A FAMILY OF GOODNESS-OF-FIT TESTS FOR THE CAUCHY DISTRIBUTION RODZINA TESTÓW ZGODNOŚCI Z ROZKŁADEM CAUCHY EGO

Size: px
Start display at page:

Download "A FAMILY OF GOODNESS-OF-FIT TESTS FOR THE CAUCHY DISTRIBUTION RODZINA TESTÓW ZGODNOŚCI Z ROZKŁADEM CAUCHY EGO"

Transcription

1 JAN PUDEŁKO A FAMILY OF GOODNESS-OF-FIT TESTS FO THE CAUCHY DISTIBUTION ODZINA TESTÓW ZGODNOŚCI Z OZKŁADEM CAUCHY EGO Abrac A w family of good-of-fi for h Cauchy diribuio i propod i h papr. Evry mmbr of hi family i affi ivaria ad coi agai ay o Cauchy diribuio. ul of h Mo Carlo imulaio prformd o vrify fii ampl bhaviour of h w ar prd. Kyword: Cauchy diribuio, good-of-fi, mpirical characriic fucio Srzczi W arykul zapropoowao ową rodzię ów zgodości z rozkładm Cauchy go. Każdy z rodziy afiiczi izmiiczy i zgody przciwko każd alraywi i będąac rozkładm Cauchy go. Zaprzowao akż wyiki ymulaci umryczych przprowadzoych w clu zbadaia zachowaia owych ów dla kończoych prób. Słowa kluczow: ozkład Cauchy go, zgodości, mpirycza fukca charakryycza Dr Ja Pudłko, Iyu Mamayki, Wydział Fizyki, Mamayki i Iformayki Soowa, Polichika Krakowka.

2 . Iroducio L X, X,... b a quc of i.i.d. radom variabl wih diribuio fucio F. W coidr h problm of ig h hypohi: H : F F agai H : F F whr F i h family of h Cauchy diribuio, i.. wih F F: F( x) F xm / σ, m, σ, Th locaio paramr m i h mdia ad h cal paramr σ rpr half of h irquaril rag i hi ca. I rc yar hr wr vral papr dvod o hi problm. Gürlr ad Hz [5] ad Maui ad Takmura [9] coidrd h aiic of h form whr ϕ i h mpirical characriic fucio { ( ( ) ) ( ) ( )} F ( x) / + π arca x. () D ϕ ϕ wd, of h adardizd wih uiabl imaor daa () () () ϕ () xp( iy ) ( ) ( ) Y X mˆ / σ ˆ,,...,, φ () xp( ) i h horical characriic fucio of h adard Cauchy diribuio ad w() i h wigh fucio. Th wigh w() xp( λ ) coidrd i [5, 9] rul wih imply ad clod form of h aiic, amly D, λ λ λ 4 k, λ + Y Y ( + λ) + Y ( k) λ Gürlr ad Hz [5] howd ha wih h ampl mdia ad half of h irquaril rag a h imaor of locaio ad cal, rpcivly, h bad o D,λ i coi agai ach alraiv diribuio havig a uiqu mdia ad uiqu uppr ad lowr quaril. I hi papr w propo aohr aiic of h form (). Sic h mo impora propri of a diribuio ar drmid by h bhaviour of h characriic fucio i a ighbourhood of zro, pcially i h ca of havily aild diribuio lik h Cauchy o, o hould u h wigh puig mor ma aroud zro. For hi rao w will u uboudd i zro wigh fucio. Wih h wigh w () xp( )/,

3 whr λ > ad (; ), h aiic agai ha clod form, amly 3 Sic h family of h Cauchy diribuio i clod wih rpc o h affi raformaio o i ird i affi ivaria. To obai a affi ivaria aiic of h form () i i ough o adardiz h ampl wih quivaria imaor i (), i.. imaor mˆ mˆ (,...,X ) ad σ ˆ (X,...,X ) uch ha for vry a > ad b w hav ad ( )/ Y D, λ, Γ( ) ( ( + λ) ( ( + λ) + Y ) co ( ) arca + λ ( )/ + ( + ( YYk) ) YYk λ co ( )arca. k, λ mˆ ( ax + b,, ax + b) amˆ ( X,, X ) + b ( ax + b,, ax + b) a ( X,, X ). Th prviou auhor coidrd h ampl mdia ad half of h irquaril rag [5], h maximum liklihood imaor (MLE) ad h EISE imaor [9]. Sic h u of EISE do o improv h powr of h complicaig h calculaio a h am im w do o coidr h imaor i hi papr. Th papr i orgaizd a follow. Scio coai a rviw of propri of imaor propod i [] by Pudłko. I Scio 3 ad 4 hr ar mai rul of h papr,.i. horm cocrig h wak covrgc of D,λ, wh h ampl com from h Cauchy diribuio, i limi diribuio ad h coicy of corrpodig agai ach o-cauchy alraiv diribuio. Scio 5 pr h rul of h umrical imulaio prformd o vrify h fii ampl bhaviour of h w.. Eimaor of h paramr of h Cauchy diribuio Th choic of h paramr ud o adardiz h daa i () i vry impora o h prformac of h. I hi papr bid MLE ad ordr imaor (ampl mdia ad half of h quaril rag) w will u imaor propod by Pudłko i []. Th imaor ar dfid a argum (mˆ θˆ,α, ) miimizig h diac Eimaor dfid a argum miimizig δ α ( θ) ϕ ( ) ϕθ ( ) d, + α () () () ϕ ϕ θ wd wr propod idpdly by [6] ad [] bu h auhor coidrd boudd wigh fucio w.

