types of codon models

Size: px
Start display at page:

Download "types of codon models"

Transcription

1 part 3: analysis of natural selection pressure omega models! types of codon models if i and j differ by > π j for synonymous tv. Q ij = κπ j for synonymous ts. ωπ j for non-synonymous tv. ωκπ j for non-synonymous ts. Goldman(and(Yang((994)( Muse(and(Gaut((994)(

2 this codon model M omega models! if i and j differ by > π j for synonymous tv. Q ij = κπ j for synonymous ts. ωπ j for non-synonymous tv. ωκπ j for non-synonymous ts. Goldman(and(Yang((994)( Muse(and(Gaut((994)( x x 2! x 3 x 4 t :ω j t 2 :ω t 3 :ω t 4 :ω ω t 5 t:ω 4 k GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC GCC TGG GGC AAG GTT G.C T....T C..T A..... A.T AA... A.C.....C... G.A.AT.....A A..... AA. TG......G... A C..G GA...T T C....G..A... AT......T.....G same ω for all branches same ω for all sites two basic types of models t :ω x x 2! x 3 x 4 j t 4 :ω t 5 :ω t 2 :ω t 3 :ω t 4 :ω k branch models (ω varies among branches) ω ω ω ω ω GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC GCC TGG GGC AAG GTT G.C T....T C..T A..... A.T AA... A.C.....C... G.A.AT.....A A..... AA. TG......G... A C..G GA...T T C....G..A... AT......T.....G site models (ω varies among sites) 2

3 interpretation of a branch model x x 2! x 3 x 4 t :ω j t 2 :ω t 3 :ω t 4 :ω t 4 :ω t 5 :ω k episodic adaptive evolution of a novel function with ω > branch models* x x 2! x 3 x 4 t :ω j t 2 :ω t 3 :ω t 4 :ω t 4 :ω t 5 :ω k variation (ω) among branches: approach Yang, 998 fixed effects Bielawski and Yang, 23 Seo et al. 24 Kosakovsky Pond and Frost, 25 Dutheil et al. 22 fixed effects auto-correlated rates genetic algorithm clustering algorithm * these methods can be useful when selection pressure is strongly episodic 3

4 site models* GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC GCC TGG GGC AAG GTT GGC GCG CAC G.C T....T GC A C..T A..... A.T AA... A.C... AGC C... G.A.AT.....A A..... AA. TG......G... A....T.GC..T.....C..G GA...T T C....G..A... AT......T.....G..A.GC... variation (ω) among sites: Yang and Swanson, 22 Bao, Gu and Bielawski, 26 Massingham and Goldman, 25 Kosakovsky Pond and Frost, 25 Nielsen and Yang, 998 Kosakovsky Pond, Frost and Muse, 25 Huelsenbeck and Dyer, 24; Huelsenbeck et al. 26 Rubenstein et al. 2 Bao, Gu, Dunn and Bielawski 28 & 2 Murell et al. 23 approach fixed effects (ML) fixed effects (ML) site wise (LRT) site wise (LRT) mixture model (ML) mixture model (ML) mixture (Bayesian) mixture model (ML) mixture (LiBaC/MBC) mixture (Bayesian) useful when at some sites evolve under diversifying selection pressure over long periods of time this is not a comprehensive list site models: discrete model (M3) mixture-model likelihood! K P(x h ) = p i P(x h ω i ) i= conditional likelihood calculation (see part ) ω =. ω =. ω 2 = 2. 4

5 interpretation of a sites-model % of sites diversifying selection (frequency dependent) at 5% of sites with ω 2 = 2 ω =. ω =. ω 2 = 2. models for variation among branches & sites x x 2 x 3 x 4 ω ω ω ω ω t :ω t 2 :ω j t :ω t 3 :ω t 4 :ω GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC GCC TGG GGC AAG GTT G.C T....T C..T A..... A.T AA... A.C.....C... G.A.AT.....A A..... AA. TG......G... A C..G GA...T T C....G..A... AT......T.....G k branch models (ω varies among branches) site models (ω varies among sites) branch-site models (combines the features of above models) 5

