Linear Systems Analysis in the Time Domain

Size: px
Start display at page:

Download "Linear Systems Analysis in the Time Domain"

Transcription

1 Liar Sysms Aalysis i h Tim Domai

2 Firs Ordr Sysms di vl = L, vr = Ri, d di L + Ri = () d R x= i, x& = x+ ( ) L L X() s I() s = = = U() s E() s Ls+ R R L s + R u () = () =, i() = L i () = R R

3 Firs Ordr Sysms Y() s =, U( s) =, u( ) = U() s Ts+ s T : im cosa Y() s = = T Ts + s s Ts + y () =, y & () = T T T

4 Firs Ordr Sysms R() = r Rs () = r s T T Ys () = r = r + Ts + s s s s + (/ T) T y () = r ( T+ T ) T () = R () y () = rt( ) ( ) = rt

5 Scod Ordr Sysms Rs () Cs () G(s) Gs () ω = s + ζω s+ ω ω Rs () = ( spipu), Cs () = s s + ζω s + ω s s + ζω s+ ω =, s= ζω ± ζ ω

6 Udrdampd cas < ζ < ζ = Scod Ordr Sysms s = ζω ± ζ ω ω = ω ζ i, ( d ) ω s + ζω Cs () = = ( s+ ζϖ ) + ω ( ζ ) s s ( s+ ζω ) + ω d s + ζω ζω = s ( s+ ζω ) + ω ( s+ ζω ) + ω d d ζω ζω ζ ζω C ( ) = cosωd siω si( ) d= ω d+ η ζ ζ η = a Criically dampd cas ζ ζ ω Rs () =, Cs () = s ( s+ ζω) s ω c () = ( + ω )

7 Ovrdampd cas Cs () = ζ > Scod Ordr Sysms ω ( + ζω + ω ζ )( + ζω ω ζ ) s s s c() ζ ( ζ + ζ ) ζ ( ζ ζ ) ( + ) ω ( ) ω () = + ζ ζ ζ ζ ( ) ( ) ζ + ζ ω ζ ζ ω ω = + ( ) ( ) ζ ζ + ζ ω ζ ζ ω Approximaio (Afr h fasr rm disappard) Cs () ζω ω ζ = Rs () s + ζω ω ζ c = ζ ζ ω ( ) ()

8 Exprimal Drmiaio of Dampig Raio mx && + bx& + kx =, x& () = && x+ ζω x& + ω x= b ζ = = ω m ( s+ ζω ) b b k mk + ζωs+ ω [ ] sxs ( ) sx() x& () + ζω sxs ( ) x() + ω Xs ( ) = X () s = s x() ζω () ζ x ζω ζ x ( ) = x()si ω ()cos cos a + x ω = ω ζ d d ζ d ζ m ζω x = = ζω ( + ( ) T) x ( ) ζω T

9 Exprimal Drmiaio of Dampig Raio Logarihmic dcrm x π πζ x l = ζωt = ζω = = l x ω d ζ x x x l = ( ) ζ = ζω T x l x x 4π + l x

10 Esima of Rspos Tim x() ζ w ζ x ( ) = cos ω d a ζ ζ ω = ω ζ d ζ ω = = = d ω ζ,, ωd η ζω ζ ζω ζ π a = η ζ

11 Scod Ordr Trasis Sp ipu rspos ζω ζω ζ ζω C ( ) = cosωd siω si( ) d= ω d+ η ζ ζ η = a ζ ζ

12 Scod Ordr Trasis ) Pak ovrshoo M p dx ζ ζω ζω = ω si( ) cos( ), ( ) ωd+ φ ω ωd+ φ = ωd = ω ζ d ζ ζ a( ω d + φ ) = ζ =, ωd = π, π, L π π p = = ω d ω ζ M = y( ) p p M s.63 Ts ζ π ζω ω ζ π ζπ ω ζ φ = si + = + xp ζ ω ζ ζ M p y s ζπ pr ui ovrshoo M o = = xp y s ζ

13 Scod Ordr Trasis ) Slig im : Th im rquird for h oscillaios o dcras o a spcifid absolu prcag rror. T s ζω = y r = si( ω ) d+ φ ζ x) = % or 5% % cas, Ts 4 T = 4 ζω 5% cas, T 3 T y() s 3) Ris im r..9. r T s

14 Scod Ordr Trasis 4) Frqucy of oscillaio of h rasi ω ω ζ ω m k m d =, =, k ωd = ζ m + ζω m+ ω = m = ζω ± jω ζ = σ ± jω d