4 4 whr φ i h mpirical characriic fucio, φ θ () im σ i h characriic fucio of h Cauchy diribuio wih h mdia m ad h irquaril rag σ. I [] wa howd ha θˆ,α may b quivally dfid by whr Γ i h Gamma fucio ad Z arca((x m)/σ): A i wa howd i [] h family of h abov imaor ca b coiuouly clod by akig for α h ML imaor Eimaor θˆ,α ar affi quivaria, rogly coi, aympoically ormally diribud wih h covariac marix whr B i h Ba fucio ad I i h idiy marix ad hav h followig Bahadur rpraio mˆ, α l ( X ) + op(), (3) (, α σ) l( X ) + op(), wih θˆ α α α, α : argmi Γ( α) σ co Z co( αz ), θ Θ θˆ, argmax logσ log ( σ + ( X m) ). θ Θ σ Σ( θ ), I ( α) ˆ ( 3α) B( α, α) α α l ( x) co zi(( α) z), α α α α l ( x) co zc ( o(( α) z) ). α whr (5) 3. Aympoic bhaviour of h propod aiic Th followig uful rpraio of D,λ, ca b obaid by raighforward algbra ( 4) D Zˆ () Zˆ, λ, W will coidr Ẑ () a a radom lm i h Frch pac C() of coiuou fucio o h ral li dowd wih h mric d, () ( co( X ) + i( X ) (co( mˆ) + i( mˆ)) ).

5 ( 6 ρ ( f, g) ) ρ( f, g) ρ ( f, g), + 5 whr ρ (f; g) up f() g(). Now w formula h followig horm o h covrgc of h proc Ẑ. Thorm. L X X,... b a quc of idpd, idically, Cauchy diribud radom variabl. Th hr xi a crd Gauia proc Z i C() uch ha whr d do wak covrgc. If mˆ ad ar h ampl mdia ad half of h irquaril rag, rpcivly, ha h covariac krl of Z i for all,, whr For h imaor θˆ,α w hav I paricular, for h maximum liklihood imaor w hav Zˆ d Z i C( ), π π π K (,) ( J ( ) + J ( )) ( J ( ) + J ( )), J () i( x) x dx J co( x), ( ) dx. + + x 4 ( α) ( 3α) B( α, α) Γ( α, ) Γ ( α, ) ( 7) Kα (,) + + α Γ( α) Γ( ) if > α if <. () 8 K (,) + ( + ). ( ) Proof. I h ca of h MLE, h ampl mdia ad half of h irquaril rag hi horm wa provd i [5, 9] rpcivly. Hr w prov h ca of imaor θˆ,α. L S. By C(S) w do h pac of ral-valud coiuou fucio o S wih h uprmum orm. Uig h Thorm of Cörgő ad h oaio hri (Scio 3. of [3]) w will how ha Z () i wakly covrg i C(S) o h zro ma Gauia proc wih h covariac krl K α (, ). Aumpio (i), (ii) ad (vi) do o dpd o h choic of h imaor ad wr vrifid i [5]. Aumpio (iv) i a coquc of h Bahadur rpraio of h imaor θˆ,α prd i h prviou cio. I ordr o vrify h Aumpio (v) w ima

6 6 up ( l( x, θ) + Dl x ( x, θ) ) xu α α α α up max( co zi( z( α)), co zco( z( α)) xu α + max( co α α α zi( z( α)), co zco( z( α)) ) α α α ( + ) + <. α ) Hc, Ẑ covrg wakly i C(S) o h zro ma Gauia proc wih h covariac krl of h form whr By h dirc calculaio w hav T T K (,) + H(, θ ) E(( l X )( l X ) ) H (, θ ) H (, θ ), k( xlxdf,)( ) ( x) H(, θ ), k( xlxdf, )( ) ( x), H (, θ) kxd (,) θ F( x, θ). T H (, θ ) (, ). L u ow calcula x compo of K(, ). ElX l X T T (( )( ) ) E( Λ ψ( X, θ )( Λ ψ( X, θ )) ) Λ CΛ Σ( θ ) I, ( α) ( 3α) B( α, α) hu, T T H(, θ ) ElX ( ( ) l( X ) ) H(, θ ) ( α) ( + ). ( 3α) B( α, α) α α dx kxl (, ) ( xdf ) ( x) (co( ) i( ))co i( ( )) π( α) x + x z z α + x 3α π( α) π/ co α kxl (, ) ( xdf ) ( x) π( α) α π( α) (co( x) + i( x))co zi( z( α))i( a z) dz, dx ( co( x) + i( x)) + x α dx zi( z( α)) + x