6 models for variation among branches & sites variation (ω) among branches & sites: approach Yang and Nielsen, 22 fixed+mixture (ML) Forsberg and Christiansen, 23 fixed+mixture (ML) Bielawski and Yang, 24 fixed+mixture (ML) Giundon et al., 24 Zhang et al. 25 Kosakovsky Pond et al. 2, 22 switching (ML) fixed+mixture (ML) full mixture (ML) * these methods can be useful when selection pressures change over time at just a fraction of sites * it can be a challenge to apply these methods properly (more about this later) branch-site Model B mixture-model likelihood! P( x h ) = K i= p P( x i h ω ) i Foreground branch only ω ω ω =. =.9 = 5.55 ω for background branches are from site-classes and 2 (. or.9) 6

7 two scenarios can yield branch-sites with dn/ds > % of sites Foreground (FG) branch only % of sites have shifting balance on a fixed peak (same function) ω =. ω =.9 ω FG = 5.55 episodic adaptive evolution at % of sites for novel function branch-site codon models cannot tell which scenario is correct without external information! Jones et al (26) MBE omega models! model-based inference if i and j differ by > π j for synonymous tv. Q ij = κπ j for synonymous ts. ωπ j for non-synonymous tv. ωκπ j for non-synonymous ts. Goldman(and(Yang((994)( Muse(and(Gaut((994)( 7

8 model based inference 3 analytical tasks task. parameter estimation (e.g., ω) task 2. hypothesis testing task 3. make predictions (e.g., sites having ω > ) task : parameter estimation t, κ, ω = unknown constants estimated by ML π s = empirical [GY: F3 4 or F6 in Lab] use a numerical hill-climbing algorithm to maximize the likelihood function 8

9 Sooner or later you ll get it task : parameter estimation Parameters: t and ω Gene: acetylcholine α receptor mouse human common ancestor Sooner or later you ll get it lnl = task 2: statistical significance task. parameter estimation (e.g., ω) task 2. hypothesis testing LRT task 3. prediction / site identification 9

10 task 2: likelihood ratio test for positive selection H : variable selective pressure but NO positive selection (M) H : variable selective pressure with positive selection (M2) Compare 2Δl = 2(l - l ) with a χ 2 distribution Model a (Ma) Model 2a (M2a) ωˆ =.5 (ω = ) ωˆ =.5 (ω = ) ωˆ = 3.25 task 2: likelihood ratio test for positive selection H : Beta distributed variable selective pressure (M7) H : Beta plus positive selection (M8) Compare 2Δl = 2(l - l ) with a χ 2 distribution M7: beta M8: beta & ω sites sites ω ratio ω ratio >

11 task 3: identify the selected sites task. parameter estimation (e.g., ω) task 2. hypothesis testing task 3. prediction / site identification Bayes rule task 3: which sites have dn/ds > model: 9% have ω > Bayes rule: site 4, 2 & 3 GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC GCC TGG GGC AAG GTT GGC GCG CAC G.C T....T GC A C..T A..... A.T AA... A.C... AGC C... G.A.AT.....A A..... AA. TG......G... A....T.GC..T.....C..G GA...T T C....G..A... AT......T.....G..A.GC... structure: sites are in contact

12 review the mixture likelihood (model M3) K P(x h ) = p(ω i )P(x h ω i ) i= Total probability Prior Likelihood ω ω ω 2 p p p 2 =.3 =.4 = 4. =.85 =. =.5 Bayes rule for identifying selected sites? Site class : ω =.3, 85% of codon sites Site class : ω =.4, % of codon sites Site class 2: ω 2 = 4, 5% of codon sites Prior probability of hypothesis (ω 2 ) Likelihood of hypothesis (ω 2 ) ( ) P(ω 2 x h ) = P(ω 2 )P x h ω 2 K i= P(ω i )P( x h ω i ) Posterior probability of hypothesis (ω 2 ) Marginal probability (Total probability) of the data 2