15 Soluio of Liar (Tim Ivaria) Sa Equaio u u M u m sysm x, x, L, x y y M y l x & () = Ax () + Bu () y () = Cx () + Du () [ ] x () = x x L x T

16 Scalar Fucio u () = i) x& = ax Basic Marix Liar Algbra -Homogous Soluio x () = C a =, x() = C x () = x() a x x x a ( ( ) = ) ( ), =, ( ) k ( ) ( ) ii) a = xp( a) = + a + a + L+ a + L!! k! Homogous Soluio i) x=ax & A:, x: d x( ) = xp A( ) x( ), ( ) = A d A ii) How o valua [ ] A A

17 Sa Trasiio Marix A( x( ) = ) x( ) =Φ( )x( ) [ ] A ( ) Φ ( ) = = xp A( ) : Sa rasiio marix (STM) : fudamal marix of h sysm Propris of STM. Φ( ) Φ( ) =Φ( ) for ay,,. Φ () = I ( ( ) ) A A 3. Φ() Φ () = Φ () = Φ () Q = =Φ () 4. Φ () = Φ ( ) 5. Φ( ) g Φ () =Φ( g) is osigular for all fii valus of (ivrs xiss)

18 Compl Soluio of h Sa Equaio x & = A x+ B u, x & A x = B u, igraig facor A A A A d A A x& A x = B u, x = B u( ) d ( ) A Aτ x( ) x() = B u( τ) dτ A A( τ ) x( ) x() B ( τ) = + u dτ =Φ ( ) x() + Φ( τ) B u( τ) dτ

19 Compl Soluio of h Sa Equaio A A [ ] = Aτ for,, x( ) x( ) B u( τ ) dτ x( ) =Φ( ) x( ) + Φ( τ) B u( τ) dτ x( ) =Φ ( ) x() + Φ( τ) B u( τ) dτ - Zro-ipu - Zro-sa rspos rspos - fr rspos - forcd rspos chagof variabl τ, l β = τ, τ = β = τ = β = d β = d τ x( ) =Φ ( ) x() + Φ( β) B u( β) dβ

20 Marix Expoial x( () = A x() L( α ), x& = Ax L( β) Marix xpoial A = L! 3! A 3 3 I A A A L (*) Q a 3 ( a) ( a) = + a+ + + L! 3! d A ( ) A A A L A I A A d 3 = = = A A L d A A x( & ) = ( ) x() = A x() = A x( ) d ( α) is h soluio of h marix diffrial quaio ( β )

21 Marix Expoial k A A = xp(a ) = = k! A ( ) d = A d A ( A + B ) A B k = ( A+ B) A B = if AB = BA k if AB BA 3 ( A+ B) (A+ B) (A+ B) 3 = I + (A+ B) + + +L! 3! A A B B A B = I+ A+ + + L I+ B+ + + L! 3!! 3! A = I + (A+ B) + + AB! B B A B AB B L! 3!!! 3!

22 A How o Evalua Hc, ( A BA AB BA ABA B A BAB A B AB + B) A B = + + L! 3! ( A+ B) A B Th diffrc bw ad vaishs, if A ad B commu.

23 How o Evalua A (*) a) Diagoalizd Form λ A = λ λ 3 3 λ λ A 3 = I + A+ λ λ + + L 3! λ 3 λ λ + λ + λ + L λ 3! λ = O = λ3

24 How o Evalua A b) Jorda Form λ λ λ = = A A λ λ, λ λ λ A, λ λ λ λ λ A λ λ = λ =

25 How o Evalua A c) Gral A : diagoaliz!! [ λ ] x& = Ax + B u i) Q ( λ ) = d I A = : ii) λ : i A: igvalu of A disic igvalus. sol = λ i=, L, iii) ( λ I A) p = p : ig vcor i i i Α p = λ p i i i i Characrisic quaio. λ A [ p L p] = [ p L p ] O, AP= PΛ λ λ - P AP = O =Λ Diagoalizabl if λi : disi igvalus λ

26 How o Evalua A Α p =λ p i i i T if p p =, p is a ormalizd igvcor. i i i Orhogoaliy of igvcor T if A= A T T A p i = λ i p i pj A pi = λi pj pi = T T A pj = λ jp j pi A pj = λ jpi pj = λ p L p = p L p O λ [ ] [ ] A T PAP=Λ

