Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23

Size: px
Start display at page:

Download "Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23"

Transcription

1 BIO53 Bosascs Lcur 04: Cral Lm Thorm ad Thr Dsrbuos Drvd from h Normal Dsrbuo Dr. Juchao a Cr of Bophyscs ad Compuaoal Bology Fall

2 Iroduco I hs lcur w wll alk abou ma cocps as lsd blow, pcd valu ad varac of fucos of radom varabls Lar combao of radom varabls Moms ad mom grag fuco Thorcal drvao of h cral lm horm Thr dsrbuos drvd from h ormal dsrbuo 906 3

3 Masurs of locao ad sprad ca b dvlopd for a radom varabl much h sam way as for sampls. Th aalog of h arhmc ma s calld h pcd valu of a radom varabl, or populao ma, ad s dod by or ad rprss h avrag valu of h radom varabl. pcd valu of a bomal dsrbuo,p = p pcd valu of a Posso dsrbuo wh pcd valu of a ormal dsrbuo wh pcd Valu of a Radom Varabl pcd Valu of a Radom Varabl 906 d f p k k k k k k k k k k 0 0!!!, N 0 dz dz z d z z z 33

4 Th aalog of h sampl varac s for a radom varabl s calld h varac of a radom varabl, or populao varac, ad s dod by Var or. Th sadard dvao of a radom varabl, dod by sd or, s dfd by h squar roo of s varac. Varac of a bomal dsrbuo,p = pq Varac of a Posso dsrbuo Varac of a ormal dsrbuo Varac of a Radom Varabl Varac of a Radom Varabl 906 d f p Var ] [ } ] {[, N 0 ] [ du u dz z d Var u u z z z 43

5 pcd Valu ad Varac of Fucos of Radom Varabls pcd valu of fucos of radom varabls Y g, f Y Y Y [ g h Y ] a ad b ar cosas Y Y, a b a b g Varac of fucos of radom varabls g p g f d ad Y ar dpd radom varabls, Y g, Var Y a ad b ar cosas Var a b {[ a b h y p for ay radom varabls dpd or o p y ad Y ar dpd radom varabls, Var Y Var VarY [ g ] [ h Y ] [ g [ g ]] p [ g [ g ]] f d a b ] } { b [ ] } b Var

6 Sums or dffrc or mor complcad lar fucos of radom varabls hr couous or dscr ar of usd. A lar combao L of h radom varabls, s dfd as ay fuco of h form L = c + +c. A lar combao also calld a lar coras. To compu h pcd valu ad varac of lar combaos of radom varabls, w us h prcpl ha h pcd valu of h sum of radom varabls s h sum of h rspcv pcd valus. No mar L c, dpd o ach or o, L Varac of L whr,, ar dpd s L Lar Combaos of Radom Varabls c, VarL c c Var c c Th corrspodg cas for dpd radom varabls wll b show lar

7 Covarac of Dpd Radom Varabls Th covarac bw wo radom varabls ad Y s dod by Cov,Y ad s dfd by Cov, Y [ Y Y] [ Y ] Y Y Y Y Y Y y y whr s h avrag valu of, y s h avrag valu of Y, ad Y = avrag valu of h produc of ad Y. Cov a, Y Cov, Y, Cov a, by abcov, Y, Cov, Y Z Cov, Y Cov, Z If ad Y ar dpd, h h covarac bw hm s 0. If larg valus of ad Y occur amog h sam subjcs as wll as small valus of ad Y, h h covarac s posv. If larg valus of ad small valus of Y or covrsly, small valus of ad larg valus of Y d o occur amog h sam subjcs, h h covarac s gav. To oba a masur of rladss or assocao bw wo radom varabls ad Y, w cosdr h corrlao coffc, dod by Corr,Y or ad s dfd by = Corr,Y = Cov,Y y whr ad y ar h sadard dvaos of ad Y, rsp. I s a dmsolss quay ha s dpd of h us of ad Y ad rags bw - ad. y y y

8 ampls of Corrlad Radom Varabls If ad Y ar appro. larly rlad, a corrlao coffc of 0 mpls dpdc. Corrlao coffc clos o mpls arly prfc posv dpdc wh larg valus of corrspodg o larg valus of Y ad small valus of corrspodg o small valus of Y. Corr clos o - mpls prfc gav dpdc, wh larg valus of corrspodg o small valus of Y ad vc vrsa

9 Lar Combaos of Dpd Radom Varabls To compu h varac of a lar coras volvg wo dpd radom varabls ad, w ca us h gral quao Varac of lar combao of radom varabls gral cas Th varac of h lar coras

10 I sascs, hghr-ordr sascs volvs usg h hrd or hghr powr of a sampl such as h hrd or hghr moms as dfd blow Th ormalsd m-h cral mom or sadardzd mom s h m-h cral moms dvdd by m. Moms ad Hghr Moms ad Hghr-Ordr Sascs Ordr Sascs 906 ] [ h cral moms -, m m m m m m d f p m m m ] [ h ormalsdcral moms - 03

11 Skwss ad Kuross Th ormalsd hrd cral mom s calld h skwss, of dod by γ. [ ] for ormal dsrbuo Th ormalsd four cral mom or sadardzd mom s calld Kuross, of dod by [ ] Th css kuross s dfd as kuross mus 3. Th css kuross = 0, for a ormal dsrbuo. Th css kuross > 0, far als ha a ormal dsrbuo. Th css kuross < 0, hr als ha a ormal dsrbuo