13 task 3: Bayes rule for which sites have dn/ds > (",-./2%3454/67%837/56% 956:3843%837/56% >5:;38/58%.85?-?//;2%!#'"!#&"!#%"!#$"!" (" &" ((" (&" $(" $&" )(" )&" %(" %&" *(" *&" &(" &&" +(" +&" '(" '&",(",&" (!(" (!&" (((" ((&" ($(" ($&" ()(" ()&" (%(" (%&" (*(" (*&" (&(" (&&" (+(" (+&" ('(" ('&" (,(" (,&" $!(" Site class : ω =.3 (strong purifying selection) Site class : ω =.4 (weak purifying selection) Site class 2: ω 2 = 4 (positive selection) NOTE: The posterior probability should NOT be interpreted as a P-value ; it can be interpreted as a measure of relative support, although there is rarely any attempt at calibration. task 3: Bayes rule for which sites have dn/ds > Bayes rule empirical Bayes bootstrap NEB Naive Empirical Bayes Nielsen and Yang, 998 assumes no MLE errors BEB Bayes Empirical Bayes Yang et al., 25 accommodate MLE errors for some model parameters via uniform priors SBA Smoothed bootstrap aggregation Mingrone et al., MBE, 33: accommodate MLE errors via bootstrapping ameliorates biases and MLE instabilities with kernel smoothing and aggregation 3

14 critical question: Have the requirements for maximum likelihood inference been met? (rarely addressed in real data analyses) regularity conditions have been met Frequency Frequency p ω> w ω> Normal MLE uncertainty (M2a) large sample size with regularity conditions MLEs approximately unbiased and minimum variance ( ( ) ) θ ˆ ~ N θ, I θ ˆ 4

15 regularity conditions have NOT been met Frequency Frequency 5 5 bootstrapping can be used to diagnose this problem: Bielawski et al. (26) Curr. Protoc. Bioinf. 56:6.5. Mingrone et al., MBE, 33: p ω> w ω> MLE instabilities (M2a) small sample sizes and θ on boundary continuous θ has been discretized (e.g., M2a) non-gaussian, over-dispersed, divergence among datasets 5

part 3: analysis of natural selection pressure

part 3: analysis of natural selection pressure part 3: analysis of natural selection pressure markov models are good phenomenological codon models do have many benefits: o principled framework for statistical inference o avoiding ad hoc corrections

More information

part 4: phenomenological load and biological inference. phenomenological load review types of models. Gαβ = 8π Tαβ. Newton.

part 4: phenomenological load and biological inference. phenomenological load review types of models. Gαβ = 8π Tαβ. Newton. 2017-07-29 part 4: and biological inference review types of models phenomenological Newton F= Gm1m2 r2 mechanistic Einstein Gαβ = 8π Tαβ 1 molecular evolution is process and pattern process pattern MutSel

More information

Codon-model based inference of selection pressure. (a very brief review prior to the PAML lab)

Codon-model based inference of selection pressure. (a very brief review prior to the PAML lab) Codon-model based inference of selection pressure (a very brief review prior to the PAML lab) an index of selection pressure rate ratio mode example dn/ds < 1 purifying (negative) selection histones dn/ds

More information

codon substitution models and the analysis of natural selection pressure

codon substitution models and the analysis of natural selection pressure 2015-07-20 codon substitution models and the analysis of natural selection pressure Joseph P. Bielawski Department of Biology Department of Mathematics & Statistics Dalhousie University introduction morphological

More information

Practical Bioinformatics

Practical Bioinformatics 5/2/2017 Dictionaries d i c t i o n a r y = { A : T, T : A, G : C, C : G } d i c t i o n a r y [ G ] d i c t i o n a r y [ N ] = N d i c t i o n a r y. h a s k e y ( C ) Dictionaries g e n e t i c C o

More information

Why do more divergent sequences produce smaller nonsynonymous/synonymous

Why do more divergent sequences produce smaller nonsynonymous/synonymous Genetics: Early Online, published on June 21, 2013 as 10.1534/genetics.113.152025 Why do more divergent sequences produce smaller nonsynonymous/synonymous rate ratios in pairwise sequence comparisons?

More information

Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive Selection

Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive Selection Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive Selection Ziheng Yang,* Wendy S.W. Wong, and Rasmus Nielsen à *Department of Biology, University College London, London, United Kingdom;

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Supporting Information for. Initial Biochemical and Functional Evaluation of Murine Calprotectin Reveals Ca(II)-

Supporting Information for. Initial Biochemical and Functional Evaluation of Murine Calprotectin Reveals Ca(II)- Supporting Information for Initial Biochemical and Functional Evaluation of Murine Calprotectin Reveals Ca(II)- Dependence and Its Ability to Chelate Multiple Nutrient Transition Metal Ions Rose C. Hadley,

