Asymptotic Behaviors for Critical Branching Processes with Immigration

Size: px
Start display at page:

Download "Asymptotic Behaviors for Critical Branching Processes with Immigration"

Transcription

1 Acta Mathmatica Siica, Eglih Sri Apr., 9, Vol. 35, No. 4, pp Publihd oli: March 5, Acta Mathmatica Siica, Eglih Sri Sprigr-Vrlag GmbH Grmay & Th Editorial Offic of AMS 9 Aymptotic Bhavior for Critical Brachig Proc with Immigratio Dou Dou LI Mi ZHANG ) School of Mathmatical Scic, Laboratory of Mathmatic ad Complx Sytm, Bijig Normal Uivrity, Bijig 875, P. R. Chia lidoudou7@6.com mizhag@bu.du.c Abtract I thi papr, w ivtigat th aymptotic bhavior of th critical brachig proc with immigratio {Z, }. Firt w gt om timatio for th probability gratig fuctio of Z. Bad o it, w gt a larg dviatio for Z + /Z. Lowr ad uppr dviatio for Z ar alo tudid. A a by-product, a uppr dviatio for max i Z i i obtaid. Kyword Critical, brachig proc, immigratio, larg dviatio MR() Subjct Claificatio 6J8, 6F Itroductio Suppo {X i,,i } i a quc of o-gativ itgr-valud idpdt ad idtically ditributd (i.i.d.) radom variabl with probability gratig fuctio A(x) i a ix i. {Y, } i aothr quc of o-gativ itgr-valud i.i.d. radom variabl with probability gratig fuctio B(x) i b ix i. {X i,,i } ar idpdt with {Y, }. Dfi {Z } rcurivly a Z Z X i + Y,,Z. (.) {Z, } i calld a Galto Wato brachig proc with immigratio (GWI). Dot α : EX. Wh α>,α orα<, w hall rfr to {Z } a uprcritical, critical ad ubcritical, rpctivly. By (.), th gratig fuctio of Z ca b xprd by H (x) B[A m (x)],, (.) whr A m (x) dot th m-th itratio of th fuctio A(x) ada (x) x. Thr hav b may rarch work o th larg dviatio of Galto Wato brachig proc. Particularly, i th critical ca, wh Z ad thr i o immigratio (Y ), it i kow that { } P Z + Z >ε Z > Rcivd Sptmbr 9, 7, rvid Sptmbr 7, 8, accptd Novmbr 6, 8 Supportd by NSFC (Grat No. 873 ad 376) ) Corrpodig author. (.3)

2 538 Li D. D. ad Zhag M. Athrya ad Jagr [, p. 3, Thorm 3.] howd that if E(Z r+δ ) < for om δ>ad r, th for all ε>, thr xit q(ε) >, uch that { } P Z + Z >ε Z > q(ε) <. (.4) I [] ad [] th author timatd th uppr dviatio probabiliti of Z ad M : max k Z k udr th Cramér coditio, rpctivly. Mor xactly, i [, p. 79, Thorm] th iquality ( P (Z k) < ( + y ) + y + B wa obtaid, whr <y <R, R tad for th covrgc radiu of A() adb A ( + y ). I [, p. 6, Thorm ] th author gav that ) k ] P (M k) y [(+. y + B A for th critical Galto Wato brachig proc with immigratio, wh th fuctio A(x) adb(x) ar aalytic i th dik x < +ε for om ε>, a larg dviatio wa drivd by [8]: ( P Z bx ) y θ y dy, Γ(θ) x whr b A ( ), θ B ( ) b, x o( log )adγ( ) i th gamma fuctio. I thi papr, w hall tudy th covrgc of th typ (.4) for th critical GWI dfid by (.). Som lowr dviatio probabiliti of Z ad uppr dviatio probabiliti of Z ad M ar alo tablihd. I th proof, w hav to pay mor atttio to th chag caud by th immigratio ad d om prci timatio of th gratig fuctio of Z. W will bgi our dicuio udr th followig aumptio: (H) <a,b <, j a jj log j<, j b jj <,α, <β: B ( ) <, <γ A ( ) <. I th followig, w dfi σ β γ. W writ d O( ) if ad oly if thr xit C ad C uch that d d C C ; d if ad oly if d. C,C,... ar poitiv cotat who valu may vary from plac to plac. Th rt of th papr i orgaizd a follow. Som priary rult ar giv i Sctio. I Sctio 3 w tat th mai thorm. Sctio 4 i dvotd to th proof of th mai thorm. Priary Rult Lmma. (Athrya ad Ny [, p. 9, Thorm ]) Aum α, <γ< ad lt δ(x) γ [ A(x) x ]. Dfi h (x) δ(a m(x)) for ad h (x).th ) k x + γ A (x) h (x), x<. (.)