27 How o Evalua A l Pxˆ = x, x & = Pxˆ& x& = Ax+ Bu Px& ˆ = APxˆ + B u ˆ& = ˆ+ u =Λ ˆ+ x P APx P B x P B Λ Λ( τ ) x( ˆ ) x() ˆ P B ( ) u τ dτ = + Λ Λ( τ ) Px( ˆ ) P P x() P P B ( ) u τ dτ = + Λ Λ( τ ) x( ) P P x() P P B ( τ ) = + u dτ u

28 d) Gral A (-> Jorda form) λ λ i rpad : mulipl igvalu [ λ ] ( λ λ )( λ λ ) A How o Evalua d I A = A : 3 3 i ( λ I A) p = ( λ I A) p = if rak ( λ I A) = h p? Fid p p 3 p suchha λ AP = P λ A p = λp, λ A p = λp A p = p + λ p, (A λ Ι ) p = p 3 3 3

29 Mulipl Eigvalu - Diagoal Form x) λ A= Q( λ) = d λi A = λ λ igvalu : λ =, λ =, λ = 3 ( λ ) ( λ ) = ( λ ) igvcor : Ap = λ p I A p = i i i i i λ, =, p, = choos p =, p = λ 3, p p = = = 3 3

30 Mulipl Eigvalu - Diagoal Form P= [ p p p3] =, P = x& - P AP= =Λ = Ax xˆ& = P APxˆ =Λxˆ ˆ ˆ ˆ Λ Λ x( ) = x(), P x = x P x( ) = P x() = = Λ A x( ) P P x() x() A = P P =

31 Mulipl Eigvalu - Jorda Form λ A= 3 Q( λ) = d λi A = λ 3 λ igvalu : λ =, λ =, 3 ( λ ) ( λ ) = ( ) igvcor : A p = λ p λ I A p = i i i i i λ, =, 3 p, = p = 5 λ3 =, 3 p3 = p3 = 3 W ca fid oly igvcor for λ =

32 Mulipl Eigvalu - Jorda Form If o abl o fid 3 idpd vcors, fid which rasforms A as Jorda form. λ AP = PJ P = λ λ 3 λ A[ p p p3] = [ p p p 3] λ λ 3 [ A p A p A p ] [ pλ p λ p λ p ] = + So ha, [ λ ] p A p = λ p I A p = p [ λ ] A p = p + λ p A I p = p p [ λ ] A p = λ p A I p = p

33 Mulipl Eigvalu - Jorda Form a A λi p = 3 p, l, p b = = c [ ] b c c c b choos p + =, 3 =, = =, = 5 5 P = 3, P = P AP= = Jorda form

34 Mulipl Eigvalu - Jorda Form A if x& = 3 x = Ax, x( ) = x()? l Pxˆ = x, x & = Pxˆ& & x( ˆ() = P APx ˆ = J x ˆ = x ˆ J J =, x( ˆ ) = x() ˆ J - A x( ) P = P x() = x()

35 Mulipl Eigvalu - Jorda Form 5 5 A J = P P = = 3 3 ( ) = ( )

36 Summary. Diagoal Form. Jorda Form λ λ A λ A = λ = λ3 λ 3 λ λ λ A λ A= λ =, λ λ λ A λ λ λ λ λ A λ λ = λ =

37 Summary 3. Gral A & - x Ax Bu A pi λipi, P AP = + = =Λ l ˆ x=px ˆ& ˆ ˆ x= P APx + P B u= Λ x+ P B ˆ Λ Λ( τ ) x( ) x() P B ( ) u ˆ u τ dτ ˆ = + Λ Λ( τ ) Px( ) x( ) P P x() P P B ( ) = = + u τ dτ P Λ P = A

38 Laplac Trasformaio Mhod A A( τ ) x& = Ax+ B u, x( ) = x + B u( τ) dτ Laplac Trasformaio sx( s) x = A X( s) + B u( s), X( s) = ( si A) x + ( si A) B u( s) = L ( si A) A - ( s I A) = I A s s = I+ A+ A + A s s s s 3 3 L 3 = I+ A+ A + A L 3 4 s s s s

39 Laplac Trasformaio Mhod Laplac rasformaio abl d L [] =, L, f ( ) ( ) F( s) s = = ( )! L s ds L ( s I A) = L I+ A+ A + A L 3 4 s s s s 3 3 = I+ A+ A + A L! 3! I A A A! 3! A 3 3 = L

40 Soluio of Liar (Tim Ivaria) Sa Equaio Mhod. Diagoalizaio Mhod. Laplac Trasformaio Mhod 3. Sylvsr's Irpolaio Formula

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

From Fourier Series towards Fourier Transform

From Fourier Series towards Fourier Transform From Fourir Sris owards Fourir rasform D D d D, d wh lim Dparm of Elcrical ad Compur Eiri D, d wh lim L s Cosidr a fucio G d W ca xprss D i rms of Gw D G Dparm of Elcrical ad Compur Eiri D G G 3 Dparm

More information

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016 MAT3700/0//06 Tuorial Lr 0//06 Mahmaics III (Egirig) MAT3700 Smsr Dparm of Mahmaical scics This uorial lr coais soluios ad aswrs o assigms. BARCODE CONTENTS Pag SOLUTIONS ASSIGNMENT... 3 SOLUTIONS ASSIGNMENT...