7 3α 4 π/ π/ α co( a z) dz co zco( z ( α) )co( a z) dz π( α) π( α) 3α / π α co zco( z( ( ) ( ) α))co( a z) dz, α π α 7 (comp. [4] formula 3.73.). Hc, 3α π( α) + π/ 3α π( α) H (, θ ), kxlxdf (, )( ) ( x) co 3 α I h abov igral hr i miu wh > ad plu i aohr ca. I h ca of > uig h formula ad 9.4 of [4] w hav α π( α) π/ whr W i h Whiakr fucio, ad Γ(, ) do h icompl Gamma fucio. I h cod ca ( < ) by formula of Gradhy, yzhik [4] w obai Thu K α (, ) i of h form (7). Sic h covrgc of Ẑ i C(S) wa howd for ay compac S ; Ẑ covrg o Z alo i h Frch pac C() wih h mric ρ (comp. [8], p. 6). Now w pr h horm o h covrgc of h aiic D,λ,. Thorm. Udr h aumpio of Thorm w hav () 9 D zi( z( α))i( a zdz ) ( α) π/ α co zco( z( α))co( a z) dz ( ) α co zco z( α) a z dz H (, θ ), kxlxdf (, )( ) ( x) ( α )/ W α, λ, α + α ( α )/,( α)/ ( ) Γ( α) ( α) Γ( α, ) Γ( α) ( α) Γ( α, ), Γ( α) H (, θ ), kxlxdf (, )( ) ( x). σλ ˆ Zˆ () d D, : λ Z () d d. ( α).

8 8 Proof. Sic K (,) d < ad K α (,) d <, by h Tolli Thorm w hav Thu, D λ, i fii wih probabiliy. By h followig Taylor xpaio whr θ θ θˆ θ wih probabiliy, Ẑ ha h form whr Z i h followig proc ED Z λ, () d <. By raighforward calculaio i i ay o how ha h proc Z ha zro ma fucio ad h am covariac krl a h proc Z ad ha Z covrg wakly o Z i C(S). Sic hi covrgc ak plac for ay compac S, Z covrg wakly do Z i h Frch pac C(). Furhr i hi proof h followig covrgc will b dd F( x, θˆ ) F( x, θ ) θˆ θ, F( x, θ ), θ Zˆ () kxd (, ) F ( ( x) F( x, θˆ )) kxd (, ) F ( ( x) F( x, θ )) + kxd (, ) Fx ( (, θ ) F( x, θˆ )) kxd (, ) F ( ( x) F( x, θ )) ( θˆ θ ), kxd (, ) θf( x, θ) kxd (, ) F ( ( x) F( x, θ )) l( X ), H (, θ ) + l( X ), H (, θ) ( θˆ θ), H(, θ ) Z () + ( θˆ θ ), H(, θ ) H(, θ ) + l( X ) ( θˆ θ), H (, θ) Z () + ( θˆ θ ), H(, θ ) H(, θ ) + o ( ), Hθ (, ), P Z (): kxd (,) F ( ( x ) F ( x )) l X H ( ), (, ) θ ( ) co( X ) + i( X ) l ( X ) + l ( X ).

9 P ( ) (Z ˆ () Z()) d, ( ) ( Zˆ ( ) Z ( )) ad I ordr o obai () w calcula λ ( ) Z () d Z () d P P d. 9 ( ) ( Zˆ ( ) Z ( )) d ( ( θˆ θ ), H(, θ ) H(, θ ) + o ( ), H(, θ )) τ τ i i, whr τ m ˆ ad τ σ ˆ. H i ar boudd ad coiuou o h S Θ, whr S i ay compac ad Θ i clour of crai ighborhood of θ, h quc τ ad τ ar igh ad H i (, θ ) H i (; θ ) covrg o wih probabiliy for i, ; hu, i h coquc, w obai (). Covrgc () ca b obaid aalogouly. Uig h Taylor xpaio whr δ ad h Schwarz iqualiy w ima P d ( Hi (, θ ) Hi(, θ)( H (, θ ) H (, θ ) d + τiop ( ) ( Hi(, θ ) Hi(, ) H (, ) d θ θ i, op () i, + Hi (, θ) H (, θ) d, δ ( ), Z () ( 3) λσ ˆ d Z () d Z () / 4 ( Z d) λ () A i wa howd i Gürlr i Hz [5] h quc 4 ( Z () d) δ / d λ ( δ ) d /.