3 Aymptotic Bhavior for Critical GWI 539 Furthrmor, δ(x) atifi th iquality γ ( x) δ(x) ε(x), x<, a whr ε(x) :γ A(x) x ( x), which i o-icraig i x ad ε(x) a x. Lmma. (Pak [3, Thorm, ]) Udr coditio (H), w hav σ H (x) U(x), (.) whr U(x) atifi th fuctioal quatio B(x)U(A(x)) U(x). Th abov covrgc i uiform ovr compact ubt of th op uit dic. Morovr, U(x) ( x) σ, x. (.3) Dotig th powr ri rprtatio of U(x) by j μ jx j,th σ P {Z j} μ j, j. (.4) Lmma.3 (Pak [5, Thorm ]) Aum (H) hold. Lt p () j b th -tp traitio probability of {Z } from tat to j ad ν p () j j j. (i) If σ<, th ν σ U() U() d, whr U() i dfid by (.). (ii) If σ>, th ν (β γ). 3 Mai Rult Thorm 3. Aum (H) hold. For ach ε>, dfi ( A(k, ε) P Xk + Y k ), >ε (3.) whr X k k k X i. For r>σ,ifthrxitc ε > uch that A(k, ε) C ε k r for all k, th thr xit q(ε) >, uch that { } Z + σ P Z >ε Z > q(ε) <. (3.) Corollary 3. Aum (H) hold, E(X r+δ ) < ad E(Y r ) < for om δ > ad r>max{σ, }. Th(3.) hold. Thorm 3.3 Dfi J Var{ Z + Z Z > }. Aum (H) hold ad < Var(Y ) <. W hav () if σ<, th J κ σ ( + o()),

4 54 Li D. D. ad Zhag M. whr κ γ () if σ,th U() U() d +Var(Y )( μ k k k ) with {μ k } giv by (.4); (3) if σ> ad σ,th ( ) log J O ; (3.3) γ J ( + o()). (β γ) Rmark 3.4 With th rfid timat mtiod i Rmark 4., o may obtai J log γ ( + o()) ( )forσ. Thorm 3.5 Aum (H) hold. Lt k ad k o() a.th P (Z k ) C 3 (+γ k ) σ, a. Thorm 3.6 Aum (H) hold. Lt R tad for th covrgc radiu of A(x). Aum R>, k ad k o( ) a.th ( ) B (+ k k γ P (Z k ) γ ) { γ xp k γ γ + γ λk l k }( ( )) k +O (3.4) a,whrλ ρ 6γ ad ρ A ( ) <. Corollary 3.7 Aum th hypoth of Thorm 3.6 hold. Lt M max k Z k.th ( ) B (+ k k γ γ ) { γ P (M k ) xp k γ γ + γ λk l k }( ( )) k +O. (3.5) Rmark 3.8 Th right id of (3.4) ad (3.5) approximat to ( k γ )σ xp{ k γ } a. 4 Proof of Mai Rult I thi ctio w prov Thorm 3. Corollary 3.7. Firt w prt th followig propoitio. Propoitio 4. Aum (H) hold. Th for ach C 4 >, thr xit poitiv cotat C 5 ad C 6 uch that for ay < C 4, Proof ad C 5 ( + γ) σ H ( ) C6 ( + γ) σ. By Taylor formula, w kow that log x x θ (x ), x θ, x (, ), B(x) β( x) B (θ ) ( x), x θ, x (, ). Rcallig (.), w obtai [ log H (x) B(A m (x)) ] θ3 (B(A m (x)) ) [ B(A m (x))] (B(A m (x)) ) θ3

