Phys 102 Lecture 27 The strong & weak nuclear forces

Phys 102 Lecture 27 The strong & weak nuclear forces Phys 102 Lecture 27 The strong & weak nuclear forces 1 4 Fundamental forces of Nature Today Gravitational force (solar system, galaxies) Electromagnetic force (atoms, molecules) Strong force (atomic nuclei)

More information

HOMEWORK 22-1 (pp )

HOMEWORK 22-1 (pp ) CHAPTER 22 HOMEWORK 22-1 (pp. 701 702) Define. 1. nucleons 2. nuclide 3. mass defect 4. nuclear binding energy Solve. Use masses of 1.0087 amu for the neutron, 1.00728 amu for the proton, and 5.486 x 10

More information

NUCLEAR PRODUCTS IN A GAS-LOADIND D/PD AND H/PD SYSTEM

NUCLEAR PRODUCTS IN A GAS-LOADIND D/PD AND H/PD SYSTEM NUCLEAR PRODUCTS IN A GAS-LOADIND D/PD AND H/PD SYSTEM G.S.Qiao, X.L.Han, L.C.Kong, S.X.Zheng, H.F.Huang Y.J.Yan, Q.L.Wu, Y.Deng, S.L.Lei, X.Z.Li Department of Physics, Tsinghua University, Beijing 100084,

More information

EDULABZ INTERNATIONAL 3 STRUCTURE OF ATOMS

EDULABZ INTERNATIONAL 3 STRUCTURE OF ATOMS 3 STRUCTURE OF ATOMS I. Multiple choice questions (Tick the correct option). 1. Which one of the following proposed the atomic theory of matter? (a) John Dalton (b) J.J. Thomson (c) Rutherford (d) Niels

More information

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart?

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? Question 32.1 The Nucleus There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? a) Coulomb repulsive force doesn t act inside the nucleus b) gravity overpowers the Coulomb repulsive

More information

Glencoe: Chapter 4. The Structure of the Atom

Glencoe: Chapter 4. The Structure of the Atom Glencoe: Chapter 4 The Structure of the Atom Section One: Early Ideas about Matter Atomists and Democritus : 400 B.C. From Thrace in Greece. Atoms- Uncut-Table Indivisible parts which cannot be broken

More information

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry Radioactivity & Nuclear Chemistry Mr. Matthew Totaro Legacy High School Chemistry The Discovery of Radioactivity Antoine-Henri Becquerel designed an experiment to determine if phosphorescent minerals also

More information

HOME NEWS CONFERENCES CONVERSATIONS LINKS SUPPORT ABOUT. Cold Fusion for Dummies. (Last update: Jan. 6, 2006)

HOME NEWS CONFERENCES CONVERSATIONS LINKS SUPPORT ABOUT. Cold Fusion for Dummies. (Last update: Jan. 6, 2006) 1 of 6 6/23/2006 10:57 AM Your best source for cold fusion news and information WWW nmlkji Google Search nmlkj HOME NEWS CONFERENCES CONVERSATIONS LINKS SUPPORT ABOUT By Edmund Storms Santa Fe, NM Cold

More information

The strong & weak nuclear forces

The strong & weak nuclear forces Phys 102 Lecture 27 The strong & weak nuclear forces 1 4 Fundamental forces of Nature Today Gravitational force (solar system, galaxies) Electromagnetic force (atoms, molecules) Strong force (atomic nuclei)

More information

Chapter 12: Nuclear Reaction

Chapter 12: Nuclear Reaction Chapter 12: Nuclear Reaction A nuclear reaction occurs when a nucleus is unstable or is being bombarded by a nuclear particle. The product of a nuclear reaction is a new nuclide with an emission of a nuclear

More information

Exothermic reaction induced by high density current in metals Possible nuclear origin JACQUES DUFOUR, DENIS MURAT, XAVIER DUFOUR, JACQUES FOS

Exothermic reaction induced by high density current in metals Possible nuclear origin JACQUES DUFOUR, DENIS MURAT, XAVIER DUFOUR, JACQUES FOS Annales de la Fondation Louis de Broglie, Volume 29, Hors série 3, 2004 1081 Exothermic reaction induced by high density current in metals Possible nuclear origin JACQUES DUFOUR, DENIS MURAT, XAVIER DUFOUR,

More information

NUCLEI, RADIOACTIVITY AND NUCLEAR REACTIONS

NUCLEI, RADIOACTIVITY AND NUCLEAR REACTIONS NUCLEI, RADIOACTIVITY AND NUCLEAR REACTIONS VERY SHORT ANSWER QUESTIONS Q-1. Which of the two is bigger 1 kwh or 1 MeV? Q-2. What should be the approximate minimum energy of a gamma ray photon for pair

