Chapter 11 INTEGRAL EQUATIONS

Size: px
Start display at page:

Download "Chapter 11 INTEGRAL EQUATIONS"

Transcription

1 hapr INTERAL EQUATIONS

2 hapr INTERAL EUATIONS Dcmbr 4, 8 hapr Igral Eqaios. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. achy-byaowsi iqaliy 5. iowsi iqaliy. Liar Opraors - coios opraors - bodd opraors. Igral Opraor.4 Igral qaios - Frdholm igral qaios - Volrra igral qaios - igro-dirial qaios - solio o igral qaio.5 Solio hods or Igral Eqaios. hod o sccssiv approimaios or Frdholm IE (Nma sris). hod o sccssiv sbsiios or Frdholm IE (Rsolv mhod). hod o sccssiv approimaios or Volrra IE.6 ocio bw igral qaios ad iiial ad bodary val problms. Rdcio o IVP o h Volrra IE. Rdcio o h Volrra IE o IVP. Rdcio o BVP o h Frdholm IE.7 Erciss Fr Topics:.7 Fid poi horm (s also [Hochsad Igral qaios, p.5]) Elmary isc horms.8 Pracical applicaios (s also [Jrri Irodcio o Igral Eqaios wih Applicaios ]).9 Ivrs problms (s also [ Jrri, p.7])

3 hapr INTERAL EUATIONS Dcmbr 4, 8. Normd Vcor Spacs W will sar wih som diiios ad rsls rom h hory o ormd vcor spacs which will b dd i his chapr.. Eclidia vcor spac Th -dimsioal Eclidia vcor spac cosiss o all pois { (,,..., ) } or which h ollowig opraios ar did: Scalar prodc (, y) y y... y,y,... Norm ( ) Disac ρ (,y) y ovrgc lim i lim. Vcor spac ( ) Vcor spac ( ) cosiss o all ral vald coios cios did o h closd domai : : D coios { } ( ) ( ) Norm ma ( ) ovrgc lim i lim. Vcor spac L ( ) Th spac o cios igrabl accordig o Lbsg (s Scio.) 4. achy-byaovsy Iqaliy Ir prodc ( ) ( ) ( ) Norm L ( ) ( ) ( ) : d<,g g d ( ) ( ), d Th ollowig propry ollows rom h diiio o h Lbsg igral ( ) d ( )d (,g) g or all,g L ( ) Proo: I,g L ( ), h cios, g ad ay combiaio α β g ar also igrabl ad hror blog o L ( ). osidr ( ) λ g L, λ R or which w hav

4 hapr INTERAL EUATIONS Dcmbr 4, 8 ( λ g ) d d λ g d λ g d Th righ had sid is a qadraic cio o λ. Bcas his cio is o-gaiv, is discrima is o-posiiv 4 g d 4 d g d g d d g d (,g) g 5. iowsi Iqaliy ( rd propry o h orm) rom which h claimd iqaliy yilds (,g) g bcas (, g) gd g d g d. g g or all,g L ( ) Proo: osidr g ( g, g) (, ) (, g) ( g, ) ( g, g) (, g) ( g, ) g g g rom -B iqaliy ( g ) Th racio o h sqar roo yilds h claimd rsl. No ha h iowsi iqaliy rdcs o qaliy oly i cios ad g ar qal p o h scalar mlipl, αg, α R (why?).

5 hapr INTERAL EUATIONS Dcmbr 4, 8. Liar Opraors L ad N b wo liar ormd vcors spacs wih orms ad, N corrspodigly. W di a opraor L as a map (cio) rom h vcor spac o h vcor spac N : L : N Irodc h ollowig diiios cocrig h opraors i h vcor spacs: Opraor L : N is liar i L( α βg) αl βlg or all, g ad all α, β R Opraor L : N is coios i rom i ollows L L i N (h imag o h covrg sqc i is a covrg sqc i N ) Opraor L : N is bodd i hr iss c > sch ha L c or all N Th orm o opraor o sch cosa c L : N ca b did as h gras lowr bod L L sp N Thorm 7. I opraor L : N is bodd h i is coios Proo: L opraor L : N b bodd, h accordig o h diiio hr iss c > sch ha L c. L N i. Tha mas ha lim. From h diiio o h limi i ollows ha or ay ε > hr iss N sch ha < ε or all. To prov h horm, show ow ha lim L L sch ha N. W hav o show ha or ay > L L < Ε or all Ε. N L L i N or ha Ε hr iss N Ε hoos ε, h c Ε L L L( ) c < c Ε or all. N N c Ε