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

ECE351: Signals and Systems I. Thinh Nguyen

ECE351: Signals and Systems I. Thinh Nguyen ECE35: Sigals ad Sysms I Thih Nguy FudamalsofSigalsadSysms x Fudamals of Sigals ad Sysms co. Fudamals of Sigals ad Sysms co. x x] Classificaio of sigals Classificaio of sigals co. x] x x] =xt s =x

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Mathematical Preliminaries for Transforms, Subbands, and Wavelets Mahmaical Prlimiaris for rasforms, Subbads, ad Wavls C.M. Liu Prcpual Sigal Procssig Lab Collg of Compur Scic Naioal Chiao-ug Uivrsiy hp://www.csi.cu.du.w/~cmliu/courss/comprssio/ Offic: EC538 (03)5731877

More information

3.2. Derivation of Laplace Transforms of Simple Functions

3.2. Derivation of Laplace Transforms of Simple Functions 3. aplac Tarform 3. PE TRNSFORM wid rag of girig ym ar modld mahmaically by uig diffrial quaio. I gral, h diffrial quaio of h ordr ym i wri: d y( a d d d y( dy( a a y( f( (3. d Which i alo ow a a liar

More information

Solutions Manual 4.1. nonlinear. 4.2 The Fourier Series is: and the fundamental frequency is ω 2π

Solutions Manual 4.1. nonlinear. 4.2 The Fourier Series is: and the fundamental frequency is ω 2π Soluios Maual. (a) (b) (c) (d) (e) (f) (g) liear oliear liear liear oliear oliear liear. The Fourier Series is: F () 5si( ) ad he fudameal frequecy is ω f ----- H z.3 Sice V rms V ad f 6Hz, he Fourier

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

Math-303 Chapter 7 Linear systems of ODE November 16, Chapter 7. Systems of 1 st Order Linear Differential Equations.

Math-303 Chapter 7 Linear systems of ODE November 16, Chapter 7. Systems of 1 st Order Linear Differential Equations. Mah-33 Chaper 7 Liear sysems of ODE November 6, 7 Chaper 7 Sysems of s Order Liear Differeial Equaios saddle poi λ >, λ < Mah-33 Chaper 7 Liear sysems of ODE November 6, 7 Mah-33 Chaper 7 Liear sysems

More information

Control Systems. Transient and Steady State Response.

Control Systems. Transient and Steady State Response. Corol Sym Trai a Say Sa Ro chibum@oulch.ac.kr Ouli Tim Domai Aalyi orr ym Ui ro Ui ram ro Ui imul ro Chibum L -Soulch Corol Sym Tim Domai Aalyi Afr h mahmaical mol of h ym i obai, aalyi of ym rformac i.

More information

Linear System Theory

Linear System Theory Naioal Tsig Hua Uiversiy Dearme of Power Mechaical Egieerig Mid-Term Eamiaio 3 November 11.5 Hours Liear Sysem Theory (Secio B o Secio E) [11PME 51] This aer coais eigh quesios You may aswer he quesios

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Control System Engineering (EE301T) Assignment: 2

Control System Engineering (EE301T) Assignment: 2 Conrol Sysm Enginring (EE0T) Assignmn: PART-A (Tim Domain Analysis: Transin Rspons Analysis). Oain h rspons of a uniy fdack sysm whos opn-loop ransfr funcion is (s) s ( s 4) for a uni sp inpu and also

More information

EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) =

EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) = 1. Pole Placement Given the following open-loop plant, HW 9 Solutions G(s) = 1(s + 3) s(s + 2)(s + 5) design the state-variable feedback controller u = Kx + r, where K = [k 1 k 2 k 3 ] is the feedback

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Electrical Engineering Department Network Lab.