10 i igh. Sic wih probabiliy, h la igral i (3) covrg wih probabiliy o Γ(3 )/λ 3 ad i h coquc w obai (). Covrgc ( 4) Z () λ d d Z () λ d ca b provd aalogouly o Hz ad Wagr ([7], proof of.7, pp. -) By () ad () w hav Zˆ () / ( Zˆ ( ) Z( )) d λ Z () d / P d, / hu Zˆ () ad i coquc w hav Fially, applyig (), (4), (5) ad h Sluky Lmma w obai λσ Zˆ () d Z d Z () () hc / d λ Z () / d + o P (), ( 5) Zˆ () d Z () d op (). + D + Z () d Z () λ + Z () d Z () λ d d d, d Zˆ () d Z () d D, λ, λ,. d Th covariac krl of h proc Z drmi a igral opraor o h pac L () λ( )/ + K: L ( ) f K (,) f() d L ( ). ( ) / α Thorm (iii) of Bucu ([]) guara ha h krl of hi opraor ha h rpraio a aboluly ad uiformly covrg ri λ( )/ + ( 6) K (,) α ηφ() (), ( ) / φ

11 whr η ar igvalu of h opraor K ordrd oicraigly (... ), ad ϕ ar h corrpodig igfucio. L u dfi h followig ochaic proc ( 7) Y () ηφ () N, whr N, N, i a quc of idpd radom variabl diribud accordig o h adard ormal low. Sic h ri (7) i covrg i ma, Y i crd Gauia proc wih h covariac fucio (6), hr i h covariac fucio of h proc Takig io accou orhoormaliy of h igfucio w obai D whr L do qualiy of probabiliy law. Hc h limi diribuio of aiic D,λ, i h am a h diribuio of η N. λ, / Z (). / Z() d Y () d ηφ () N d η N, 4. Coicy I ordr o obai coi good-of-fi for h Cauchy diribuio h followig procdur ca b applid: fir w ima h paramr ad h w compu h aiic ad compar i valu wih criical valu for fixd igicac lvl. I [] i wa howd ha imaor cao b compud if, ad oly if, #{k : X θˆ,α k m}/ α for om m. For Cauchy diribud ampl h probabiliy of uch v i qual o. Thu, i ha ca h hypohi H hould b rcd. Th followig horm guara coicy of h bad o h aiic D,λ, agai ay o Cauchy alraiv. L u r ha hi horm do o impo ay rricio o h alraiv diribuio. Thorm.3. of Gürlr ad Hz [5] ca b provd aalogouly. I hi way o ca obai coicy of coidrd by Gürlr ad Hz [5] agai ay o Cauchy alraiv wihou aumpio o uiqu of h mdia ad irquaril rag. Thorm 3. L X, X,... b a quc of idpd, idically diribud radom variabl wih commo characriic fucio φ, mˆ ad b ay arlir coidrd imaor. Tha λ im/ ( 8) limif,, if ( / ) D σ λ ( m, σ) ϕ σ d Θ wih probabiliy.

12 L u oic ha righ-hadid of (8) i qual o if, ad oly if, φ i characriic fucio of h Cauchy diribuio. Proof. For poiiv coa T ad K w will do Uig ubiuio / ad applyig h Mikowki iqualiy w ima a follow Thu, w obai D T, λ, T T / im ix σ T / i( X mˆ )/ σ ˆ ˆ d imˆ ix σ ˆ, K, K σ, K : [ T/ σ, T/ σ] [ K, K]. imˆ ix ϕ(), K mˆ mˆ ϕ() λ d d d / d. / (9) D, λ, ϕ () ϕ(), K, K σ ˆ ˆ m ϕ() d d / /. Th fir igral i h la iqualiy ca b imad i h followig way, K ϕ () ϕ() up ϕ ( ) ϕ( ) σ ˆ, K T up ϕ ( ) ϕ( ). σ ˆ, K d mi( T/ σ K ˆ, ) d

13 Sic h mpirical characriic fucio covrg uiformly o ay compac wih probabiliy o characriic fucio (comp. Cöorgő [], Thorm..) h fir igral o h righ-hadiz of (9) covrg o wih probabiliy. Thrfor w obai im limif,, if ( ) D σ σ λ ( m, σ) ϕ Θ σ, K ( m, σ) Θ[ TT, ] [ σk, σk] im/ σ if ϕ( / σ) λσ d. d 3 Lig K ad T o ifiiy compl h proof. 5. Simulaio rul I hi cio w pr rul of h umrical imulaio prformd o vrify h fii ampl bhaviour of h w. Sic h rul of imulaio prd i Gürlr ad Hz [5] how h advaag of h bad o h aiic D,λ,, wih h ampl mdia ad half of h irquaril rag a imaor ovr ohr, w compar h bhaviour of h w wih h coidrd by Gürlr ad Hz. Tabl pr criical valu for four dir imaor ad diffr valu of paramr ad λ imad from ampl (for ad 5) draw from h adard Cauchy diribuio. Tabl ad 3 pr imad powr of coidrd for om alraiv for ad 5; rpcivly. I h abl N(, ) do adard ormal diribuio, do Sud diribuio wih dgr of frdom, Log(, ) do logiic diribuio, U(, ) do uiform diribuio ovr h irval (, ), La(, ) do h adard Laplac diribuio, χ do chi-quar diribuio wih dgr of frdom, G ad B do Gamma ad Ba diribuio, rpcivly. From hi abl w draw a cocluio ha uig > i h aiic D,λ, do o iflu igicaly o h, whil applyig h w imaor coidrably improv θˆ,α h powr of h. Criical valu o h igificac lvl α. Tabl 5 θˆ M θˆ ML θˆ.6 θˆ.8 θˆ M θˆ ML θˆ.6 θˆ.8 λ λ λ λ λ λ