More information

7. Tests for selection

7. Tests for selection Sequence analysis and genomics 7. Tests for selection Dr. Katja Nowick Group leader TFome and Transcriptome Evolution Bioinformatics group Paul-Flechsig-Institute for Brain Research www. nowicklab.info

More information

High throughput near infrared screening discovers DNA-templated silver clusters with peak fluorescence beyond 950 nm

High throughput near infrared screening discovers DNA-templated silver clusters with peak fluorescence beyond 950 nm Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 High throughput near infrared screening discovers DNA-templated silver clusters with peak fluorescence

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Evolutionary conservation of codon optimality reveals hidden signatures of co-translational folding Sebastian Pechmann & Judith Frydman Department of Biology and BioX, Stanford

More information

SUPPORTING INFORMATION FOR. SEquence-Enabled Reassembly of β-lactamase (SEER-LAC): a Sensitive Method for the Detection of Double-Stranded DNA

SUPPORTING INFORMATION FOR. SEquence-Enabled Reassembly of β-lactamase (SEER-LAC): a Sensitive Method for the Detection of Double-Stranded DNA SUPPORTING INFORMATION FOR SEquence-Enabled Reassembly of β-lactamase (SEER-LAC): a Sensitive Method for the Detection of Double-Stranded DNA Aik T. Ooi, Cliff I. Stains, Indraneel Ghosh *, David J. Segal

More information

Advanced topics in bioinformatics

Advanced topics in bioinformatics Feinberg Graduate School of the Weizmann Institute of Science Advanced topics in bioinformatics Shmuel Pietrokovski & Eitan Rubin Spring 2003 Course WWW site: http://bioinformatics.weizmann.ac.il/courses/atib

More information

Number-controlled spatial arrangement of gold nanoparticles with

Number-controlled spatial arrangement of gold nanoparticles with Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Number-controlled spatial arrangement of gold nanoparticles with DNA dendrimers Ping Chen,*

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) HW 1 due today Parameter Estimation Biometrics CSE 190 Lecture 7 Today s lecture was on the blackboard. These slides are an alternative presentation of the material. CSE190, Winter10 CSE190, Winter10 Chapter

More information

Crick s early Hypothesis Revisited

Crick s early Hypothesis Revisited Crick s early Hypothesis Revisited Or The Existence of a Universal Coding Frame Ryan Rossi, Jean-Louis Lassez and Axel Bernal UPenn Center for Bioinformatics BIOINFORMATICS The application of computer

More information

Supplemental data. Pommerrenig et al. (2011). Plant Cell /tpc

Supplemental data. Pommerrenig et al. (2011). Plant Cell /tpc Supplemental Figure 1. Prediction of phloem-specific MTK1 expression in Arabidopsis shoots and roots. The images and the corresponding numbers showing absolute (A) or relative expression levels (B) of

More information

SSR ( ) Vol. 48 No ( Microsatellite marker) ( Simple sequence repeat,ssr),

SSR ( ) Vol. 48 No ( Microsatellite marker) ( Simple sequence repeat,ssr), 48 3 () Vol. 48 No. 3 2009 5 Journal of Xiamen University (Nat ural Science) May 2009 SSR,,,, 3 (, 361005) : SSR. 21 516,410. 60 %96. 7 %. (),(Between2groups linkage method),.,, 11 (),. 12,. (, ), : 0.

More information

Bayesian Methods: Naïve Bayes

Bayesian Methods: Naïve Bayes Bayesian Methods: aïve Bayes icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Last Time Parameter learning Learning the parameter of a simple coin flipping model Prior

More information

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, 2013

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, 2013 Bayesian Methods Machine Learning CSE546 Carlos Guestrin University of Washington September 30, 2013 1 What about prior n Billionaire says: Wait, I know that the thumbtack is close to 50-50. What can you

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Sequence Divergence & The Molecular Clock. Sequence Divergence

Sequence Divergence & The Molecular Clock. Sequence Divergence Sequence Divergence & The Molecular Clock Sequence Divergence v simple genetic distance, d = the proportion of sites that differ between two aligned, homologous sequences v given a constant mutation/substitution

More information

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, What about continuous variables?