Electrical Engineering Department Network Lab. Par:- Elecrical Egieerig Deparme Nework Lab. Deermiaio of differe parameers of -por eworks ad verificaio of heir ierrelaio ships. Objecive: - To deermie Y, ad ABD parameers of sigle ad cascaded wo Por

More information

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals ELECTOMAGNETIC COMPATIBILITY HANDBOOK Chapr : Spcra of Priodic ad Apriodic Sigals. Drmi whhr ach of h followig fucios ar priodic. If hy ar priodic, provid hir fudamal frqucy ad priod. a) x 4cos( 5 ) si(

More information

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by Sae-Space Model I geeral, he dyaic equaio of a luped-paraeer coiuou ye ay be repreeed by x & f x, u, y g x, u, ae equaio oupu equaio where f ad g are oliear vecor-valued fucio Uig a liearized echique,

More information

Fourier transform. Continuous-time Fourier transform (CTFT) ω ω

Fourier transform. Continuous-time Fourier transform (CTFT) ω ω Fourier rasform Coiuous-ime Fourier rasform (CTFT P. Deoe ( he Fourier rasform of he sigal x(. Deermie he followig values, wihou compuig (. a (0 b ( d c ( si d ( d d e iverse Fourier rasform for Re { (

More information

Harmonic excitation (damped)

Harmonic excitation (damped) Harmoic eciaio damped k m cos EOM: m&& c& k cos c && ζ & f cos The respose soluio ca be separaed io par;. Homogeeous soluio h. Paricular soluio p h p & ζ & && ζ & f cos Homogeeous soluio Homogeeous soluio

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems BoDiPrima 9 h d Ch 7.9: Nohomogou Liar Sm Elmar Diffrial Equaio ad Boudar Valu Prolm 9 h diio William E. Bo ad Rihard C. DiPrima 9 Joh Wil & So I. Th gral hor of a ohomogou m of quaio g g aralll ha of

More information

BMM3553 Mechanical Vibrations

BMM3553 Mechanical Vibrations BMM3553 Mhaial Vibraio Chapr 3: Damp Vibraio of Sigl Dgr of From Sym (Par ) by Ch Ku Ey Nizwa Bi Ch Ku Hui Fauly of Mhaial Egirig mail: y@ump.u.my Chapr Dripio Ep Ouom Su will b abl o: Drmi h aural frquy

More information

ECE 570 Session 7 IC 752-E Computer Aided Engineering for Integrated Circuits. Transient analysis. Discuss time marching methods used in SPICE

ECE 570 Session 7 IC 752-E Computer Aided Engineering for Integrated Circuits. Transient analysis. Discuss time marching methods used in SPICE ECE 570 Sessio 7 IC 75-E Compuer Aided Egieerig for Iegraed Circuis Trasie aalysis Discuss ime marcig meods used i SPICE. Time marcig meods. Explici ad implici iegraio meods 3. Implici meods used i circui

More information

Chapter 2 SDOF Vibration Control 2.1 Transfer Function

Chapter 2 SDOF Vibration Control 2.1 Transfer Function Chapter SDOF Vibration Control.1 Transfer Function mx ɺɺ( t) + cxɺ ( t) + kx( t) = F( t) Defines the transfer function as output over input X ( s) 1 = G( s) = (1.39) F( s) ms + cs + k s is a complex number:

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

Class 07 Time domain analysis Part II 2 nd order systems

Class 07 Time domain analysis Part II 2 nd order systems Class 07 Time domai aalysis Part II d order systems Time domai aalysis d order systems iput S output Secod order systems of the type α G(s) as + bs + c Time domai aalysis d order systems iput S α as +

More information

15. Numerical Methods

15. Numerical Methods S K Modal' 5. Numrical Mhod. Th quaio + 4 4 i o b olvd uig h Nwo-Rapho mhod. If i ak a h iiial approimaio of h oluio, h h approimaio uig hi mhod will b [EC: GATE-7].(a (a (b 4 Nwo-Rapho iraio chm i f(

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecure 9, Sae Space Repreeaio Emam Fahy Deparme of Elecrical ad Corol Egieerig email: emfmz@aa.edu hp://www.aa.edu/cv.php?dip_ui=346&er=6855 Trafer Fucio Limiaio TF = O/P I/P ZIC

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1 Samplig Example Le x = cos( 4π)cos( π). The fudameal frequecy of cos 4π fudameal frequecy of cos π is Hz. The ( f ) = ( / ) δ ( f 7) + δ ( f + 7) / δ ( f ) + δ ( f + ). ( f ) = ( / 4) δ ( f 8) + δ ( f