14 4 Eimad powr for o h igificac lvl α. Tabl Alraiv diribuio λ λ.5 λ 5 θˆ M θˆ ML θˆ.6 θˆ.8 θˆ M θˆ ML θˆ.6 θˆ.8 θˆ M θˆ ML θˆ.6 θˆ.8 N(, ) Log(, ) U(, ) La(, ) χ G(, ) B(.5,.5) λ λ λ θˆ M θˆ ML θˆ.6 θˆ.8 θˆ M θˆ ML θˆ.6 θˆ.8 θˆ M θˆ ML θˆ.6 θˆ.8 N(, ) Log(, ) U(, ) La(, ) χ G(, ) B(.5,.5)

15 5 Eimad powr for 5 o h igificac lvl α. Tabl 3 Alraiv diribuio λ λ.5 λ 5 θˆ M θˆ ML θˆ.6 θˆ.8 θˆ M θˆ ML θˆ.6 θˆ.8 θˆ M θˆ ML θˆ.6 θˆ.8 N(, ) Log(, ) U(, ) La(, ) χ G(, ) B(.5,.5) λ λ λ θˆ M θˆ ML θˆ.6 θˆ.8 θˆ M θˆ ML θˆ.6 θˆ.8 θˆ M θˆ ML θˆ.6 θˆ.8 N(, ) Log(, ) U(, ) La(, ) χ G(, ) B(.5,.5) 99

16 6 frc [] Bucu J., Poiiv igral opraor i uboudd domai, J. Mah. Aal. Appl. 96, 4, [] Cörgő S., Mulivaria mpirical characriic fucio, Z. Wahrch. Vrw. Gabi 55, 98, 3-9. [3] Cörgő S., Krl raformd mpirical proc, J. Mulivaria Aal. 3, 983, 5-7. [4] Gradhy I.S., yzhik I.M., Tabl of igral, ri, ad produc, Acadmic Pr, Nw York Lodo Toroo 98. [5] Gürlr N., Hz N., Good-of- for h Cauchy diribuio bad o h mpirical characriic fucio, A. I. Sai. Mah. 5,, [6] Hahco C.., Th igrad quard rror imaio of paramr, Biomrika 64, 977, [7] Hz N.,Wagr T., A w approach o BHEP for mulivaria ormaliy, J. Mulivaria Aal. 6, 997, -3. [8] Karaza I., Shrv S., Browia moio ad ochaic calculu, Sprigr, Nw York 988. [9] Maui M., Takmura A., Empirical characriic fucio approach o goodof- for h Cauchy diribuio wih paramr imad by MLE or EISE, A. I. Sai. Mah. 57, 5, [] Pudłko J., Good-of- bad o mpirical characriic fucio (i polih), Ph.D. Thi, Jagilloia Uivriy, Cracow 7. [] Thoro J.C., Paulo A.S., Aympoic diribuio of characriic fuciobad imaor for h abl law, Sahya 39, 977,

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

Mixing time with Coupling

Mixing time with Coupling Mixig im wih Couplig Jihui Li Mig Zhg Saisics Dparm May 7 Goal Iroducio o boudig h mixig im for MCMC wih couplig ad pah couplig Prsig a simpl xampl o illusra h basic ida Noaio M is a Markov chai o fii

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

15. Numerical Methods

15. Numerical Methods S K Modal' 5. Numrical Mhod. Th quaio + 4 4 i o b olvd uig h Nwo-Rapho mhod. If i ak a h iiial approimaio of h oluio, h h approimaio uig hi mhod will b [EC: GATE-7].(a (a (b 4 Nwo-Rapho iraio chm i f(

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Approximately Inner Two-parameter C0

Approximately Inner Two-parameter C0 urli Jourl of ic d pplid Scic, 5(9: 0-6, 0 ISSN 99-878 pproximly Ir Two-prmr C0 -group of Tor Produc of C -lgr R. zri,. Nikm, M. Hi Dprm of Mmic, Md rc, Ilmic zd Uivriy, P.O.ox 4-975, Md, Ir. rc: I i ppr,

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

What Is the Difference between Gamma and Gaussian Distributions?