12 Samplg Dsrbuo How s a spcfc radom sampl, usd o sma μ ad σ, h ma ad varac of h udrlyg dsrbuo? A aural smaor o slc umbr for h squc ad ak h avrag, s a sgl ralzao of a radom varabl ovr all possbl sampls of sz ha could hav b slcd from h populao. dos a radom varabl, ad dos a spcfc ralzao of h radom varabl a sampl. Th samplg dsrbuo of s h dsrbuo of valus of ovr all possbl sampls of sz ha could hav b slcd from h rfrc populao

13 ampl of Samplg Dsrbuo Frqucy dsrbuo of h sampl ma from 00 radomly slcd sampls of sz 0. Th pcd valu of ovr s samplg dsrbuo s qual o

14 Cral Lm Thorm L,, b a radom sampl from som populao wh ma ad varac. Th for larg, ~ N, v f h udrlyg dsrbuo of dvdual obsrvaos h populao s o ormal. Th symbol ~ s usd o rprs appromaly dsrbud. Ths horm allows us o prform sascal frc basd o h approma ormaly of h sampl ma dsp h oormaly of h dsrbuo of dvdual obsrvaos. Th skwss of h dsrbuo ca b rducd by rasformao daa usg log scal. Th cral-lm horm ca hm b applcabl for smallr szs ha f h daa ar rad h orgal scal

15 ampls for Cral Lm Thorm

16 Mom-Grag Fuco Th mom-grag fuco mgf of a radom varabl s dfd as M p Propry A: If h mom-grag fuco ss for a op rval coag zro, uquly drm h probably dsrbuo. Propry B: f h mom-grag fuco ss a op rval coag zro, hm h -h drvav a =0, M 0= Propry C: If has h mgf M ad Y=a+b, h Y has h mgf M Y = a M b. Propry D: f ad Y ar dpd radom varabls wh mgf s M ad M Y ad Z=+Y, hm M Z =M M Y o h commo rval whr boh mgf s s. f d

17 Th mom-grag fuco mgf of h sadard ormal dsrbuo s dfd as Mom Mom-Grag Fuco of Sadard Normal Dsrbuo Grag Fuco of Sadard Normal Dsrbuo " 0 0 ' hrfor, Sc 0 0 Var M M du d M d M u u 73

18 Thorcal Drvao of Cral Lm Thorm S L Z Sc S M S [ M ] ad M Z [ M ] Ms has a Taylor srspaso abou zro: Ms M 0 sm'0 Sc M W hav, M Z a I ca b show ha f a a, h, lm From hs rsul,w g M whr S, whr, s a sum of dpd radom varabls, 0, M 0, M '0 0, M ''0, as, W d o show h mgf Z s h mgf Z ar dpd ad dcally dsrbuo from0, ds o h mgf s M ''0 s whr whr as, 0 of h sadard ormal dsrbuo. of sadard ormal dsrbuo. s s a 0 as as s 0 0, ad

19 To oba a rval sma for, a w famly of dsrbuos, calld ch-squar dsrbuos, mus b roducd o abl us o fd h samplg dsrbuo of S from sampl o sampl. If Z s a sadard ormal radom varabl, h dsrbuo of U=Z calld h ch-squar dsrbuo wh dgr of frdom, dod by. If ~ N,, h - ~ N0,, ad hrfor [- ] ~. If U, U,.. U ar dpd ch-squar radom varabls wh dgr of frdom, h dsrbuo of V = U +U +..U s calld chsquar dsrbuo wh dgrs of frdom ad s dod by, wh h pdf as blow, Ch Ch-Squar Dsrbuo Squar Dsrbuo V Var V M d g v v v v f v,, 0, fuco Gamma 0, dsy fuco Gamma 0, g 0,,

20 ampl of Ch-Squar Dsrbuo If whr,, ~ N0, ad h s ar dpd, h G s sad o follow a ch-squar dsrbuo wh dgrs of frdom df. Th dsrbuo s of dd by. Th ch-squar dsrbuo oly aks o posv valus ad s always skwd o h rgh. For 3, h dsrbuo has a mod grar ha 0 ad s skwd o h rgh. Th skwss dmshs as crass. Th uh prcl of a d dsrbuo ha s, a ch-squar dsrbuo wh d df s dod by d whr Pr d < d u

21 Sud s Dsrbuo If Z ~ N0, ad U ~, ad Z ad U ar dpd, h h dsrbuo of W Z U s calld dsrbuo wh dgrs of frdom, solvd by a sasca amd Wllam Goss Sud. Th dsrbuo s o uqu bu s a famly of dsrbuos dd by a paramr, h dgrs of frdom df of h dsrbuo. [ ] f Th dsy fucuo wh dgrs of frdom s If,, ~ N, ad ar dpd radom varabls, h - s s dsrbud as a dsrbuo wh - df. Th dsrbuo wh d dgrs of frdom s rfrrd o as h d dsrbuo. Th 00 uh prcl of a dsrbuo wh d dgrs of frdom s dod by d,u, ha s Prd < d,u u f f, f ormal dsrbuo 906 3