More information

Section 2: Nuclear Fission and Fusion. Preview Key Ideas Bellringer Nuclear Forces Nuclear Fission Chain Reaction Nuclear Fusion

Section 2: Nuclear Fission and Fusion. Preview Key Ideas Bellringer Nuclear Forces Nuclear Fission Chain Reaction Nuclear Fusion : Nuclear Fission and Fusion Preview Key Ideas Bellringer Nuclear Forces Nuclear Fission Chain Reaction Nuclear Fusion Key Ideas What holds the nuclei of atoms together? What is released when the nucleus

More information

Fig.1 Pyrex glass cell

Fig.1 Pyrex glass cell Arapi, A., et al. Experimental observation of the new elements production in the deuterated and/or hydride palladium electrodes, exposed to low energy DC glow discharge. in The 9th International Conference

More information

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below:

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below: ATOMIC STRUCTURE An atom is composed of a positive nucleus surrounded by negatively charged electrons. The nucleus is composed of protons and neutrons. The protons and neutrons in a nucleus are referred

More information

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions Atomic and Nuclear Physics Topic 7.3 Nuclear Reactions Nuclear Reactions Rutherford conducted experiments bombarding nitrogen gas with alpha particles from bismuth-214. He discovered that fast-moving particles

More information

Name: Date: ChemT1. 1) Using the diagram above, answer the following question: What can be inferred from the diagram about the structure of the atom?

Name: Date: ChemT1. 1) Using the diagram above, answer the following question: What can be inferred from the diagram about the structure of the atom? Name: Date: ChemT1 1) Using the diagram above, answer the following question: What can be inferred from the diagram about the structure of the atom? A. the atom is very small B. the electrons are moving

More information

RADIOACTIVITY. Nature of Radioactive Emissions

RADIOACTIVITY. Nature of Radioactive Emissions 1 RADIOACTIVITY Radioactivity is the spontaneous emissions from the nucleus of certain atoms, of either alpha, beta or gamma radiation. These radiations are emitted when the nuclei of the radioactive substance

More information

RELATION BETWEEN NEUTRON EVOLUTION AND DEUTERIUM

RELATION BETWEEN NEUTRON EVOLUTION AND DEUTERIUM The Ninth International Conference on Cold Fusion. 2002. Beijing, China: Tsinghua University. RELATION BETWEEN NEUTRON EVOLUTION AND DEUTERIUM PERMEATION WITH A PALLADIUM ELECTRODE Tadahiko Mizuno, Tadashi

More information

Neutrons and Radiation From Deuteron Stripping in Metals That Absorb Hydrogen

Neutrons and Radiation From Deuteron Stripping in Metals That Absorb Hydrogen Neutrons and Radiation From Deuteron Stripping in Metals That Absorb Hydrogen ICCF-18 Columbia, MO July 25, 2013 Thomas O. Passell TOP Consulting TOP94302@Gmail.Com 23 Metals known to Absorb & Allow Transport

More information

All atoms of an element must have the same number of protons but not neutrons.

All atoms of an element must have the same number of protons but not neutrons. Counting Atoms Key Terms atomic number nuclide mole isotope unified atomic mass unit Avogadro s number mass number average atomic mass molar mass Consider neon, Ne, the gas used in many illuminated signs.

More information

Physics 142 Modern Physics 2 Page 1. Nuclear Physics

Physics 142 Modern Physics 2 Page 1. Nuclear Physics Physics 142 Modern Physics 2 Page 1 Nuclear Physics The Creation of the Universe was made possible by a grant from Texas Instruments. Credit on a PBS Program Overview: the elements are not elementary The

More information

10.4 Fission and Fusion

10.4 Fission and Fusion This painting of an alchemist s laboratory was made around 1570. For centuries, these early scientists, known as alchemists, tried to use chemical reactions to make gold. The alchemists failed in their

More information

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy ~ TRANSMUTATION: the change of one element into another due to

More information

Chem 1075 Chapter 5 Models of the Atom Lecture Outline

Chem 1075 Chapter 5 Models of the Atom Lecture Outline Chem 1075 Chapter 5 Models of the Atom Lecture Outline Slide 2 Dalton Model of the Atom John Dalton proposed that is made up of The particles are or can be broken down into by chemical processes. cannot

More information

The Emergence of a Coherent Explanation for Anomalies Observed in D/Pd and H/Pd Systems; Evidence for 4 He and 3 He Production

The Emergence of a Coherent Explanation for Anomalies Observed in D/Pd and H/Pd Systems; Evidence for 4 He and 3 He Production McKubre, M.C.H., et al. The Emergence of a Coherent Explanation for Anomalies Observed in D/Pd and H/Pd System: Evidence for 4He and 3He Production. in 8th International Conference on Cold Fusion. 2. Lerici

More information

6 Neutrons and Neutron Interactions

6 Neutrons and Neutron Interactions 6 Neutrons and Neutron Interactions A nuclear reactor will not operate without neutrons. Neutrons induce the fission reaction, which produces the heat in CANDU reactors, and fission creates more neutrons.