What Is the Difference between Gamma and Gaussian Distributions? Applid Mahmaics,,, 85-89 hp://ddoiorg/6/am Publishd Oli Fbruary (hp://wwwscirporg/joural/am) Wha Is h Diffrc bw Gamma ad Gaussia Disribuios? iao-li Hu chool of Elcrical Egirig ad Compur cic, Uivrsiy of

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

Analyticity and Operation Transform on Generalized Fractional Hartley Transform

Analyticity and Operation Transform on Generalized Fractional Hartley Transform I Jourl of Mh Alyi, Vol, 008, o 0, 977-986 Alyiciy d Oprio Trform o Grlizd Frciol rly Trform *P K So d A S Guddh * VPM Collg of Egirig d Tchology, Amrvi-44460 (MS), Idi Gov Vidrbh Iiu of cic d umii, Amrvi-444604

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform Aalyi o No-Siuoidal Wavorm Par Laplac raorm I h arlir cio, w lar ha h Fourir Sri may b wri i complx orm a ( ) C jω whr h Fourir coici C i giv by o o jωo C ( ) d o I h ymmrical orm, h Fourir ri i wri wih

More information

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite Wb-basd Supplmary Marials for Sampl siz cosidraios for GEE aalyss of hr-lvl clusr radomizd rials by Sv Trsra, Big Lu, oh S. Prissr, Tho va Achrbrg, ad Gorg F. Borm Wb-appdix : macro o calcula h rag of

More information

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations,

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations, Shiraz Uivrsiy of Tchology From h SlcdWorks of Habibolla Laifizadh Th Dvlopm of Suiabl ad Wll-foudd Numrical Mhods o Solv Sysms of Igro- Diffrial Equaios, Habibolla Laifizadh, Shiraz Uivrsiy of Tchology

More information

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems BoDiPrima 9 h d Ch 7.9: Nohomogou Liar Sm Elmar Diffrial Equaio ad Boudar Valu Prolm 9 h diio William E. Bo ad Rihard C. DiPrima 9 Joh Wil & So I. Th gral hor of a ohomogou m of quaio g g aralll ha of

More information

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables Improvd Epoal Emaor for Populao Varac Ug Two Aular Varabl Rajh gh Dparm of ac,baara Hdu Uvr(U.P., Ida (rgha@ahoo.com Pakaj Chauha ad rmala awa chool of ac, DAVV, Idor (M.P., Ida Flor maradach Dparm of

More information

Fourier Techniques Chapters 2 & 3, Part I

Fourier Techniques Chapters 2 & 3, Part I Fourir chiqus Chaprs & 3, Par I Dr. Yu Q. Shi Dp o Elcrical & Compur Egirig Nw Jrsy Isiu o chology Email: shi@i.du usd or h cours: , 4 h Ediio, Lahi ad Dog, Oord

More information

Review - Week 10. There are two types of errors one can make when performing significance tests:

Review - Week 10. There are two types of errors one can make when performing significance tests: Review - Week Read: Chaper -3 Review: There are wo ype of error oe ca make whe performig igificace e: Type I error The ull hypohei i rue, bu we miakely rejec i (Fale poiive) Type II error The ull hypohei

More information

3.2. Derivation of Laplace Transforms of Simple Functions

3.2. Derivation of Laplace Transforms of Simple Functions 3. aplac Tarform 3. PE TRNSFORM wid rag of girig ym ar modld mahmaically by uig diffrial quaio. I gral, h diffrial quaio of h ordr ym i wri: d y( a d d d y( dy( a a y( f( (3. d Which i alo ow a a liar

More information

Exercise: Show that. Remarks: (i) Fc(l) is not continuous at l=c. (ii) In general, we have. yn ¾¾. Solution:

Exercise: Show that. Remarks: (i) Fc(l) is not continuous at l=c. (ii) In general, we have. yn ¾¾. Solution: Exercie: Show ha Soluio: y ¾ y ¾¾ L c Þ y ¾¾ p c. ¾ L c Þ F y (l Fc (l I[c,(l "l¹c Þ P( y c

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

Improved estimation of population variance using information on auxiliary attribute in simple random sampling. Rajesh Singh and Sachin Malik

Improved estimation of population variance using information on auxiliary attribute in simple random sampling. Rajesh Singh and Sachin Malik Imrovd imaio of oulaio variac uig iformaio o auxiliar ariu i iml radom amlig Rajh igh ad achi alik Darm of aiic, Baara Hidu Uivri Varaai-5, Idia (righa@gmail.com, achikurava999@gmail.com) Arac igh ad Kumar

More information

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016 MAT3700/0//06 Tuorial Lr 0//06 Mahmaics III (Egirig) MAT3700 Smsr Dparm of Mahmaical scics This uorial lr coais soluios ad aswrs o assigms. BARCODE CONTENTS Pag SOLUTIONS ASSIGNMENT... 3 SOLUTIONS ASSIGNMENT...