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, What about continuous variables? Linear Regression Machine Learning CSE546 Carlos Guestrin University of Washington September 30, 2014 1 What about continuous variables? n Billionaire says: If I am measuring a continuous variable, what

More information

RELATING PHYSICOCHEMMICAL PROPERTIES OF AMINO ACIDS TO VARIABLE NUCLEOTIDE SUBSTITUTION PATTERNS AMONG SITES ZIHENG YANG

RELATING PHYSICOCHEMMICAL PROPERTIES OF AMINO ACIDS TO VARIABLE NUCLEOTIDE SUBSTITUTION PATTERNS AMONG SITES ZIHENG YANG RELATING PHYSICOCHEMMICAL PROPERTIES OF AMINO ACIDS TO VARIABLE NUCLEOTIDE SUBSTITUTION PATTERNS AMONG SITES ZIHENG YANG Department of Biology (Galton Laboratory), University College London, 4 Stephenson

More information

Electronic supplementary material

Electronic supplementary material Applied Microbiology and Biotechnology Electronic supplementary material A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and

More information

Minimum Message Length Analysis of the Behrens Fisher Problem

Minimum Message Length Analysis of the Behrens Fisher Problem Analysis of the Behrens Fisher Problem Enes Makalic and Daniel F Schmidt Centre for MEGA Epidemiology The University of Melbourne Solomonoff 85th Memorial Conference, 2011 Outline Introduction 1 Introduction

More information

SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS. Prokaryotes and Eukaryotes. DNA and RNA

SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS. Prokaryotes and Eukaryotes. DNA and RNA SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS 1 Prokaryotes and Eukaryotes 2 DNA and RNA 3 4 Double helix structure Codons Codons are triplets of bases from the RNA sequence. Each triplet defines an amino-acid.

More information

Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2

Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2 Logistics CSE 446: Point Estimation Winter 2012 PS2 out shortly Dan Weld Some slides from Carlos Guestrin, Luke Zettlemoyer & K Gajos 2 Last Time Random variables, distributions Marginal, joint & conditional

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Directed self-assembly of genomic sequences into monomeric and polymeric branched DNA structures

More information

Modelling and Analysis in Bioinformatics. Lecture 1: Genomic k-mer Statistics

Modelling and Analysis in Bioinformatics. Lecture 1: Genomic k-mer Statistics 582746 Modelling and Analysis in Bioinformatics Lecture 1: Genomic k-mer Statistics Juha Kärkkäinen 06.09.2016 Outline Course introduction Genomic k-mers 1-Mers 2-Mers 3-Mers k-mers for Larger k Outline

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval

Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval Evolvable Neural Networs for Time Series Prediction with Adaptive Learning Interval Dong-Woo Lee *, Seong G. Kong *, and Kwee-Bo Sim ** *Department of Electrical and Computer Engineering, The University

More information

Machine Learning CSE546 Sham Kakade University of Washington. Oct 4, What about continuous variables?

Machine Learning CSE546 Sham Kakade University of Washington. Oct 4, What about continuous variables? Linear Regression Machine Learning CSE546 Sham Kakade University of Washington Oct 4, 2016 1 What about continuous variables? Billionaire says: If I am measuring a continuous variable, what can you do

More information

POPULATION GENETICS Biology 107/207L Winter 2005 Lab 5. Testing for positive Darwinian selection

POPULATION GENETICS Biology 107/207L Winter 2005 Lab 5. Testing for positive Darwinian selection POPULATION GENETICS Biology 107/207L Winter 2005 Lab 5. Testing for positive Darwinian selection A growing number of statistical approaches have been developed to detect natural selection at the DNA sequence

More information

Parameter Estimation. Industrial AI Lab.

Parameter Estimation. Industrial AI Lab. Parameter Estimation Industrial AI Lab. Generative Model X Y w y = ω T x + ε ε~n(0, σ 2 ) σ 2 2 Maximum Likelihood Estimation (MLE) Estimate parameters θ ω, σ 2 given a generative model Given observed

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Bayesian Decision Theory Bayesian classification for normal distributions Error Probabilities

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

SENCA: A codon substitution model to better estimate evolutionary processes

SENCA: A codon substitution model to better estimate evolutionary processes SENCA: A codon substitution model to better estimate evolutionary processes Fanny Pouyet Marc Bailly-Bechet, Dominique Mouchiroud and Laurent Guéguen LBBE - UCB Lyon - UMR 5558 June 2015, Porquerolles,