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

Modeling of the CML FD noise-to-jitter conversion as an LPTV process

Modeling of the CML FD noise-to-jitter conversion as an LPTV process Modlig of h CML FD ois-o-ir covrsio as a LPV procss Marko Alksic. Rvisio hisory Vrsio Da Comms. //4 Firs vrsio mrgd wo docums. Cyclosaioary Nois ad Applicaio o CML Frqucy Dividr Jir/Phas Nois Aalysis fil

More information

ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION

ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION PROBLEM 1 A system is made up of a homogeneous disk (of mass m and outer radius R), particle A (of mass m) and particle B (of mass m). The disk is pinned

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

NECESSARY AND SUFFICIENT CONDITIONS FOR STATE-SPACE NETWORK REALIZATION. Philip E. Paré Masters Thesis Defense

NECESSARY AND SUFFICIENT CONDITIONS FOR STATE-SPACE NETWORK REALIZATION. Philip E. Paré Masters Thesis Defense NECESSARY AND SUFFICIENT CONDITIONS FOR STATE-SPACE NETWORK REALIZATION Philip E. Paré Masters Thesis Defense INTRODUCTION MATHEMATICAL MODELING DYNAMIC MODELS A dynamic model has memory DYNAMIC MODELS

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

Transfer func+ons, block diagram algebra, and Bode plots. by Ania- Ariadna Bae+ca CDS Caltech 11/05/15

Transfer func+ons, block diagram algebra, and Bode plots. by Ania- Ariadna Bae+ca CDS Caltech 11/05/15 Transfer func+ons, block diagram algebra, and Bode plots by Ania- Ariadna Bae+ca CDS Caltech 11/05/15 Going back and forth between the +me and the frequency domain (1) Transfer func+ons exist only for

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

A Two-Level Quantum Analysis of ERP Data for Mock-Interrogation Trials. Michael Schillaci Jennifer Vendemia Robert Buzan Eric Green

A Two-Level Quantum Analysis of ERP Data for Mock-Interrogation Trials. Michael Schillaci Jennifer Vendemia Robert Buzan Eric Green A Two-Level Quaum Aalysis of ERP Daa for Mock-Ierrogaio Trials Michael Schillaci Jeifer Vedemia Rober Buza Eric Gree Oulie Experimeal Paradigm 4 Low Workload; Sigle Sessio; 39 8 High Workload; Muliple

More information

Roots and Coefficients Polynomials Preliminary Maths Extension 1

Roots and Coefficients Polynomials Preliminary Maths Extension 1 Preliminary Maths Extension Question If, and are the roots of x 5x x 0, find the following. (d) (e) Question If p, q and r are the roots of x x x 4 0, evaluate the following. pq r pq qr rp p q q r r p

More information

EECE.3620 Signal and System I

EECE.3620 Signal and System I EECE.360 Signal and Sysem I Hengyong Yu, PhD Associae Professor Deparmen of Elecrical and Compuer Engineering Universiy of Massachuses owell EECE.360 Signal and Sysem I Ch.9.4. Geomeric Evaluaion of he

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

EE263: Introduction to Linear Dynamical Systems Review Session 6

EE263: Introduction to Linear Dynamical Systems Review Session 6 EE263: Introduction to Linear Dynamical Systems Review Session 6 Outline diagonalizability eigen decomposition theorem applications (modal forms, asymptotic growth rate) EE263 RS6 1 Diagonalizability consider

More information

Outline. Overlook. Controllability measures. Observability measures. Infinite Gramians. MOR: Balanced truncation based on infinite Gramians

Outline. Overlook. Controllability measures. Observability measures. Infinite Gramians. MOR: Balanced truncation based on infinite Gramians Ouli Ovrlook Corollabiliy masurs Obsrvabiliy masurs Ifii Gramias MOR: alacd rucaio basd o ifii Gramias Ovrlook alacd rucaio: firs balacig h ruca. Giv a I sysm: / y u d d For covic of discussio w do h sysm

More information

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function Chapr VII Spcial Fucios Ocobr 7, 7 479 CHAPTER VII SPECIAL FUNCTIONS Cos: Havisid sp fucio, filr fucio Dirac dla fucio, modlig of impuls procsss 3 Si igral fucio 4 Error fucio 5 Gamma fucio E Epoial igral

More information

Robust Control 5 Nominal Controller Design Continued

Robust Control 5 Nominal Controller Design Continued Robust Control 5 Nominal Controller Design Continued Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 4/14/2003 Outline he LQR Problem A Generalization to LQR Min-Max

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the

More information

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite Wb-basd Supplmary Marials for Sampl siz cosidraios for GEE aalyss of hr-lvl clusr radomizd rials by Sv Trsra, Big Lu, oh S. Prissr, Tho va Achrbrg, ad Gorg F. Borm Wb-appdix : macro o calcula h rag of