5 Aymptotic Bhavior for Critical GWI 54 whr [ ] β( A m (x)) B (θ 4 ) ( A m (x)) θ3 β ( A m (x)) + I (), I () B (θ 4 ) ( A m (x)) θ3 (B(A m (x)) ) (B(A m (x)) ), B(A m (x)) θ 3, A m (x) θ 4, x (, ). Sic A m (x) A m () mγ a m ( [, p. 74]), it i ay to how that I () i uiformly boudd for all x (, ) a. It i kow from (.), A m (x) x +γm( x) + Coqutly, log H (x) β ( A m (x)) + I () β β whr I () β m h m (x) m Hc, h m (x) m m m x +γm( x) β [ x +γm( x) x +γm( x) + I ()+I (), x +γm( x) [ { γ max A() x +γm( x) m h m (x) +γm( x) x h m (x) h m (x) +γm( x) x [ x +γm( x) m m ( A k ()), k h m (x) h m (x) +γm( x) x ]. By [3, Thorm ], m ]. h m (x) ] + I () m } m ε(a k ()) <. k i uiformly boudd for all x (, ). Furthrmor, w hav [ h m (x) +γm( x) x h m (x) ] m m γa h x m (x) m +γm( x) m( x) + γ h m(x) m h m (x) m γm m( x) + γ h m(x) m h m (x) m. m Th I () i uiformly boudd for all x (, ) a. Fially, w hav log H (x) β x +γm( x) + O()

6 54 Li D. D. ad Zhag M. uiformly for x (, ). Lt < C 4 ad x.th It ca b aily obrvd that log H ( ) β +γm Now w prov thr xit C 7, uch that +γm( + O(). (4.) ) +γm( ) +γ m ( ). I (, ) : +γ m ( ) C 7,. (4.) t To thi, ttig u(t) +γ m t( t ).Thu(t) i icraig for t>. Hc by (4.) w hav I (, ) Rcallig (4.) w obtai Sic w arriv at C 4 +C 4 γ m ( C 4 ) : C 7 <. log H ( ) β +γx dx +γm +γm + O(). +γx dx + ( + γ), σ log( + γ)+o() log H ( ) σ log( + γ)+o(). Th proof i ow complt. Rmark 4. Actually, with th hlp of a upublihd lctur ot of Prof. Vatuti, i th ca o() ( ), w may prov that H ( ) ( + γ ) σ. Proof of Thorm 3. Uig th brachig proprty, w hav { } σ Z + P Z >ε Z > A(j, ε) σ P {Z j Z > }, (4.3) j whr A(j, ε) i giv by (3.). From (.4), w hav P {Z }. Th th coditio o Z > i ot cary wh w coidr th ca. Thrfor, i th followig w oly coidr { } σ Z + P Z >ε A(j, ε) σ P {Z j}. j Nxt, w will prov a, { } σ Z + P Z >ε A(j, ε)μ j <. (4.4) j