More information

A. Element 1. The number of protons and neutrons of an atom.

A. Element 1. The number of protons and neutrons of an atom. Unit 03: Test Review Atoms and Elements Key Term Definition A. Element 1. The number of protons and neutrons of an atom. B. Atom 2. The smallest particle of an element. C. Atomic Number 3. A primary substance

More information

Chapter 18 Nuclear Chemistry

Chapter 18 Nuclear Chemistry Chapter 8 Nuclear Chemistry 8. Discovery of radioactivity 895 Roentgen discovery of radioactivity X-ray X-ray could penetrate other bodies and affect photographic plates led to the development of X-ray

More information

Name Date Due Test Day! Unit 1: Atomic Theory. Pretest Practice K +

Name Date Due Test Day! Unit 1: Atomic Theory. Pretest Practice K + ! 2017-2018 Name Date Due Test Day! Unit 1: Atomic Theory Pretest Practice 1.) Complete the following table: Work space (if needed)! 2.) What do the superscripts and subscript represent in the symbol below?

More information

Nuclear reactions produced in an operating electrolysis cell. Abstract

Nuclear reactions produced in an operating electrolysis cell. Abstract Nuclear reactions produced in an operating electrolysis cell R. A. Oriani University of Minnesota, Minneapolis, MN 55419 J. C. Fisher 600 Arbol Verde, Carpinteria, CA 93013 (Dated: December 19, 2004) Abstract

More information

Neutron Burst Emissions from Uranium Deuteride and Deuterium-loaded Titanium

Neutron Burst Emissions from Uranium Deuteride and Deuterium-loaded Titanium J. Condensed Matter Nucl. Sci. 13 (2014) 253 263 Research Article Neutron Burst Emissions from Uranium Deuteride and Deuterium-loaded Titanium Songsheng Jiang, Xiaoming Xu, Liqun Zhu, Shaogang Gu, Xichao

More information

L 37 Modern Physics [3] The atom and the nucleus. Structure of the nucleus. Terminology of nuclear physics SYMBOL FOR A NUCLEUS FOR A CHEMICAL X

L 37 Modern Physics [3] The atom and the nucleus. Structure of the nucleus. Terminology of nuclear physics SYMBOL FOR A NUCLEUS FOR A CHEMICAL X L 37 Modern Physics [3] [L37] Nuclear physics what s inside the nucleus and what holds it together what is radioactivity carbon dating [L38] Nuclear energy nuclear fission nuclear fusion nuclear reactors

More information

Binding Energy. Bởi: OpenStaxCollege

Binding Energy. Bởi: OpenStaxCollege Binding Energy Bởi: OpenStaxCollege The more tightly bound a system is, the stronger the forces that hold it together and the greater the energy required to pull it apart. We can therefore learn about

More information

Nuclear Chemistry Notes

Nuclear Chemistry Notes Nuclear Chemistry Notes Definitions Nucleons: Subatomic particles in the nucleus : protons and neutrons Radionuclides: Radioactive nuclei. Unstable nuclei that spontaneously emit particles and electromagnetic

More information

Alternate Interpretation of the Original Fleischmann and Pons Experiments

Alternate Interpretation of the Original Fleischmann and Pons Experiments Alternate Interpretation of the Original Fleischmann and Pons Experiments William L. Stubbs 1961 SW Davis St., Port St. Lucie FL 34953 Email: ift22c@bellsouth.net Abstract: A case is made for the fusion

More information

Recap I Lecture 41 Matthias Liepe, 2012

Recap I Lecture 41 Matthias Liepe, 2012 Recap I Lecture 41 Matthias Liepe, 01 Recap II Nuclear Physics The nucleus Radioactive decay Fission Fusion Particle Physics: What is the Higgs? Today: Nuclear Physics: The Nucleus Positive charge and