More information

Introduction to Modern Control MT 2016

Introduction to Modern Control MT 2016 CDT Autonomous and Intelligent Machines & Systems Introduction to Modern Control MT 2016 Alessandro Abate Lecture 2 First-order ordinary differential equations (ODE) Solution of a linear ODE Hints to nonlinear

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

D(s) G(s) A control system design definition

D(s) G(s) A control system design definition R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

More information

Chapter 4 : Laplace Transform

Chapter 4 : Laplace Transform 4. Itroductio Laplace trasform is a alterative to solve the differetial equatio by the complex frequecy domai ( s = σ + jω), istead of the usual time domai. The DE ca be easily trasformed ito a algebraic

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

The geometry of surfaces contact

The geometry of surfaces contact Applid ad ompuaioal Mchaics (007 647-656 h gomry of surfacs coac J. Sigl a * J. Švíglr a a Faculy of Applid Scics UWB i Pils Uivrzií 0 00 Pils zch public civd 0 Spmbr 007; rcivd i rvisd form 0 Ocobr 007

More information

JUST THE MATHS UNIT NUMBER LAPLACE TRANSFORMS 3 (Differential equations) A.J.Hobson

JUST THE MATHS UNIT NUMBER LAPLACE TRANSFORMS 3 (Differential equations) A.J.Hobson JUST THE MATHS UNIT NUMBER 16.3 LAPLACE TRANSFORMS 3 (Differential equations) by A.J.Hobson 16.3.1 Examples of solving differential equations 16.3.2 The general solution of a differential equation 16.3.3

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals Rviw opics from Chapr 3&4 Fourir Sris Fourir rasform Liar im Ivaria (LI) Sysms Ergy-yp Sigals Powr-yp Sigals Fourir Sris Rprsaio for Priodic Sigals Dfiiio: L h sigal () b a priodic sigal wih priod. ()

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter Time Respose & Frequecy Respose d -Order Dyamic System -Pole, Low-Pass, Active Filter R 4 R 7 C 5 e i R 1 C R 3 - + R 6 - + e out Assigmet: Perform a Complete Dyamic System Ivestigatio of the Two-Pole,

More information

F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mathematics

F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mathematics F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mahemaics Prelim Quesio Paper Soluio Q. Aemp ay FIVE of he followig : [0] Q.(a) Defie Eve ad odd fucios. [] As.: A fucio f() is said o be eve fucio if

More information

Frequency Response of Linear Time Invariant Systems

Frequency Response of Linear Time Invariant Systems ME 328, Spring 203, Prof. Rajamani, University of Minnesota Frequency Response of Linear Time Invariant Systems Complex Numbers: Recall that every complex number has a magnitude and a phase. Example: z

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

Solutions to Skill-Assessment Exercises

Solutions to Skill-Assessment Exercises Solutions to Skill-Assessment Exercises To Accompany Control Systems Engineering 4 th Edition By Norman S. Nise John Wiley & Sons Copyright 2004 by John Wiley & Sons, Inc. All rights reserved. No part

More information

Lecture 12: Introduction to nonlinear optics II.

Lecture 12: Introduction to nonlinear optics II. Lcur : Iroduco o olar opcs II r Kužl ropagao of srog opc sgals propr olar ffcs Scod ordr ffcs! Thr-wav mxg has machg codo! Scod harmoc grao! Sum frqucy grao! aramrc grao Thrd ordr ffcs! Four-wav mxg! Opcal

More information

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response .. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........

More information

State Observer Design

State Observer Design Sa Obsrvr Dsgn A. Khak Sdgh Conrol Sysms Group Faculy of Elcrcal and Compur Engnrng K. N. Toos Unvrsy of Tchnology Fbruary 2009 1 Problm Formulaon A ky assumpon n gnvalu assgnmn and sablzng sysms usng

More information

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences A Uiversity of Califoria at Berkeley College of Egieerig Departmet of Electrical Egieerig ad Computer Scieces U N I V E R S T H E I T Y O F LE T TH E R E B E LI G H T C A L I F O R N 8 6 8 I A EECS : Sigals

More information

AMME3500: System Dynamics & Control

AMME3500: System Dynamics & Control Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13

More information

Optimization of Rotating Machines Vibrations Limits by the Spring - Mass System Analysis