22 F Dsrbuo L U ad V b dpd ch-squar radom varabls wh m ad dgrs of frdom rspcvly. Th dsrbuo of a w radom varabl W=UmV s calld h F dsrbuo wh m ad dgrs of frdom ad s dod by F m,, wh h dsy fuco as f w [ m ] m m m w m m w m, w

23 Summary I hs chapr, w dscussd pcd ad varac of fucos of radom varabls Mom grag fuco Cral-lm horm Thr dsrbuos from h ormal dsrbuo, ch-squar, ad F dsrbuos

24 Th d

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem Mahmacal ascs 8 Chapr VIII amplg Dsrbos ad h Cral Lm Thorm Fcos of radom arabls ar sall of rs sascal applcao Cosdr a s of obsrabl radom arabls L For ampl sppos h arabls ar a radom sampl of s from a poplao

More information

Control Systems (Lecture note #6)

Control Systems (Lecture note #6) 6.5 Corol Sysms (Lcur o #6 Las Tm: Lar algbra rw Lar algbrac quaos soluos Paramrzao of all soluos Smlary rasformao: compao form Egalus ad gcors dagoal form bg pcur: o brach of h cours Vcor spacs marcs

More information

Almost unbiased exponential estimator for the finite population mean

Almost unbiased exponential estimator for the finite population mean Almos ubasd poal smaor for f populao ma Rajs Sg, Pakaj aua, ad rmala Saa, Scool of Sascs, DAVV, Idor (M.P., Ida (rsgsa@aoo.com Flor Smaradac ar of Dparm of Mamacs, Uvrs of Mco, Gallup, USA (smarad@um.du

More information

CHAPTER: 3 INVERSE EXPONENTIAL DISTRIBUTION: DIFFERENT METHOD OF ESTIMATIONS

CHAPTER: 3 INVERSE EXPONENTIAL DISTRIBUTION: DIFFERENT METHOD OF ESTIMATIONS CHAPTER: 3 INVERSE EXPONENTIAL DISTRIBUTION: DIFFERENT METHOD OF ESTIMATIONS 3. INTRODUCTION Th Ivrs Expoal dsrbuo was roducd by Kllr ad Kamah (98) ad has b sudd ad dscussd as a lfm modl. If a radom varabl

More information

Chap 2: Reliability and Availability Models

Chap 2: Reliability and Availability Models Chap : lably ad valably Modls lably = prob{s s fully fucog [,]} Suppos from [,] m prod, w masur ou of N compos, of whch N : # of compos oprag corrcly a m N f : # of compos whch hav fald a m rlably of h

More information

Almost Unbiased Exponential Estimator for the Finite Population Mean

Almost Unbiased Exponential Estimator for the Finite Population Mean Rajs Sg, Pakaj aua, rmala Saa Scool of Sascs, DAVV, Idor (M.P., Ida Flor Smaradac Uvrs of Mco, USA Almos Ubasd Epoal Esmaor for F Populao Ma Publsd : Rajs Sg, Pakaj aua, rmala Saa, Flor Smaradac (Edors

More information

8. Queueing systems. Contents. Simple teletraffic model. Pure queueing system

8. Queueing systems. Contents. Simple teletraffic model. Pure queueing system 8. Quug sysms Cos 8. Quug sysms Rfrshr: Sml lraffc modl Quug dscl M/M/ srvr wag lacs Alcao o ack lvl modllg of daa raffc M/M/ srvrs wag lacs lc8. S-38.45 Iroduco o Tlraffc Thory Srg 5 8. Quug sysms 8.

More information

MECE 3320 Measurements & Instrumentation. Static and Dynamic Characteristics of Signals

MECE 3320 Measurements & Instrumentation. Static and Dynamic Characteristics of Signals MECE 330 MECE 330 Masurms & Isrumao Sac ad Damc Characrscs of Sgals Dr. Isaac Chouapall Dparm of Mchacal Egrg Uvrs of Txas Pa Amrca MECE 330 Sgal Cocps A sgal s h phscal formao abou a masurd varabl bg

More information

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD Las squars ad moo uo Vascoclos ECE Dparm UCSD Pla for oda oda w wll dscuss moo smao hs s rsg wo was moo s vr usful as a cu for rcogo sgmao comprsso c. s a gra ampl of las squars problm w wll also wrap

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1)

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1) Math Trcks r! Combato - umbr o was to group r o objcts, ordr ot mportat r! r! ar 0 a r a s costat, 0 < r < k k! k 0 EX E[XX-] + EX Basc Probablt 0 or d Pr[X > ] - Pr[X ] Pr[ X ] Pr[X ] - Pr[X ] Proprts

More information

Lecture 12: Introduction to nonlinear optics II.

Lecture 12: Introduction to nonlinear optics II. Lcur : Iroduco o olar opcs II r Kužl ropagao of srog opc sgals propr olar ffcs Scod ordr ffcs! Thr-wav mxg has machg codo! Scod harmoc grao! Sum frqucy grao! aramrc grao Thrd ordr ffcs! Four-wav mxg! Opcal

More information

Reliability analysis of time - dependent stress - strength system when the number of cycles follows binomial distribution

Reliability analysis of time - dependent stress - strength system when the number of cycles follows binomial distribution raoal Joural of Sascs ad Ssms SSN 97-675 Volum, Numbr 7,. 575-58 sarch da Publcaos h://www.rublcao.com labl aalss of m - dd srss - srgh ssm wh h umbr of ccls follows bomal dsrbuo T.Sumah Umamahswar, N.Swah,