More information

MODELS FOR ANOMALIES IN CONDENSED MATTER DEUTERIDES

MODELS FOR ANOMALIES IN CONDENSED MATTER DEUTERIDES MODELS FOR ANOMALIES IN CONDENSED MATTER DEUTERIDES PETER L. HAGELSTEIN Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139,USA and Spindletop Corporation, Mountain

More information

Ch05. Radiation. Energy and matter that comes from the nucleus of an atom. version 1.6

Ch05. Radiation. Energy and matter that comes from the nucleus of an atom. version 1.6 Ch05 Radiation Energy and matter that comes from the nucleus of an atom. version 1.6 Nick DeMello, PhD. 2007-2016 Ch05 Radiation The Discovery of Radioactivity Phosphorescence Radioactive history Antoine

More information

Name Chemistry-PAP Per. Notes: Atomic Structure

Name Chemistry-PAP Per. Notes: Atomic Structure Name Chemistry-PAP Per. I. Historical Development of the Atomic Model Ancient Greek Model Notes: Atomic Structure Democritus (460-370 BC) was an ancient Greek philosopher credited with the first particle

More information

Saint Lucie County Science Scope and Sequence

Saint Lucie County Science Scope and Sequence Course: Honors Physics 1 Course Code: 2003390 UNIT 9 TOPIC of STUDY: Electricity STANDARDS: 10: Energy ~The electric force between two charged particles depends upon the size of the charge and the distance

More information

CATHODE MATERIAL CHANGE AFTER DEUTERIUM GLOW DISCHARGE EXPERIMENTS

CATHODE MATERIAL CHANGE AFTER DEUTERIUM GLOW DISCHARGE EXPERIMENTS Savvatimova, I., Y. Kucherov, and A.B. Karabut. Cathode Material Change after Deuterium Glow Discharge Experiments. in Fourth International Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power

More information

Chapter 3 https://youtu.be/thndxfdkzzs?list=pl8dpuualjx tphzzyuwy6fyeax9mqq8ogr

Chapter 3 https://youtu.be/thndxfdkzzs?list=pl8dpuualjx tphzzyuwy6fyeax9mqq8ogr Chapter 3 https://youtu.be/thndxfdkzzs?list=pl8dpuualjx tphzzyuwy6fyeax9mqq8ogr The smallest particle of an element that retains the chemical properties of that element. Regions: Nucleus: very small region

More information

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions. 1 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

CHEMISTRY I - HONORS MIDTERM REVIEW* *Test may cover other topics not included on this review, yet have been covered throughout the semester.

CHEMISTRY I - HONORS MIDTERM REVIEW* *Test may cover other topics not included on this review, yet have been covered throughout the semester. Name Period CHEMISTRY I - HONORS MIDTERM REVIEW* *Test may cover other topics not included on this review, yet have been covered throughout the semester. Chapter 2 Measurement & Calculations Describe the

More information

CP/Honors Chemistry Unit 3: Atomic Theory Sections 4.1, 4.2, 4.3

CP/Honors Chemistry Unit 3: Atomic Theory Sections 4.1, 4.2, 4.3 CP/Honors Chemistry Unit 3: Atomic Theory Sections 4.1, 4.2, 4.3 Subatomic Particles Warm-Up Quiz 1. What are the three subatomic particles? 2. Where are the particles located in the atom? 3. What are

More information

LABORATORI NAZIONALI DI FRASCATI SIS Pubblicazioni

LABORATORI NAZIONALI DI FRASCATI SIS Pubblicazioni LABORATORI NAZIONALI DI FRASCATI SIS Pubblicazioni LNF 06/ 19 (P) 10 Luglio 2006 THE ITALY-JAPAN PROJECT-FUNDAMENTAL RESEARCH ON COLD TRANSMUTATION PROCESS FOR TREATMENT OF NUCLEAR WASTES Akito Takahashi

More information

Nuclear Reactions. Fission Fusion

Nuclear Reactions. Fission Fusion Nuclear Reactions Fission Fusion Nuclear Reactions and the Transmutation of Elements A nuclear reaction takes place when a nucleus is struck by another nucleus or particle. Compare with chemical reactions!