7 Aymptotic Bhavior for Critical GWI 543 Sic A(j, ε) C ε j r,adj r (j +) r a j, th thr xit C ε uch that A(j, ε) C ε(j +) r for all j. Thrfor, l (j) : σ A(j, ε)p {Z j} σ C ε(j +) r P {Z j} : l (j). Uig (.4), w hav for j, By [7, Thorm.], l (j) C εμ j (j +) r : l(j). Th for r>σ, μ j (γ σ Γ(σ)) j σ, j. (4.5) l(j) C ε j j μ j (j +) r <. Now, uig a modificatio of th Lbgu domiatd covrgc thorm, it i ufficit to how that a, l (j) l(j), (4.6) which i quivalt to j j σ E((Z +) r ) I th followig w prov (4.7). For r>, w hav Γ(r) σ E((Z +) r ) μ j (j +) r. (4.7) j σ E( t(z +) )t r dt σ H ()( log ) r d I 3 ()+I 4 () (4.8) whr ad I 3 () I 4 () σ H ()( log ) r d, σ H ()( log ) r d. It i ay to ( log ) r d <. By Lmma., U() i boudd i [, ]. Thrfor Dfi I 3() U()( log ) r d <. (4.9) f () σ H ()( log ) r, (, ). Th f () f() :U()( log ) r.

8 544 Li D. D. ad Zhag M. From Propoitio 4., w kow that for t [, ), thr xit N ad C 8 uch that for >N, Hc, for all >N. It i ot difficult to ad for r>σ, H (t) C 8 ( γlog t) σ. f () C 8 σ ( γlog ) σ ( log ) r : g () g () C 8 ( γ log ) σ ( log ) r : g(), g()d C 8 (γt) σ t r t dt <. Uig th modificatio of domiatd covrgc thorm, w hav f ()d f()d,. (4.) By a chag of variabl u log, th right id of (4.) tur out to b U( u )u r u du, which i fiit by uig (.3). Hc, w obtai I 4() Combiig (4.8), (4.9) with (4.), w hav which yild Clarly, Γ(r) σ E((Z +) r ) j l (j) C ε Γ(r) C ε Γ(r) f()d <. (4.) f()d <, f()d f()d <. l(j). j, Thu w gt (4.6), ad th (4.4) hold. Th proof i compltd. Proof of Corollary 3. By Markov iquality, w hav ( A(k, ε) P Xk + Y ) k >ε E( k( X k + Y k )) r ε r k r. Uig th aumptio ad [6, p., Sctio 9.9], w obtai ( ( k C ε upe X k + Y )) r k k <. Th thr xit a cotat C ε uch that A(k, ε) C ε k r for all k.

9 Aymptotic Bhavior for Critical GWI 545 Proof of Thorm 3.3 Var { Z+ Z Firt w dicu k hall prov W kow that k Lt p k P (Z k Z > ). By dirct calculatio, w hav } Z > Var(X ) p k k +Var(Y ) p k k. (4.) k k p k k. Th ca σ hav b giv by Lmma.3. For σ,w k p k k ( ) log O. (4.3) p k k H (x) H () x( H ()) dx : I 5()+I 6 (), whr H (x) H () I 5 () x( H ()) dx, ad H (x) H () I 6 () x( H ()) dx, with log. Uig Lmma. w hav that H () x( H ()) dx H () log ( H ()) μ σ log,. Lt I 6 () H (x) x dx. Nxt w coidr th ordr of I 6 (). By Propoitio 4., I 6 () ( ) log H ( θ log )dθ O. Morovr, oticig that H (x) H () E(x Z Z > ) x( H ()) i o-dcraig i x, th by th dfiitio of I 5 () ad Propoitio 4., w obtai I 5 () H ( ( ) ) log H () O. Thu (4.3) hold. Now w tur to timat (i) If σ<, by (4.4), (.4) ad (4.5), σ ν Th w hav ν : k k ν σ k p k k. σ p k k k μ k k <. μ k,. (4.4) k