More information

Chapter 4. Continuous Time Markov Chains. Babita Goyal

Chapter 4. Continuous Time Markov Chains. Babita Goyal Chapr 4 Couous Tm Markov Chas Baba Goyal Ky words: Couous m sochasc procsss, Posso procss, brh procss, dah procss, gralzd brh-dah procss, succssv occurrcs, r-arrval m. Suggsd radgs:. Mdh, J. (996, Sochasc

More information

Series of New Information Divergences, Properties and Corresponding Series of Metric Spaces

Series of New Information Divergences, Properties and Corresponding Series of Metric Spaces Srs of Nw Iforao Dvrgcs, Proprs ad Corrspodg Srs of Mrc Spacs K.C.Ja, Praphull Chhabra Profssor, Dpar of Mahacs, Malavya Naoal Isu of Tchology, Japur (Rajasha), Ida Ph.d Scholar, Dpar of Mahacs, Malavya

More information

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables Improvd Epoal Emaor for Populao Varac Ug Two Aular Varabl Rajh gh Dparm of ac,baara Hdu Uvr(U.P., Ida (rgha@ahoo.com Pakaj Chauha ad rmala awa chool of ac, DAVV, Idor (M.P., Ida Flor maradach Dparm of

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables Rajh gh Dparm of ac,baara Hdu Uvr(U.P.), Ida Pakaj Chauha, rmala awa chool of ac, DAVV, Idor (M.P.), Ida Flor maradach Dparm of Mahmac, Uvr of w Mco, Gallup, UA Improvd Epoal Emaor for Populao Varac Ug

More information

Unbalanced Panel Data Models

Unbalanced Panel Data Models Ubalacd Pal Data odls Chaptr 9 from Baltag: Ecoomtrc Aalyss of Pal Data 5 by Adrás alascs 4448 troducto balacd or complt pals: a pal data st whr data/obsrvatos ar avalabl for all crosssctoal uts th tr

More information

Inference on Curved Poisson Distribution Using its Statistical Curvature

Inference on Curved Poisson Distribution Using its Statistical Curvature Rsarch Joural of Mahacal ad Sascal Sccs ISSN 3 647 ol. 5 6-6 Ju 3 Rs. J. Mahacal ad Sascal Sc. Ifrc o Curvd Posso Dsrbuo Usg s Sascal Curvaur Absrac Sal Babulal ad Sadhu Sachaya Dpar of sascs Th Uvrsy

More information

Extinction risk depends strongly on factors contributing to stochasticity

Extinction risk depends strongly on factors contributing to stochasticity co rs dpds srogly o facors corbug o sochascy r A. Mlbour & Ala Hasgs 2 parm of cology ad voluoary ology Uvrsy of Colorado ouldr CO 839 USA 2 parm of vromal Scc ad Polcy Uvrsy of Calfora avs CA 9566 USA

More information

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f MODEL QUESTION Statstcs (Thory) (Nw Syllabus) GROUP A d θ. ) Wrt dow th rsult of ( ) ) d OR, If M s th mod of a dscrt robablty dstrbuto wth mass fucto f th f().. at M. d d ( θ ) θ θ OR, f() mamum valu

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

A NOVEL DIFFERENCE EQUATION REPRESENTATION FOR AUTOREGRESSIVE TIME SERIES

A NOVEL DIFFERENCE EQUATION REPRESENTATION FOR AUTOREGRESSIVE TIME SERIES Joural of Thorcal ad Appld Iformao Tchology h Spmbr 4. Vol. 67 No. 5-4 JATIT & LLS. All rghs rsrvd. ISSN: 99-8645 www.a.org E-ISSN: 87-395 A NOVEL DIFFERENCE EQUATION REPRESENTATION FOR AUTOREGRESSIVE

More information

Gauge Theories. Elementary Particle Physics Strong Interaction Fenomenology. Diego Bettoni Academic year

Gauge Theories. Elementary Particle Physics Strong Interaction Fenomenology. Diego Bettoni Academic year Gau Thors Elmary Parcl Physcs Sro Iraco Fomoloy o Bo cadmc yar - Gau Ivarac Gau Ivarac Whr do Laraas or Hamloas com from? How do w kow ha a cra raco should dscrb a acual hyscal sysm? Why s h lcromac raco

More information

Two-Dimensional Quantum Harmonic Oscillator

Two-Dimensional Quantum Harmonic Oscillator D Qa Haroc Oscllaor Two-Dsoal Qa Haroc Oscllaor 6 Qa Mchacs Prof. Y. F. Ch D Qa Haroc Oscllaor D Qa Haroc Oscllaor ch5 Schrödgr cosrcd h cohr sa of h D H.O. o dscrb a classcal arcl wh a wav ack whos cr

More information

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES DEFINITION OF A COMPLEX NUMBER: A umbr of th form, whr = (, ad & ar ral umbrs s calld a compl umbr Th ral umbr, s calld ral part of whl s calld

More information

Survival Analysis for Randomized Clinical Trials II Cox Regression. Ziad Taib Biostatistics AstraZeneca February 26, 2008

Survival Analysis for Randomized Clinical Trials II Cox Regression. Ziad Taib Biostatistics AstraZeneca February 26, 2008 Survval alyss for Raomz Clcal rals II Cox Rgrsso a ab osascs sraca Fbruary 6, 8 la Irouco o proporoal azar mol H aral lkloo Comparg wo groups umrcal xampl Comparso w log-rak s mol xp z + + k k z Ursag

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

CHAPTER Let "a" denote an acceptable power supply Let "f","m","c" denote a supply with a functional, minor, or cosmetic error, respectively.