More information

1 Mixed effect models and longitudinal data analysis

1 Mixed effect models and longitudinal data analysis 1 Mixed effect models and longitudinal data analysis Mixed effects models provide a flexible approach to any situation where data have a grouping structure which introduces some kind of correlation between

More information

NSCI Basic Properties of Life and The Biochemistry of Life on Earth

NSCI Basic Properties of Life and The Biochemistry of Life on Earth NSCI 314 LIFE IN THE COSMOS 4 Basic Properties of Life and The Biochemistry of Life on Earth Dr. Karen Kolehmainen Department of Physics CSUSB http://physics.csusb.edu/~karen/ WHAT IS LIFE? HARD TO DEFINE,

More information

Supplemental Figure 1.

Supplemental Figure 1. A wt spoiiiaδ spoiiiahδ bofaδ B C D E spoiiiaδ, bofaδ Supplemental Figure 1. GFP-SpoIVFA is more mislocalized in the absence of both BofA and SpoIIIAH. Sporulation was induced by resuspension in wild-type

More information

Parametric Techniques

Parametric Techniques Parametric Techniques Jason J. Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Parametric Techniques 1 / 39 Introduction When covering Bayesian Decision Theory, we assumed the full probabilistic structure

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Point Estimation. Vibhav Gogate The University of Texas at Dallas

Point Estimation. Vibhav Gogate The University of Texas at Dallas Point Estimation Vibhav Gogate The University of Texas at Dallas Some slides courtesy of Carlos Guestrin, Chris Bishop, Dan Weld and Luke Zettlemoyer. Basics: Expectation and Variance Binary Variables

More information

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Why uncertainty? Why should data mining care about uncertainty? We

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Supplemental Table 1. Primers used for cloning and PCR amplification in this study

Supplemental Table 1. Primers used for cloning and PCR amplification in this study Supplemental Table 1. Primers used for cloning and PCR amplification in this study Target Gene Primer sequence NATA1 (At2g393) forward GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT CAT GGC GCC TCC AAC CGC AGC

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set MAS 6J/1.16J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

Bayesian Networks in Educational Assessment

Bayesian Networks in Educational Assessment Bayesian Networks in Educational Assessment Estimating Parameters with MCMC Bayesian Inference: Expanding Our Context Roy Levy Arizona State University Roy.Levy@asu.edu 2017 Roy Levy MCMC 1 MCMC 2 Posterior

More information

Supporting Information

Supporting Information Supporting Information T. Pellegrino 1,2,3,#, R. A. Sperling 1,#, A. P. Alivisatos 2, W. J. Parak 1,2,* 1 Center for Nanoscience, Ludwig Maximilians Universität München, München, Germany 2 Department of

More information

Table S1. Primers and PCR conditions used in this paper Primers Sequence (5 3 ) Thermal conditions Reference Rhizobacteria 27F 1492R

Table S1. Primers and PCR conditions used in this paper Primers Sequence (5 3 ) Thermal conditions Reference Rhizobacteria 27F 1492R Table S1. Primers and PCR conditions used in this paper Primers Sequence (5 3 ) Thermal conditions Reference Rhizobacteria 27F 1492R AAC MGG ATT AGA TAC CCK G GGY TAC CTT GTT ACG ACT T Detection of Candidatus

More information

Linear Models A linear model is defined by the expression

Linear Models A linear model is defined by the expression Linear Models A linear model is defined by the expression x = F β + ɛ. where x = (x 1, x 2,..., x n ) is vector of size n usually known as the response vector. β = (β 1, β 2,..., β p ) is the transpose

More information

Introduction to Molecular Phylogeny

Introduction to Molecular Phylogeny Introduction to Molecular Phylogeny Starting point: a set of homologous, aligned DNA or protein sequences Result of the process: a tree describing evolutionary relationships between studied sequences =

More information

Introduc)on to Bayesian methods (con)nued) - Lecture 16

Introduc)on to Bayesian methods (con)nued) - Lecture 16 Introduc)on to Bayesian methods (con)nued) - Lecture 16 David Sontag New York University Slides adapted from Luke Zettlemoyer, Carlos Guestrin, Dan Klein, and Vibhav Gogate Outline of lectures Review of

More information

Building a Multifunctional Aptamer-Based DNA Nanoassembly for Targeted Cancer Therapy