10 546 Li D. D. ad Zhag M. (ii) If σ>, firt it i kow that Γ() ν E( tz Z > )tdt ( E( tz,z > )tdt + P (Z > ) : P (Z > ) (I 7()+I 8 ()). By a chag of variabl t,whav I 7 () : (H ( ) H ())d I ( ) (H ( ) H ())d q ()d. Uig Propoitio 4., thr xit C 9 uch that Clarly, for σ>, q () C 9 ( + γ) σ : v(). v()d <. Thrfor, uig th domiatd covrgc thorm, w hav whr by [4, Thorm 3], For I 8 (), I 8 () I 7() q()d <, q() : q () (+γ) σ. E( tz I (Z ))tdt + : K ()+K (). By (.4) ad th Lbgu domiatd covrgc thorm, K () P (Z ) t tdt, ) E( tz,z > )tdt E( tz I (Z ))tdt. Mawhil, by (.) ad th Lbgu domiatd covrgc thorm, Th, w gt K () E( t(z ) I (Z )) t tdt E( t Z ) t tdt H ( t ) t tdt, I 8()..

11 Aymptotic Bhavior for Critical GWI 547 Lt W gt C q()d. ν C,. (4.5) Collctig (4.) (4.5) ad combiig with Lmma.3, w obtai th rult. Proof of Thorm 3.5 For all >, w hav P (Z k )P( Z k ) E( Z ) k H ( ) k. Lttig k ad applyig Propoitio 4., w hav P (Z k ) C 3 (+γ k ) σ. Proof of Thorm 3.6 Lt <y <R. Lt th quc y b dfid by th quatio A( + y + )+y. It i ot difficult to that A( + y) +y for y. Thrfor, th quc y dcra. Th log H ( + y ) log B( + y m ) log B( + y i ) [ B( + y i ) θ 5 [B (θ 6 )y i B (θ 6 ) B ( + y ) θ 5 y i + C y i (B( + y i ) ) ] whr θ 5 B( + y i ), θ 6 +y i,i, ad C ( B ( ) B(+y ) ). Thrfor, { } H ( + y ) xp B ( + y ) y i + C. By [, Lmma ], Sttig y i γ l( + γy )+O(y ), i y k γ γ, ] y i, y i yi O(y ). i

12 548 Li D. D. ad Zhag M. w obtai Not that for all y>, H ( + y ) H ( + y) ( ) B (+ k k γ γ ) γ. (4.6) γ P (Z j)( + y) j j ( + y) k P {Z k }. (4.7) By [] { ( + y ) k xp k γ + γ λk l k }( +O ( k )). (4.8) Th thorm i provd by combiig (4.6), (4.7) with (4.8). Proof of Corollary 3.7 For vry t> w dfi D (t) tz,. It i ay to chck that {D } i a ubmartigal with rpct to th atural σ-algbra gratd by {Z }.Byth Doob iquality, ( P (M k) P max D i(t) tk) H ( t ) i tk. Dfi y a i th proof of Thorm 3.6 ad lt t log(+y ). Th by th proof of Thorm 3.6, w ca obtai th dird rult. Ackowldgmt W ar gratful to Profor Vatuti for hlpful uggtio o Propoitio 4.. Thak ar alo giv to th rfr for thir commt ad uggtio. Rfrc [] Athrya, K. B., Ny, P. E.: Brachig Proc, Sprigr-Vrlag, Brli, 97 [] Athrya, K. B., Jagr, P.: Claical ad Modr Brachig Proc, Sprigr, Brli, 999 [3] Athrya, K. B.: Larg dviatio rat for brachig proc I. igl typ ca. A. Appl. Probab., 4(3), (994) [4] Flichma, K., Wachtl, V.: Lowr dviatio probabiliti for uprcritical Galto Wato proc. A. I. H. Poicar, 39(4), (7) [5] Liu, J. N., Zhag, M.: Larg dviatio for uprcritical brachig proc with immigratio. Acta Math. Siica, 3(8), (6) [6] Li, Z. Y., Bai, Z. D.: Probability Iqualiti, Scic Pr, Bijig ad Sprigr-Vrlag, Brli, [7] Mlli, B.: Local it thorm for th critical Galto Wato proc with immigratio. Rv. Colomb. Mat., 6, 3 56 (98b) [8] Makarov, G. D.: Larg Dviatio for brachig proc with immigratio. Math. Not., 3, 4 4 (98) [9] Nagav, A. V.: O timatig th xpctd umbr of dirct dcdat of a particl i a brachig proc. Thory Probab. Appl.,, 34 3 (967) [] Nagav, S. V., Vakhtl, V. I.: Limit thorm for probabiliti of larg dviatio of a Galto Wato proc. Dicrt Math. Appl., 3(), 6 (3) [] Nagav, S. V., Vakhruhv, N. V.: Etimatio of probabiliti of larg dviatio for a critical Galto Wato proc. Thory Probab. Appl.,, 79 8 (976)