CHAPTER Let a denote an acceptable power supply Let f,m,c denote a supply with a functional, minor, or cosmetic error, respectively. CHAPTER Sco - -. L "a", "b" do a par abov, blow h spccao S aaa, aab, aba, abb, baa, bab, bba, bbb { } -. L "" do a b rror L "o" do a b o rror "o" dos okay, o, o, oo, o, oo, oo, ooo, S o, oo, oo, ooo, oo,

More information

EMPIRICAL STUDY IN FINITE CORRELATION COEFFICIENT IN TWO PHASE ESTIMATION

EMPIRICAL STUDY IN FINITE CORRELATION COEFFICIENT IN TWO PHASE ESTIMATION MPIRIAL TDY I FIIT ORRLATIO OFFIIT I TWO PHA TIMATIO M. Khohva Lcurr Grffh vry chool of Accoug ad Fac Aurala. F. Kaymarm Aa Profor Maachu Iu of Tchology Dparm of Mchacal grg A; currly a harf vry Thra Ira.

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty 3 Bary Choc LPM logt logstc rgrso probt Multpl Choc Multomal Logt (c Pogsa Porchawssul,

More information

Ruin Probability in a Generalized Risk Process under Rates of Interest with Homogenous Markov Chain Claims

Ruin Probability in a Generalized Risk Process under Rates of Interest with Homogenous Markov Chain Claims ahmaca Ara, Vl 4, 4, 6, 6-63 Ru Prbably a Gralzd Rs Prcss udr Ras f Irs wh Hmgus arv Cha Clams Phug Duy Quag Dparm f ahmcs Frg Trad Uvrsy, 9- Chua Lag, Ha, V Nam Nguy Va Vu Tra Quc Tua Uvrsy Nguy Hg Nha

More information

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent oucms Couga Gas Mchal Kazha (6.657) Ifomao abou h Sma (6.757) hav b pos ol: hp://www.cs.hu.u/~msha Tch Spcs: o M o Tusay afoo. o Two paps scuss ach w. o Vos fo w s caa paps u by Thusay vg. Oul Rvw of Sps

More information

On nonnegative integer-valued Lévy processes and applications in probabilistic number theory and inventory policies

On nonnegative integer-valued Lévy processes and applications in probabilistic number theory and inventory policies Amrca Joural of Thorcal ad Appld Sascs 3; (5: - Publshd ol Augus 3 3 (hp://wwwsccpublshggroupcom/j/ajas do: 648/jajas35 O ogav gr-valud Lévy procsss ad applcaos probablsc umbr hory ad vory polcs Humg Zhag

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Improvement of the Reliability of a Series-Parallel System Subject to Modified Weibull Distribution with Fuzzy Parameters

Improvement of the Reliability of a Series-Parallel System Subject to Modified Weibull Distribution with Fuzzy Parameters Joural of Mahmacs ad Sascs Rsarch Arcls Improvm of h Rlably of a Srs-Paralll Sysm Subjc o Modfd Wbull Dsrbuo wh Fuzzy Paramrs Nama Salah Youssf Tmraz Mahmacs Dparm, Faculy of Scc, Taa Uvrsy, Taa, Egyp

More information

Lecture 1: Empirical economic relations

Lecture 1: Empirical economic relations Ecoomcs 53 Lctur : Emprcal coomc rlatos What s coomtrcs? Ecoomtrcs s masurmt of coomc rlatos. W d to kow What s a coomc rlato? How do w masur such a rlato? Dfto: A coomc rlato s a rlato btw coomc varabls.

More information

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns Summary: Solvng a Homognous Sysm of Two Lnar Frs Ordr Equaons n Two Unknowns Gvn: A Frs fnd h wo gnvalus, r, and hr rspcv corrspondng gnvcors, k, of h coffcn mar A Dpndng on h gnvalus and gnvcors, h gnral

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview Probably 1/19/ CS 53 Probablsc mehods: overvew Yashwa K. Malaya Colorado Sae Uversy 1 Probablsc Mehods: Overvew Cocree umbers presece of uceray Probably Dsjo eves Sascal depedece Radom varables ad dsrbuos

More information

The Poisson Process Properties of the Poisson Process

The Poisson Process Properties of the Poisson Process Posso Processes Summary The Posso Process Properes of he Posso Process Ierarrval mes Memoryless propery ad he resdual lfeme paradox Superposo of Posso processes Radom seleco of Posso Pos Bulk Arrvals ad

More information

The expected value of a sum of random variables,, is the sum of the expected values:

The expected value of a sum of random variables,, is the sum of the expected values: Sums of Radom Varables xpected Values ad Varaces of Sums ad Averages of Radom Varables The expected value of a sum of radom varables, say S, s the sum of the expected values: ( ) ( ) S Ths s always true

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

(1) Cov(, ) E[( E( ))( E( ))]

(1) Cov(, ) E[( E( ))( E( ))] Impac of Auocorrelao o OLS Esmaes ECON 3033/Evas Cosder a smple bvarae me-seres model of he form: y 0 x The four key assumpos abou ε hs model are ) E(ε ) = E[ε x ]=0 ) Var(ε ) =Var(ε x ) = ) Cov(ε, ε )