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables Rajh gh Dparm of ac,baara Hdu Uvr(U.P.), Ida Pakaj Chauha, rmala awa chool of ac, DAVV, Idor (M.P.), Ida Flor maradach Dparm of Mahmac, Uvr of w Mco, Gallup, UA Improvd Epoal Emaor for Populao Varac Ug

More information

Linear Systems Analysis in the Time Domain

Linear Systems Analysis in the Time Domain Liar Sysms Aalysis i h Tim Domai Firs Ordr Sysms di vl = L, vr = Ri, d di L + Ri = () d R x= i, x& = x+ ( ) L L X() s I() s = = = U() s E() s Ls+ R R L s + R u () = () =, i() = L i () = R R Firs Ordr Sysms

More information

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

Infinite Continued Fraction (CF) representations. of the exponential integral function, Bessel functions and Lommel polynomials

Infinite Continued Fraction (CF) representations. of the exponential integral function, Bessel functions and Lommel polynomials Ifii Coiu Fraio CF rraio of h oial igral fuio l fuio a Lol olyoial Coiu Fraio CF rraio a orhogoal olyoial I hi io w rall h rlaio bw ifi rurry rlaio of olyoial orroig orhogoaliy a aroria ifii oiu fraio

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

www.vidrhipu.com TRANSFORMS & PDE MA65 Quio Bk wih Awr UNIT I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Oi pri diffri quio imiig rirr co d from z A.U M/Ju Souio: Giv z ----- Diff Pri w.r. d p > - p/ q > q/

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition:

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition: Assigm Thomas Aam, Spha Brumm, Haik Lor May 6 h, 3 8 h smsr, 357, 7544, 757 oblm For R b X a raom variabl havig ormal isribuio wih ma µ a variac σ (his is wri as ~ (,) X. by: R a. Is X ) a urhrmor all

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

Modeling of the CML FD noise-to-jitter conversion as an LPTV process

Modeling of the CML FD noise-to-jitter conversion as an LPTV process Modlig of h CML FD ois-o-ir covrsio as a LPV procss Marko Alksic. Rvisio hisory Vrsio Da Comms. //4 Firs vrsio mrgd wo docums. Cyclosaioary Nois ad Applicaio o CML Frqucy Dividr Jir/Phas Nois Aalysis fil

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Naive Parameter Estimation Technique of Equity Return Models Based on Short and Long Memory Processes

Naive Parameter Estimation Technique of Equity Return Models Based on Short and Long Memory Processes 6 pp.-6 004 Naiv Paramr Eimaio Tchiqu of Equiy Rur Mol Ba o Shor a Log Mmory Proc Koichi Miyazai Abrac Th aalyi o variac of Japa quiy rur from h poi of obrvaio irval i qui fw hough i i impora i maagig

More information

ON H-TRICHOTOMY IN BANACH SPACES

ON H-TRICHOTOMY IN BANACH SPACES CODRUTA STOICA IHAIL EGA O H-TRICHOTOY I BAACH SPACES Absrac: I his papr w mphasiz h oio of skw-oluio smiflows cosidrd a gralizaio of smigroups oluio opraors ad skw-produc smiflows which aris i h sabiliy

More information

Control Systems. Transient and Steady State Response.

Control Systems. Transient and Steady State Response. Corol Sym Trai a Say Sa Ro chibum@oulch.ac.kr Ouli Tim Domai Aalyi orr ym Ui ro Ui ram ro Ui imul ro Chibum L -Soulch Corol Sym Tim Domai Aalyi Afr h mahmaical mol of h ym i obai, aalyi of ym rformac i.

More information

Trigonometric Formula

Trigonometric Formula MhScop g of 9 FORMULAE SHEET If h lik blow r o-fucioig ihr Sv hi fil o your hrd driv (o h rm lf of h br bov hi pg for viwig off li or ju coll dow h pg. [] Trigoomry formul. [] Tbl of uful rigoomric vlu.

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

ELG3150 Assignment 3

ELG3150 Assignment 3 ELG350 Aigmt 3 Aigmt 3: E5.7; P5.6; P5.6; P5.9; AP5.; DP5.4 E5.7 A cotrol ytm for poitioig th had of a floppy dik driv ha th clodloop trafr fuctio 0.33( + 0.8) T ( ) ( + 0.6)( + 4 + 5) Plot th pol ad zro

More information

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Mathematical Preliminaries for Transforms, Subbands, and Wavelets Mahmaical Prlimiaris for rasforms, Subbads, ad Wavls C.M. Liu Prcpual Sigal Procssig Lab Collg of Compur Scic Naioal Chiao-ug Uivrsiy hp://www.csi.cu.du.w/~cmliu/courss/comprssio/ Offic: EC538 (03)5731877

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 1

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 1 TH ROAL TATITICAL OCIT 6 AINATION OLTION GRADAT DILOA ODL T oci i providig olio o ai cadida prparig or aiaio i 7. T olio ar idd a larig aid ad old o b a "odl awr". r o olio old alwa b awar a i a ca r ar

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals Rviw opics from Chapr 3&4 Fourir Sris Fourir rasform Liar im Ivaria (LI) Sysms Ergy-yp Sigals Powr-yp Sigals Fourir Sris Rprsaio for Priodic Sigals Dfiiio: L h sigal () b a priodic sigal wih priod. ()

More information

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function Chapr VII Spcial Fucios Ocobr 7, 7 479 CHAPTER VII SPECIAL FUNCTIONS Cos: Havisid sp fucio, filr fucio Dirac dla fucio, modlig of impuls procsss 3 Si igral fucio 4 Error fucio 5 Gamma fucio E Epoial igral