More information

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Lecture 14, 8/9/2017 Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Nuclear Reactions and the Transmutation of Elements A nuclear reaction takes place

More information

POGIL: Fission Fusion

POGIL: Fission Fusion Name: Date: Period: Chemistry POGIL: Fission Fusion Why? Up until the 9 s, the only nuclear reactions that had been observed involved nuclei either capturing or emitting small particles such as alpha and

More information

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983)

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983) Fundamental Forces Force Relative Strength Range Carrier Observed? Gravity 10-39 Infinite Graviton No Weak 10-6 Nuclear W+ W- Z Yes (1983) Electromagnetic 10-2 Infinite Photon Yes (1923) Strong 1 Nuclear

More information

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? Nuclear Physics Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Teacher: Mr. gerraputa. Name: Base your answer to the question on the information below. Given the electron dot diagram:

Teacher: Mr. gerraputa. Name: Base your answer to the question on the information below. Given the electron dot diagram: Teacher: Mr. gerraputa Print Close Name: 1. Given the electron dot diagram: The valence electrons represented by the electron dot diagram could be those of atoms in Group 1. 13 3. 3 2. 15 4. 16 2. Which

More information

Chapter 3. Atoms: Building Blocks of Matter

Chapter 3. Atoms: Building Blocks of Matter Chapter 3 Atoms: Building Blocks of Matter Atom: means, from Democritus (Greek, 400BC) Atom: smallest particle of an element that retains the of that element Chemical Reaction: transformation of substances

More information

What is now known about cold fusion? (Addendum to the Student s Guide) Edmund Storms March 23, 2011

What is now known about cold fusion? (Addendum to the Student s Guide) Edmund Storms March 23, 2011 1 What is now known about cold fusion? (Addendum to the Student s Guide) Edmund Storms March 23, 2011 This is an addendum to the Student s Guide to Cold Fusion that clarifies several issues based on the

More information

What is a theory? An organized system of accepted knowledge that applies in a variety of circumstances to explain a specific set of phenomena

What is a theory? An organized system of accepted knowledge that applies in a variety of circumstances to explain a specific set of phenomena Atomic Structure What is a theory? An organized system of accepted knowledge that applies in a variety of circumstances to explain a specific set of phenomena Early Theories Democritus: 4 B.C.: atom He

More information

Atom Practice Test (#1) 1) What is the total number of valence electrons in an atom with the electron configuration 2-8-5? a) 2 b) 5 c) 8 d) 15

Atom Practice Test (#1) 1) What is the total number of valence electrons in an atom with the electron configuration 2-8-5? a) 2 b) 5 c) 8 d) 15 Atom Practice Test (#1) Name Multiple Choice 1 pt. each 1) What is the total number of valence electrons in an atom with the electron configuration 2-8-5? a) 2 b) 5 c) 8 d) 15 2) A Ca 2+ ion differs from

More information

4.1 Structure of the Atom

4.1 Structure of the Atom 4.1 Structure of the Atom How do atoms differ from each other? What are atoms composed of? What are the subatomic particles? 2-1 Structure of the Atom Atoms actually are divisible. They are composed of

More information

Chapter 21 Nuclear Chemistry

Chapter 21 Nuclear Chemistry Chapter 21 Nuclear Chemistry The Nucleus Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons is the atomic number. The number of protons and neutrons

More information

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Lecture 11 1.) Determination of parameters of the SEMF 2.) α decay 3.) Nuclear energy levels

More information

How to Cause Nuclear Reactions at Low Energy and Why Should You Care

How to Cause Nuclear Reactions at Low Energy and Why Should You Care How to Cause Nuclear Reactions at Low Energy and Why Should You Care Edmund Storms, Ph.D. Santa Fe, NM These slides are from this video lecture: http://www.youtube.com/view_play_list?p=3b79262131ca1bcf

More information

L 36 Modern Physics [3] The atom and the nucleus. Structure of the nucleus. The structure of the nucleus SYMBOL FOR A NUCLEUS FOR A CHEMICAL X

L 36 Modern Physics [3] The atom and the nucleus. Structure of the nucleus. The structure of the nucleus SYMBOL FOR A NUCLEUS FOR A CHEMICAL X L 36 Modern Physics [3] [L36] Nuclear physics what s inside the nucleus and what holds it together what is radioactivity carbon dating [L37] Nuclear energy nuclear fission nuclear fusion nuclear reactors

More information

FOUNDATIONS OF NUCLEAR CHEMISTRY

FOUNDATIONS OF NUCLEAR CHEMISTRY FOUNDATIONS OF NUCLEAR CHEMISTRY Michele Laino January 8, 2016 Abstract In this brief tutorial, some of basics of nuclear chemistry are shown. Such tutorial it is mainly focused on binding energy of nuclei

More information

Nuclear Chemistry. The Nucleus. Isotopes. Slide 1 / 43. Slide 2 / 43. Slide 3 / 43

Nuclear Chemistry. The Nucleus. Isotopes. Slide 1 / 43. Slide 2 / 43. Slide 3 / 43 Slide 1 / 43 Nuclear Chemistry The Nucleus Slide 2 / 43 Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons is the atomic number. The number of protons

More information