Building a Multifunctional Aptamer-Based DNA Nanoassembly for Targeted Cancer Therapy Supporting Information Building a Multifunctional Aptamer-Based DNA Nanoassembly for Targeted Cancer Therapy Cuichen Wu,, Da Han,, Tao Chen,, Lu Peng, Guizhi Zhu,, Mingxu You,, Liping Qiu,, Kwame Sefah,

More information

Maximum Likelihood Estimation. only training data is available to design a classifier

Maximum Likelihood Estimation. only training data is available to design a classifier Introduction to Pattern Recognition [ Part 5 ] Mahdi Vasighi Introduction Bayesian Decision Theory shows that we could design an optimal classifier if we knew: P( i ) : priors p(x i ) : class-conditional

More information

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set 2 MAS 622J/1.126J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

An Introduction to Statistical and Probabilistic Linear Models

An Introduction to Statistical and Probabilistic Linear Models An Introduction to Statistical and Probabilistic Linear Models Maximilian Mozes Proseminar Data Mining Fakultät für Informatik Technische Universität München June 07, 2017 Introduction In statistical learning

More information

Characterization of Pathogenic Genes through Condensed Matrix Method, Case Study through Bacterial Zeta Toxin

Characterization of Pathogenic Genes through Condensed Matrix Method, Case Study through Bacterial Zeta Toxin International Journal of Genetic Engineering and Biotechnology. ISSN 0974-3073 Volume 2, Number 1 (2011), pp. 109-114 International Research Publication House http://www.irphouse.com Characterization of

More information

Concepts and Methods in Molecular Divergence Time Estimation

Concepts and Methods in Molecular Divergence Time Estimation Concepts and Methods in Molecular Divergence Time Estimation 26 November 2012 Prashant P. Sharma American Museum of Natural History Overview 1. Why do we date trees? 2. The molecular clock 3. Local clocks

More information

3. Evolution makes sense of homologies. 3. Evolution makes sense of homologies. 3. Evolution makes sense of homologies

3. Evolution makes sense of homologies. 3. Evolution makes sense of homologies. 3. Evolution makes sense of homologies Richard Owen (1848) introduced the term Homology to refer to structural similarities among organisms. To Owen, these similarities indicated that organisms were created following a common plan or archetype.

More information

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Expectation Propagation for Approximate Bayesian Inference

Expectation Propagation for Approximate Bayesian Inference Expectation Propagation for Approximate Bayesian Inference José Miguel Hernández Lobato Universidad Autónoma de Madrid, Computer Science Department February 5, 2007 1/ 24 Bayesian Inference Inference Given

More information

Hypothesis Testing with the Bootstrap. Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods

Hypothesis Testing with the Bootstrap. Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods Hypothesis Testing with the Bootstrap Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods Bootstrap Hypothesis Testing A bootstrap hypothesis test starts with a test statistic

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

Accouncements. You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF

Accouncements. You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF Accouncements You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF Please do not zip these files and submit (unless there are >5 files) 1 Bayesian Methods Machine Learning

More information

Probabilistic modeling and molecular phylogeny

Probabilistic modeling and molecular phylogeny Probabilistic modeling and molecular phylogeny Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis Technical University of Denmark (DTU) What is a model? Mathematical

More information

Proceedings of the SMBE Tri-National Young Investigators Workshop 2005

Proceedings of the SMBE Tri-National Young Investigators Workshop 2005 Proceedings of the SMBE Tri-National Young Investigators Workshop 25 Control of the False Discovery Rate Applied to the Detection of Positively Selected Amino Acid Sites Stéphane Guindon,* Mik Black,*à

More information

Measurement error as missing data: the case of epidemiologic assays. Roderick J. Little

Measurement error as missing data: the case of epidemiologic assays. Roderick J. Little Measurement error as missing data: the case of epidemiologic assays Roderick J. Little Outline Discuss two related calibration topics where classical methods are deficient (A) Limit of quantification methods

More information

Statistical learning. Chapter 20, Sections 1 4 1

Statistical learning. Chapter 20, Sections 1 4 1 Statistical learning Chapter 20, Sections 1 4 Chapter 20, Sections 1 4 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Week 8: Testing trees, Bootstraps, jackknifes, gene frequencies