Optimization of Rotating Machines Vibrations Limits by the Spring - Mass System Analysis Joural of aerials Sciece ad Egieerig B 5 (7-8 (5 - doi: 765/6-6/57-8 D DAVID PUBLISHING Opimizaio of Roaig achies Vibraios Limis by he Sprig - ass Sysem Aalysis BENDJAIA Belacem sila, Algéria Absrac: The

More information

SOLUTIONS TO CASE STUDIES CHALLENGES

SOLUTIONS TO CASE STUDIES CHALLENGES F O U R Time Response SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Open-Loop Response The forward transfer function for angular velocity is, G(s) = ω 0(s) V P (s) = 24 (s+50)(s+.32) a. ω 0 (t)

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

EE415/515 Fundamentals of Semiconductor Devices Fall 2012 3 EE4555 Fudmls of Smicoducor vics Fll cur 8: PN ucio iod hr 8 Forwrd & rvrs bis Moriy crrir diffusio Brrir lowrd blcd by iffusio rducd iffusio icrsd mioriy crrir drif rif hcd 3 EE 4555. E. Morris 3 3

More information

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system: Undrdamd Sysms Undrdamd Sysms nd Ordr Sysms Ouu modld wih a nd ordr ODE: d y dy a a1 a0 y b f If a 0 0, hn: whr: a d y a1 dy b d y dy y f y f a a a 0 0 0 is h naural riod of oscillaion. is h daming facor.

More information

9.5 The Transfer Function

9.5 The Transfer Function Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the n-th order linear, time-invariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +

More information

CHE302 LECTURE VI DYNAMIC BEHAVIORS OF REPRESENTATIVE PROCESSES. Professor Dae Ryook Yang

CHE302 LECTURE VI DYNAMIC BEHAVIORS OF REPRESENTATIVE PROCESSES. Professor Dae Ryook Yang CHE30 LECTURE VI DYNAMIC BEHAVIORS OF REPRESENTATIVE PROCESSES Professor Dae Ryook Yang Fall 00 Dep. of Chemical and Biological Engineering orea Universiy CHE30 Process Dynamics and Conrol orea Universiy

More information

e st f (t) dt = e st tf(t) dt = L {t f(t)} s

e st f (t) dt = e st tf(t) dt = L {t f(t)} s Additional operational properties How to find the Laplace transform of a function f (t) that is multiplied by a monomial t n, the transform of a special type of integral, and the transform of a periodic

More information

Dynamic Response of Linear Systems

Dynamic Response of Linear Systems Dyamic Respose of Liear Systems Liear System Respose Superpositio Priciple Resposes to Specific Iputs Dyamic Respose of st Order Systems Characteristic Equatio - Free Respose Stable st Order System Respose

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

Sampling. AD Conversion (Additional Material) Sampling: Band limited signal. Sampling. Sampling function (sampling comb) III(x) Shah.

Sampling. AD Conversion (Additional Material) Sampling: Band limited signal. Sampling. Sampling function (sampling comb) III(x) Shah. AD Coversio (Addiioal Maerial Samplig Samplig Properies of real ADCs wo Sep Flash ADC Pipelie ADC Iegraig ADCs: Sigle Slope, Dual Slope DA Coverer Samplig fucio (samplig comb III(x Shah III III ( x = δ

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

7.2 Controller tuning from specified characteristic polynomial

7.2 Controller tuning from specified characteristic polynomial 192 Finn Haugen: PID Control 7.2 Controller tuning from specified characteristic polynomial 7.2.1 Introduction The subsequent sections explain controller tuning based on specifications of the characteristic

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( x, y, z ) = 0, mulivariable Taylor liear expasio aroud f( x, y, z) f( x, y, z) + f ( x, y,

More information

Lecture 1: Photoconductors and p-i-n Photodiodes

Lecture 1: Photoconductors and p-i-n Photodiodes Lcur 1: Poocoucors a p-i- Pooios Isrucor: Mig C. Wu Uivrsiy of Califoria, Brkly Elcrical Egirig a Compur Scics Dp. 1 Prof. Mig Wu Poocors Covrs lig o lcric sigals Mai yps of poocors Poocoucors P-i- pooios

More information

Transfer function and linearization

Transfer function and linearization Transfer function and linearization Daniele Carnevale Dipartimento di Ing. Civile ed Ing. Informatica (DICII), University of Rome Tor Vergata Corso di Controlli Automatici, A.A. 24-25 Testo del corso:

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

Calculus BC 2015 Scoring Guidelines

Calculus BC 2015 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies 5 The College Board. College Board, Advaced Placeme Program, AP, AP Ceral, ad he acor logo are regisered rademarks of he College Board. AP Ceral is he official olie home

More information