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are Itratoal Joural Of Computatoal Egrg Rsarch (crol.com) Vol. Issu. 5 Total Prm Graph M.Rav (a) Ramasubramaa 1, R.Kala 1 Dpt.of Mathmatcs, Sr Shakth Isttut of Egrg & Tchology, Combator 641 06. Dpt. of Mathmatcs,

More information

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues BocDPm 9 h d Ch 7.6: Compl Egvlus Elm Dffl Equos d Boud Vlu Poblms 9 h do b Wllm E. Boc d Rchd C. DPm 9 b Joh Wl & Sos Ic. W cosd g homogous ssm of fs od l quos wh cos l coffcs d hus h ssm c b w s ' A

More information

Aotomorphic Functions And Fermat s Last Theorem(4)

Aotomorphic Functions And Fermat s Last Theorem(4) otomorphc Fuctos d Frmat s Last Thorm(4) Chu-Xua Jag P. O. Box 94 Bg 00854 P. R. Cha agchuxua@sohu.com bsract 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions:

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions: Paramerc coug process models Cosder coug processes: N,,..., ha cou he occurreces of a eve of eres for dvduals Iesy processes: Lelhood λ ( ;,,..., N { } λ < Log-lelhood: l( log L( Score fucos: U ( l( log

More information

14. Poisson Processes

14. Poisson Processes 4. Posso Processes I Lecure 4 we roduced Posso arrvals as he lmg behavor of Bomal radom varables. Refer o Posso approxmao of Bomal radom varables. From he dscusso here see 4-6-4-8 Lecure 4 " arrvals occur

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space.

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space. Rpatd Trals: As w hav lood at t, th thory of probablty dals wth outcoms of sgl xprmts. I th applcatos o s usually trstd two or mor xprmts or rpatd prformac or th sam xprmt. I ordr to aalyz such problms

More information

ASYMPTOTIC BEHAVIOR OF FINITE-TIME RUIN PROBABILITY IN A BY-CLAIM RISK MODEL WITH CONSTANT INTEREST RATE

ASYMPTOTIC BEHAVIOR OF FINITE-TIME RUIN PROBABILITY IN A BY-CLAIM RISK MODEL WITH CONSTANT INTEREST RATE Joural of Mahmacs ad Sascs 3: 339-357 4 ISSN: 549-3644 4 Scc Publcaos do:.3844/mssp.4.339.357 Publshd Ol 3 4 hp://www.hscpub.com/mss.oc ASYMPTOTIC BEHAVIOR OF FINITE-TIME RUIN PROBABILITY IN A BY-CLAIM

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D { 2 2... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data

More information

Numerical Method: Finite difference scheme

Numerical Method: Finite difference scheme Numrcal Mthod: Ft dffrc schm Taylor s srs f(x 3 f(x f '(x f ''(x f '''(x...(1! 3! f(x 3 f(x f '(x f ''(x f '''(x...(! 3! whr > 0 from (1, f(x f(x f '(x R Droppg R, f(x f(x f '(x Forward dffrcg O ( x from

More information

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters Leas Squares Fg LSQF wh a complcaed fuco Theeampleswehavelookedasofarhavebeelearheparameers ha we have bee rg o deerme e.g. slope, ercep. For he case where he fuco s lear he parameers we ca fd a aalc soluo

More information

Major: All Engineering Majors. Authors: Autar Kaw, Luke Snyder

Major: All Engineering Majors. Authors: Autar Kaw, Luke Snyder Nolr Rgrsso Mjor: All Egrg Mjors Auhors: Aur Kw, Luk Sydr hp://urclhodsgusfdu Trsforg Nurcl Mhods Educo for STEM Udrgrdus 3/9/5 hp://urclhodsgusfdu Nolr Rgrsso hp://urclhodsgusfdu Nolr Rgrsso So populr

More information

Introduction to Laplace Transforms October 25, 2017

Introduction to Laplace Transforms October 25, 2017 Iroduco o Lplc Trform Ocobr 5, 7 Iroduco o Lplc Trform Lrr ro Mchcl Egrg 5 Smr Egrg l Ocobr 5, 7 Oul Rvw l cl Wh Lplc rform fo of Lplc rform Gg rform b gro Fdg rform d vr rform from bl d horm pplco o dffrl

More information

signal amplification; design of digital logic; memory circuits

signal amplification; design of digital logic; memory circuits hatr Th lctroc dvc that s caabl of currt ad voltag amlfcato, or ga, cojucto wth othr crcut lmts, s th trasstor, whch s a thr-trmal dvc. Th dvlomt of th slco trasstor by Bard, Bratta, ad chockly at Bll

More information

Second Handout: The Measurement of Income Inequality: Basic Concepts

Second Handout: The Measurement of Income Inequality: Basic Concepts Scod Hadout: Th Masurmt of Icom Iqualty: Basc Cocpts O th ormatv approach to qualty masurmt ad th cocpt of "qually dstrbutd quvalt lvl of com" Suppos that that thr ar oly two dvduals socty, Rachl ad Mart

More information

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square Lecure 5 esy esmao Mlos Hauskrec mlos@cs..edu 539 Seo Square esy esmaos ocs: esy esmao: Mamum lkelood ML Bayesa arameer esmaes M Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Noaramerc