Week 8: Testing trees, Bootstraps, jackknifes, gene frequencies Week 8: Testing trees, ootstraps, jackknifes, gene frequencies Genome 570 ebruary, 2016 Week 8: Testing trees, ootstraps, jackknifes, gene frequencies p.1/69 density e log (density) Normal distribution:

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Zn 2+ -binding sites in USP18. (a) The two molecules of USP18 present in the asymmetric unit are shown. Chain A is shown in blue, chain B in green. Bound Zn 2+ ions are shown as

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 00 MODULE : Statistical Inference Time Allowed: Three Hours Candidates should answer FIVE questions. All questions carry equal marks. The

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI:.8/NCHEM. Conditionally Fluorescent Molecular Probes for Detecting Single Base Changes in Double-stranded DNA Sherry Xi Chen, David Yu Zhang, Georg Seelig. Analytic framework and probe design.. Design

More information

SUPPLEMENTARY DATA - 1 -

SUPPLEMENTARY DATA - 1 - - 1 - SUPPLEMENTARY DATA Construction of B. subtilis rnpb complementation plasmids For complementation, the B. subtilis rnpb wild-type gene (rnpbwt) under control of its native rnpb promoter and terminator

More information

TM1 TM2 TM3 TM4 TM5 TM6 TM bp

TM1 TM2 TM3 TM4 TM5 TM6 TM bp a 467 bp 1 482 2 93 3 321 4 7 281 6 21 7 66 8 176 19 12 13 212 113 16 8 b ATG TCA GGA CAT GTA ATG GAG GAA TGT GTA GTT CAC GGT ACG TTA GCG GCA GTA TTG CGT TTA ATG GGC GTA GTG M S G H V M E E C V V H G T

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Using algebraic geometry for phylogenetic reconstruction

Using algebraic geometry for phylogenetic reconstruction Using algebraic geometry for phylogenetic reconstruction Marta Casanellas i Rius (joint work with Jesús Fernández-Sánchez) Departament de Matemàtica Aplicada I Universitat Politècnica de Catalunya IMA

More information

Introduction to Hidden Markov Models (HMMs)

Introduction to Hidden Markov Models (HMMs) Introduction to Hidden Markov Models (HMMs) But first, some probability and statistics background Important Topics 1.! Random Variables and Probability 2.! Probability Distributions 3.! Parameter Estimation

More information

Clay Carter. Department of Biology. QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture.

Clay Carter. Department of Biology. QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Clay Carter Department of Biology QuickTime and a TIFF (LZW) decompressor are needed to see this picture. Ornamental tobacco

More information

Introduction: MLE, MAP, Bayesian reasoning (28/8/13)

Introduction: MLE, MAP, Bayesian reasoning (28/8/13) STA561: Probabilistic machine learning Introduction: MLE, MAP, Bayesian reasoning (28/8/13) Lecturer: Barbara Engelhardt Scribes: K. Ulrich, J. Subramanian, N. Raval, J. O Hollaren 1 Classifiers In this

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

Pattern Recognition. Parameter Estimation of Probability Density Functions

Pattern Recognition. Parameter Estimation of Probability Density Functions Pattern Recognition Parameter Estimation of Probability Density Functions Classification Problem (Review) The classification problem is to assign an arbitrary feature vector x F to one of c classes. The

More information

1 Data Arrays and Decompositions

1 Data Arrays and Decompositions 1 Data Arrays and Decompositions 1.1 Variance Matrices and Eigenstructure Consider a p p positive definite and symmetric matrix V - a model parameter or a sample variance matrix. The eigenstructure is

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Paul has many great tools for teaching phylogenetics at his web site: http://hydrodictyon.eeb.uconn.edu/people/plewis

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4 ECE52 Tutorial Topic Review ECE52 Winter 206 Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides ECE52 Tutorial ECE52 Winter 206 Credits to Alireza / 4 Outline K-means, PCA 2 Bayesian

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

Detection theory 101 ELEC-E5410 Signal Processing for Communications

Detection theory 101 ELEC-E5410 Signal Processing for Communications Detection theory 101 ELEC-E5410 Signal Processing for Communications Binary hypothesis testing Null hypothesis H 0 : e.g. noise only Alternative hypothesis H 1 : signal + noise p(x;h 0 ) γ p(x;h 1 ) Trade-off

More information

Mathematical statistics

Mathematical statistics October 1 st, 2018 Lecture 11: Sufficient statistic Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information