13 Aymptotic Bhavior for Critical GWI 549 [] Nagav, S. V., Vakhtl, V. I.: Probability iqualiti for a critical Galto Wato proc. Thory Probab. Appl., 5, 5 47 (6) [3] Pak, A. G.: Furthr rult o th critical Galto Wato proc with immigratio. J. Aut. Math. Soc., 3, 77 9 (97) [4] Pak, A. G.: O th critical Galto Wato proc with immigratio. J. Aut. Math. Soc.,, (969) [5] Pak, A. G.: No-paramtric timatio i th Galto Wato proc. Math. Bio., 6(), 8 (975)

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

Aotomorphic Functions And Fermat s Last Theorem(4)

Aotomorphic Functions And Fermat s Last Theorem(4) otomorphc Fuctos d Frmat s Last Thorm(4) Chu-Xua Jag P. O. Box 94 Bg 00854 P. R. Cha agchuxua@sohu.com bsract 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park Kangwon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 147 153 ON RIGHT(LEFT) DUO PO-SEMIGROUPS S. K. L and K. Y. Park Abstract. W invstigat som proprtis on right(rsp. lft) duo po-smigroups. 1. Introduction

More information

ELG3150 Assignment 3

ELG3150 Assignment 3 ELG350 Aigmt 3 Aigmt 3: E5.7; P5.6; P5.6; P5.9; AP5.; DP5.4 E5.7 A cotrol ytm for poitioig th had of a floppy dik driv ha th clodloop trafr fuctio 0.33( + 0.8) T ( ) ( + 0.6)( + 4 + 5) Plot th pol ad zro

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information

Consider serial transmission. In Proakis notation, we receive

Consider serial transmission. In Proakis notation, we receive 5..3 Dciio-Dirctd Pha Trackig [P 6..4] 5.-1 Trackr commoly work o radom data igal (plu oi), o th kow-igal modl do ot apply. W till kow much about th tructur o th igal, though, ad w ca xploit it. Coidr

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

arxiv: v1 [math.fa] 18 Feb 2016

arxiv: v1 [math.fa] 18 Feb 2016 SPECTRAL PROPERTIES OF WEIGHTE COMPOSITION OPERATORS ON THE BLOCH AN IRICHLET SPACES arxiv:60.05805v [math.fa] 8 Fb 06 TE EKLUN, MIKAEL LINSTRÖM, AN PAWE L MLECZKO Abstract. Th spctra of ivrtibl wightd

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution Applied Mathematic E-Note, 9009, 300-306 c ISSN 1607-510 Available free at mirror ite of http://wwwmaththuedutw/ ame/ A Tail Boud For Sum Of Idepedet Radom Variable Ad Applicatio To The Pareto Ditributio

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Character sums over generalized Lehmer numbers

Character sums over generalized Lehmer numbers Ma t al. Joural of Iualitis ad Applicatios 206 206:270 DOI 0.86/s3660-06-23-y R E S E A R C H Op Accss Charactr sums ovr gralizd Lhmr umbrs Yuakui Ma, Hui Ch 2, Zhzh Qi 2 ad Tiapig Zhag 2* * Corrspodc:

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

2. SIMPLE SOIL PROPETIES

2. SIMPLE SOIL PROPETIES 2. SIMPLE SOIL PROPETIES 2.1 EIGHT-OLUME RELATIONSHIPS It i oft rquir of th gotchical gir to collct, claify a ivtigat oil ampl. B it for ig of fouatio or i calculatio of arthork volum, trmiatio of oil