More information

In 1991 Fermat s Last Theorem Has Been Proved

In 1991 Fermat s Last Theorem Has Been Proved I 99 Frmat s Last Thorm Has B Provd Chu-Xua Jag P.O.Box 94Bg 00854Cha Jcxua00@s.com;cxxxx@6.com bstract I 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

Asymptotic Behavior of Finite-Time Ruin Probability in a By-Claim Risk Model with Constant Interest Rate

Asymptotic Behavior of Finite-Time Ruin Probability in a By-Claim Risk Model with Constant Interest Rate Th Uvrsy of Souhr Msssspp Th Aqula Dgal Commuy Sud ublcaos 8-5-4 Asympoc Bhavor of F-Tm Ru robably a By-Clam Rs Modl wh Cosa Irs Ra L Wag Uvrsy of Souhr Msssspp Follow hs ad addoal wors a: hps://aqula.usm.du/sud_pubs

More information

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables Joural of Sceces Islamc epublc of Ira 6(: 63-67 (005 Uvers of ehra ISSN 06-04 hp://scecesuacr Some Probabl Iequales for Quadrac Forms of Negavel Depede Subgaussa adom Varables M Am A ozorga ad H Zare 3

More information

UNIT III STANDARD DISTRIBUTIONS

UNIT III STANDARD DISTRIBUTIONS UNIT III STANDARD DISTRIBUTIONS Biomial, Poisso, Normal, Gomric, Uiform, Eoial, Gamma disribuios ad hir roris. Prard by Dr. V. Valliammal Ngaiv biomial disribuios Prard by Dr.A.R.VIJAYALAKSHMI Sadard Disribuios

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

On the Class of New Better than Used. of Life Distributions

On the Class of New Better than Used. of Life Distributions Appld Mahacal Sccs, Vol. 6, 22, o. 37, 689-687 O h Class of Nw Br ha Usd of Lf Dsrbos Zohd M. Nofal Dpar of Sascs Mahacs ad Israc Facl of Corc Bha Uvrs, Egp dr_zofal@hoal.co Absrac So w rsls abo NBU3 class

More information

The Variance-Covariance Matrix

The Variance-Covariance Matrix Th Varanc-Covaranc Marx Our bggs a so-ar has bn ng a lnar uncon o a s o daa by mnmzng h las squars drncs rom h o h daa wh mnsarch. Whn analyzng non-lnar daa you hav o us a program l Malab as many yps o

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Chapter 5 Transient Analysis

Chapter 5 Transient Analysis hpr 5 rs Alyss Jsug Jg ompl rspos rs rspos y-s rspos m os rs orr co orr Dffrl Equo. rs Alyss h ffrc of lyss of crcus wh rgy sorg lms (ucors or cpcors) & m-ryg sgls wh rss crcus s h h quos rsulg from r

More information

Physics 160 Lecture 3. R. Johnson April 6, 2015

Physics 160 Lecture 3. R. Johnson April 6, 2015 Physics 6 Lcur 3 R. Johnson April 6, 5 RC Circui (Low-Pass Filr This is h sam RC circui w lookd a arlir h im doma, bu hr w ar rsd h frquncy rspons. So w pu a s wav sad of a sp funcion. whr R C RC Complx

More information

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University Chatr 5 Scal Dscrt Dstrbutos W-Guy Tzg Comutr Scc Dartmt Natoal Chao Uvrsty Why study scal radom varabls Thy aar frqutly thory, alcatos, statstcs, scc, grg, fac, tc. For aml, Th umbr of customrs a rod

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

Continuous Distributions

Continuous Distributions 7//3 Cotuous Dstrbutos Radom Varables of the Cotuous Type Desty Curve Percet Desty fucto, f (x) A smooth curve that ft the dstrbuto 3 4 5 6 7 8 9 Test scores Desty Curve Percet Probablty Desty Fucto, f

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

Quantum Harmonic Oscillator

Quantum Harmonic Oscillator Quu roc Oscllor Quu roc Oscllor 6 Quu Mccs Prof. Y. F. C Quu roc Oscllor Quu roc Oscllor D S..O.:lr rsorg forc F k, k s forc cos & prbolc pol. V k A prcl oscllg roc pol roc pol s u po of sbly sys 6 Quu

More information

k of the incident wave) will be greater t is too small to satisfy the required kinematics boundary condition, (19)

k of the incident wave) will be greater t is too small to satisfy the required kinematics boundary condition, (19) TOTAL INTRNAL RFLTION Kmacs pops Sc h vcos a coplaa, l s cosd h cd pla cocds wh h X pla; hc 0. y y y osd h cas whch h lgh s cd fom h mdum of hgh dx of faco >. Fo cd agls ga ha h ccal agl s 1 ( /, h hooal

More information

Existence of Nonoscillatory Solutions for a Class of N-order Neutral Differential Systems

Existence of Nonoscillatory Solutions for a Class of N-order Neutral Differential Systems Vo 3 No Mod Appd Scc Exsc of Nooscaoy Souos fo a Cass of N-od Nua Dffa Sysms Zhb Ch & Apg Zhag Dpam of Ifomao Egg Hua Uvsy of Tchoogy Hua 4 Cha E-ma: chzhbb@63com Th sach s facd by Hua Povc aua sccs fud

More information

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider Mach Larg Prcpl Compot Aalyss Prof. Dr. Volkr Sprschdr AG Maschlls Lr ud Natürlchsprachlch Systm Isttut für Iformatk chsch Fakultät Albrt-Ludgs-Uvrstät Frburg sprschdr@formatk.u-frburg.d I. Archtctur II.