More information

ISSN: [Bellale* et al., 6(1): January, 2017] Impact Factor: 4.116

ISSN: [Bellale* et al., 6(1): January, 2017] Impact Factor: 4.116 IESRT INTERNTIONL OURNL OF ENGINEERING SCIENCES & RESERCH TECHNOLOGY HYBRID FIED POINT THEOREM FOR NONLINER DIFFERENTIL EQUTIONS Sidhshwar Sagram Bllal*, Gash Babrwa Dapk * Dparm o Mahmaics, Daaad Scic

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem Mahmacal ascs 8 Chapr VIII amplg Dsrbos ad h Cral Lm Thorm Fcos of radom arabls ar sall of rs sascal applcao Cosdr a s of obsrabl radom arabls L For ampl sppos h arabls ar a radom sampl of s from a poplao

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals ELECTOMAGNETIC COMPATIBILITY HANDBOOK Chapr : Spcra of Priodic ad Apriodic Sigals. Drmi whhr ach of h followig fucios ar priodic. If hy ar priodic, provid hir fudamal frqucy ad priod. a) x 4cos( 5 ) si(

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Asymptotic Behaviors for Critical Branching Processes with Immigration

Asymptotic Behaviors for Critical Branching Processes with Immigration Acta Mathmatica Siica, Eglih Sri Apr., 9, Vol. 35, No. 4, pp. 537 549 Publihd oli: March 5, 9 http://doi.org/.7/4-9-744-6 http://www.actamath.com Acta Mathmatica Siica, Eglih Sri Sprigr-Vrlag GmbH Grmay

More information

Aotomorphic Functions And Fermat s Last Theorem(4)

Aotomorphic Functions And Fermat s Last Theorem(4) otomorphc Fuctos d Frmat s Last Thorm(4) Chu-Xua Jag P. O. Box 94 Bg 00854 P. R. Cha agchuxua@sohu.com bsract 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

arxiv:math/ v1 [math.fa] 1 Feb 1994

arxiv:math/ v1 [math.fa] 1 Feb 1994 arxiv:mah/944v [mah.fa] Feb 994 ON THE EMBEDDING OF -CONCAVE ORLICZ SPACES INTO L Care Schü Abrac. I [K S ] i wa how ha Ave ( i a π(i) ) π i equivale o a Orlicz orm whoe Orlicz fucio i -cocave. Here we

More information

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11, Prai paprs A ad B, produd by Edl i 9, wih mark shms Prai Papr A. Fid h valus of for whih 5 osh sih =, givig your aswrs as aural logarihms. (Toal 6 marks) k. A = k, whr k is a ral osa. 9 (a) Fid valus of

More information

Intrinsic formulation for elastic line deformed on a surface by an external field in the pseudo-galilean space 3. Nevin Gürbüz

Intrinsic formulation for elastic line deformed on a surface by an external field in the pseudo-galilean space 3. Nevin Gürbüz risic formuaio for asic i form o a surfac by a xra fi i h psuo-aia spac Nvi ürbüz Eskişhir Osmaazi Uivrsiy Mahmaics a Compur Scics Dparm urbuz@ouur Absrac: his papr w riv irisic formuaio for asic i form

More information

Chapter 11 INTEGRAL EQUATIONS

Chapter 11 INTEGRAL EQUATIONS hapr INTERAL EQUATIONS hapr INTERAL EUATIONS Dcmbr 4, 8 hapr Igral Eqaios. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. achy-byaowsi iqaliy 5. iowsi iqaliy. Liar

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23 BIO53 Bosascs Lcur 04: Cral Lm Thorm ad Thr Dsrbuos Drvd from h Normal Dsrbuo Dr. Juchao a Cr of Bophyscs ad Compuaoal Bology Fall 06 906 3 Iroduco I hs lcur w wll alk abou ma cocps as lsd blow, pcd valu

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecure 9, Sae Space Repreeaio Emam Fahy Deparme of Elecrical ad Corol Egieerig email: emfmz@aa.edu hp://www.aa.edu/cv.php?dip_ui=346&er=6855 Trafer Fucio Limiaio TF = O/P I/P ZIC

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Consider serial transmission. In Proakis notation, we receive

Consider serial transmission. In Proakis notation, we receive 5..3 Dciio-Dirctd Pha Trackig [P 6..4] 5.-1 Trackr commoly work o radom data igal (plu oi), o th kow-igal modl do ot apply. W till kow much about th tructur o th igal, though, ad w ca xploit it. Coidr

More information

Introduction to Hypothesis Testing

Introduction to Hypothesis Testing Noe for Seember, Iroducio o Hyohei Teig Scieific Mehod. Sae a reearch hyohei or oe a queio.. Gaher daa or evidece (obervaioal or eerimeal) o awer he queio. 3. Summarize daa ad e he hyohei. 4. Draw a cocluio.

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information