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

In 1991 Fermat s Last Theorem Has Been Proved

In 1991 Fermat s Last Theorem Has Been Proved I 99 Frmat s Last Thorm Has B Provd Chu-Xua Jag P.O.Box 94Bg 00854Cha Jcxua00@s.com;cxxxx@6.com bstract I 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE

UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE DORON S. LUBINSKY AND VY NGUYEN A. W stablish uivrsality limits for masurs o a subarc of th uit circl. Assum that µ is

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

On Deterministic Finite Automata and Syntactic Monoid Size, Continued

On Deterministic Finite Automata and Syntactic Monoid Size, Continued O Dtrmiistic Fiit Automata ad Sytactic Mooid Siz, Cotiud Markus Holzr ad Barbara Köig Istitut für Iformatik, Tchisch Uivrsität Müch, Boltzmastraß 3, D-85748 Garchig bi Müch, Grmay mail: {holzr,koigb}@iformatik.tu-much.d

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

Solution to Volterra Singular Integral Equations and Non Homogenous Time Fractional PDEs

Solution to Volterra Singular Integral Equations and Non Homogenous Time Fractional PDEs G. Math. Not Vol. No. Jauary 3 pp. 6- ISSN 9-78; Copyright ICSRS Publicatio 3 www.i-cr.org Availabl fr oli at http://www.gma.i Solutio to Voltrra Sigular Itgral Equatio ad No Homogou Tim Fractioal PDE

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY Orietal J. ath., Volue 1, Nuber, 009, Page 101-108 009 Orietal Acadeic Publiher PRIARY DECOPOSITION, ASSOCIATED PRIE IDEALS AND GABRIEL TOPOLOGY. EL HAJOUI, A. IRI ad A. ZOGLAT Uiverité ohaed V aculté

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Spectral Synthesis in the Heisenberg Group

Spectral Synthesis in the Heisenberg Group Intrnational Journal of Mathmatical Analysis Vol. 13, 19, no. 1, 1-5 HIKARI Ltd, www.m-hikari.com https://doi.org/1.1988/ijma.19.81179 Spctral Synthsis in th Hisnbrg Group Yitzhak Wit Dpartmnt of Mathmatics,

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Limiting value of higher Mahler measure

Limiting value of higher Mahler measure Limiting valu of highr Mahlr masur Arunabha Biswas a, Chris Monico a, a Dpartmnt of Mathmatics & Statistics, Txas Tch Univrsity, Lubbock, TX 7949, USA Abstract W considr th k-highr Mahlr masur m k P )

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

LECTURE 13 SIMULTANEOUS EQUATIONS

LECTURE 13 SIMULTANEOUS EQUATIONS NOVEMBER 5, 26 Demad-upply ytem LETURE 3 SIMULTNEOUS EQUTIONS I thi lecture, we dicu edogeeity problem that arie due to imultaeity, i.e. the left-had ide variable ad ome of the right-had ide variable are

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

A Note on Quantile Coupling Inequalities and Their Applications

A Note on Quantile Coupling Inequalities and Their Applications A Not o Quatil Couplig Iqualitis ad Thir Applicatios Harriso H. Zhou Dpartmt of Statistics, Yal Uivrsity, Nw Hav, CT 06520, USA. E-mail:huibi.zhou@yal.du Ju 2, 2006 Abstract A rlatioship btw th larg dviatio

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS

ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS Novi Sad J. Math. Vol. 45, No. 1, 2015, 201-206 ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS Mirjana Vuković 1 and Ivana Zubac 2 Ddicatd to Acadmician Bogoljub Stanković

More information

Heat Equation: Maximum Principles

Heat Equation: Maximum Principles Heat Equatio: Maximum Priciple Nov. 9, 0 I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R. Hardy-Littlwood Conjctur and Excptional ral Zro JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that Hardy-Littlwood