More information

IS THE MINIMUM-TRACE DATUM DEFINITION THEORETICALLY CORRECT AS APPLIED IN COMPUTING 2D AND 3D DISPLACEMENTS?

IS THE MINIMUM-TRACE DATUM DEFINITION THEORETICALLY CORRECT AS APPLIED IN COMPUTING 2D AND 3D DISPLACEMENTS? Procdgs, h FIG Symposum o Dformao asurms, Saor, Grc, 003. IS HE INIU-RACE DAU DEFINIION HEOREICALLY CORREC AS APPLIED IN COPUING D AND 3D DISPLACEENS? Wold Prószyńsk Isu of Appld Godsy, Warsaw Uvrsy of

More information

Advanced Queueing Theory. M/G/1 Queueing Systems

Advanced Queueing Theory. M/G/1 Queueing Systems Advand Quung Thory Ths slds ar rad by Dr. Yh Huang of Gorg Mason Unvrsy. Sudns rgsrd n Dr. Huang's ourss a GMU an ma a sngl mahn-radabl opy and prn a sngl opy of ah sld for hr own rfrn, so long as ah sld

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

Assessing Normality. Assessing Normality. Assessing Normality. Assessing Normality. Normal Probability Plot for Normal Distribution.

Assessing Normality. Assessing Normality. Assessing Normality. Assessing Normality. Normal Probability Plot for Normal Distribution. Assessg Normaly No All Couous Radom Varables are Normally Dsrbued I s Impora o Evaluae how Well he Daa Se Seems o be Adequaely Approxmaed by a Normal Dsrbuo Cosruc Chars Assessg Normaly For small- or moderae-szed

More information

Notation for Mixed Models for Finite Populations

Notation for Mixed Models for Finite Populations 30- otato for d odl for Ft Populato Smpl Populato Ut ad Rpo,..., Ut Labl for,..., Epctd Rpo (ovr rplcatd maurmt for,..., Rgro varabl (Luz r for,...,,,..., p Aular varabl for ut (Wu z μ for,...,,,..., p

More information

On the Existence and uniqueness for solution of system Fractional Differential Equations

On the Existence and uniqueness for solution of system Fractional Differential Equations OSR Jourl o Mhms OSR-JM SSN: 78-578. Volum 4 ssu 3 Nov. - D. PP -5 www.osrjourls.org O h Es d uquss or soluo o ssm rol Drl Equos Mh Ad Al-Wh Dprm o Appld S Uvrs o holog Bghdd- rq Asr: hs ppr w d horm o

More information

CHAPTER 7. X and 2 = X

CHAPTER 7. X and 2 = X CHATR 7 Sco 7-7-. d r usd smors o. Th vrcs r d ; comr h S vrc hs cs / / S S Θ Θ Sc oh smors r usd mo o h vrcs would coclud h s h r smor wh h smllr vrc. 7-. [ ] Θ 7 7 7 7 7 7 [ ] Θ ] [ 7 6 Boh d r usd sms

More information

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k.

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k. Modr Smcoductor Dvcs for Itgratd rcuts haptr. lctros ad Hols Smcoductors or a bad ctrd at k=0, th -k rlatoshp ar th mmum s usually parabolc: m = k * m* d / dk d / dk gatv gatv ffctv mass Wdr small d /

More information

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = =

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = = L's rvs codol rol whr h v M s rssd rs o h rdo vrl. L { M } rrr v such h { M } Assu. { } { A M} { A { } } M < { } { } A u { } { } { A} { A} ( A) ( A) { A} A A { A } hs llows us o cosdr h cs wh M { } [ (

More information

Variable Satellite Usage in GPS Receivers

Variable Satellite Usage in GPS Receivers Procdgs of h orld Cogrss o grg ad Compur Scc 00 Vol I CCS 00, Ocobr 0-, 00, Sa Fracsco, USA Varabl Sall Usag GPS Rcvrs L Dg, Hyosop L, Ha Yu, Drrc Crwsy, X L, ad Crag C. Douglas, Mmbr, IANG Absrac Cosumr

More information

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP)

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP) th Topc Compl Nmbrs Hyprbolc fctos ad Ivrs hyprbolc fctos, Rlato btw hyprbolc ad crclar fctos, Formla of hyprbolc fctos, Ivrs hyprbolc fctos Prpard by: Prof Sl Dpartmt of Mathmatcs NIT Hamrpr (HP) Hyprbolc

More information

Chapter 8. Simple Linear Regression

Chapter 8. Simple Linear Regression Chaper 8. Smple Lear Regresso Regresso aalyss: regresso aalyss s a sascal mehodology o esmae he relaoshp of a respose varable o a se of predcor varable. whe here s jus oe predcor varable, we wll use smple

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

innovations shocks white noise

innovations shocks white noise Innovaons Tm-srs modls ar consrucd as lnar funcons of fundamnal forcasng rrors, also calld nnovaons or shocks Ths basc buldng blocks sasf var σ Srall uncorrlad Ths rrors ar calld wh nos In gnral, f ou

More information