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

An Application of Hardy-Littlewood Conjecture. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.China

An Application of Hardy-Littlewood Conjecture. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.China An Application of Hardy-Littlwood Conjctur JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that wakr Hardy-Littlwood

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals ECEN 5005 Cryta Naocryta ad Dvic Appicatio Ca 14 Group Thory For Cryta Spi Aguar Motu Quatu Stat of Hydrog-ik Ato Sig Ectro Cryta Fid Thory Fu Rotatio Group 1 Spi Aguar Motu Spi itriic aguar otu of ctro

More information

Revised Variational Iteration Method for Solving Systems of Ordinary Differential Equations

Revised Variational Iteration Method for Solving Systems of Ordinary Differential Equations Availabl at http://pvau.du/aa Appl. Appl. Math. ISSN: 9-9 Spcial Iu No. Augut 00 pp. 0 Applicatio ad Applid Mathatic: A Itratioal Joural AAM Rvid Variatioal Itratio Mthod for Solvig St of Ordiar Diffrtial

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION

ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION Hacttp Journal of Mathmatics and Statistics Volum 41(6) (2012), 867 874 ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION Nourssadat Touafk Rcivd 06:07:2011 : Accptd 26:12:2011 Abstract In this papr, w invstigat

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

On Certain Sums Extended over Prime Factors

On Certain Sums Extended over Prime Factors Iteratioal Mathematical Forum, Vol. 9, 014, o. 17, 797-801 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/imf.014.4478 O Certai Sum Exteded over Prime Factor Rafael Jakimczuk Diviió Matemática,

More information

ANOVA- Analyisis of Variance

ANOVA- Analyisis of Variance ANOVA- Aalii of Variac CS 700 Comparig altrativ Comparig two altrativ u cofidc itrval Comparig mor tha two altrativ ANOVA Aali of Variac Comparig Mor Tha Two Altrativ Naïv approach Compar cofidc itrval

More information

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand Submittd to Maufacturig & Srvic Opratios Maagmt mauscript MSOM 5-4R2 ONLINE SUPPLEMENT Optimal Markdow Pricig ad Ivtory Allocatio for Rtail Chais with Ivtory Dpdt Dmad Stph A Smith Dpartmt of Opratios

More information

The Asymptotic Form of Eigenvalues for a Class of Sturm-Liouville Problem with One Simple Turning Point. A. Jodayree Akbarfam * and H.

The Asymptotic Form of Eigenvalues for a Class of Sturm-Liouville Problem with One Simple Turning Point. A. Jodayree Akbarfam * and H. Joral of Scic Ilaic Rpblic of Ira 5(: -9 ( Uirity of Thra ISSN 6- Th Ayptotic For of Eigal for a Cla of Str-Lioill Probl with O Sipl Trig Poit A. Jodayr Abarfa * ad H. Khiri Faclty of Mathatical Scic Tabriz

More information

Almost all Cayley Graphs Are Hamiltonian

Almost all Cayley Graphs Are Hamiltonian Acta Mathmatca Sca, Nw Srs 199, Vol1, No, pp 151 155 Almost all Cayly Graphs Ar Hamltoa Mg Jxag & Huag Qogxag Abstract It has b cocturd that thr s a hamltoa cycl vry ft coctd Cayly graph I spt of th dffculty

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

Asymptotic distribution of products of sums of independent random variables

Asymptotic distribution of products of sums of independent random variables Proc. Idia Acad. Sci. Math. Sci. Vol. 3, No., May 03, pp. 83 9. c Idia Academy of Scieces Asymptotic distributio of products of sums of idepedet radom variables YANLING WANG, SUXIA YAO ad HONGXIA DU ollege

More information

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry Zeta-reciprocal Eteded reciprocal zeta fuctio ad a alterate formulatio of the Riema hypothei By. Alam Chaudhry Departmet of athematical Sciece, Kig Fahd Uiverity of Petroleum ad ieral Dhahra 36, Saudi

More information