6 hapr INTERAL EUATIONS Dcmbr 4, 8. Igral Opraor osidr a opraor calld a igral opraor giv by h qaio (, y) ( y) R Obviosly, ha igral opraor is liar. Fcio (, y) rls (, y) L ( ), hror (, y) d < is calld a rl o h igral opraor. W will cosidr I a cas o R, h domai ( a,b), whr a, b ca b ii or iii. Thorm 7. L b h igral opraor wih a rl (, y) coios i [ a,b] [ a,b]. Th opraor is bodd, ad, hror, coios. orovr: ) : L ( a,b) [ a,b] b a or L ( a,b) ) : L ( a,b) L ( a,b) ( b a) or L ( a,b) ) : [ a,b] [ a,b] ( b a) or [ a,b] Proo: Sic (, y) is coios i h closd domai [,b] [ a,b] > sch ha ma (, y).,y [ a,b ] ) L L ( a,b). Th bcas cio (, y) [ a,b] [ a,b], h cio ( )( ) is coios i [ a,b] : L ( a,b) [ a,b]. osidr ma a, b ( )( ) [ ] ma [ a,b ] b a (, y) ( y) a, hr iss is coios i, ad, hror ma [ a,b ] ( (, y), ( y) ) ma (rom achy-byaowsi iqaliy) [ a,b ] ma [ a,b ] b a (, y) b ma [ a,b ] a b a

7 hapr INTERAL EUATIONS Dcmbr 4, 8 ) (( )( ),( )( ) ) ( )( ) b a d b b a a (, y) ( y) d b a d b b a a (, y) d b b a a d b b a a ( b a) d ) Ercis

8 hapr INTERAL EUATIONS Dcmbr 4, 8.4 Igral Eqaios Igral qaios ar qaios i which h ow cio is dr h, igral sig. Th ypical igral qaios or ow cio ( ) R (i his chapr, w cosidr ( a,b) R i h orm o igral opraor wih h rl (, y) ) icld igral rm (, y) ( y) Th mai yps o igral qaios ar h ollowig: I Frdholm igral qaio ) Frdholm s igral qaio o h s id: (, y) ( y) ( ) o-homogos q (, y) ( y) homogos q ) Frdholm s igral qaio o h d id: λ is a paramr ( ) (, y) ( y) ( ) λ λ o-homogos q ( ) (, y) ( y) λ λ homogos q II Volrra igral qaio L (,a) R (, y) is calld a Volrra rl i (, y). a y or < < y < a ) Volrra s igral qaio o h s id: (, y) ( y) ( ) ) Volrra s igral qaio o h d id: ( ) λ (, y) ( y) ( ) a III Igro-Dirial Eqaio iclds a ow cio dr h igral sig ad also ay drivaiv o h ow cio. For ampl: d ( ) (, y) ( y) ( ) d A impora rprsaio o h igro-dirial qaio is a Radiaiv Trasr Eqaio dscribig rgy raspor i h absorbig, miig ad scarig mdia (aalogos qaios appar i h hory o ro raspor). Som ohr yps o igral qaios will b cosidrd i h Scio 8..4.

9 hapr INTERAL EUATIONS Dcmbr 4, 8 Solio o igral qaio is ay cio ( ) saisyig his qaio: λ o-homogos qaio λ homogos qaio Th val o h paramr λ or which h homogos igral qaio has a o-rivial solio L which is calld a igval o h rl (, y), ad h corrspodig solio is calld a igcio o his rl. Eigval problm W will disigish igval problms or h igral rl (igral qaio): λ ad or h igral opraor λ Th igvals o h igral opraor ar rcipical o igvals o h igral rl, ad igcios ar h sam i boh cass.

10 hapr INTERAL EUATIONS Dcmbr 4, 8.5 Solio hods or Igral Eqaios. Th hod o Sccssiv Approimaios or Frdholm s Igral Eqaio For h igral qaio λ h ollowig iraios o h mhod o sccssiv approimaios ar s by: ( ) ( ) ( ) λ,,... Lmma 7. ( ) λ whr ( ( )) ims Proo by mahmaical idcio (assm ha h ormla or is r): ( ) λ coirmd ( ) ( ) λ by diiio λ λ by assmpio λ liariy p p λ chag o id p λ p p λ p p p p λ p λ chag o id p Nma Sris λ is calld o b h Nma Sris Esimaio o iraios ( ) ( b a) Thorm 7. () ( b a) ( b a)

11 hapr INTERAL EUATIONS Dcmbr 4, 8 λ λ ( b a) [ ( b a) ] λ gomric sris λ ( b a) covrgs i λ < ( b a) Thror, h Nma sris λ covrgs or Do h sm o h Nma sris as a cio ( ) : λ <. ( b a) ( ) λ Show ha his cio saisis igral h qaio iraios ( ) λ h lim ( ) ( ) λ lim b ( ) (, y) lim ( y) λ a b λ a (, y) ( y) λ. osidr Ad, rcallig simaio, ( ) λ ( b a) Show ha his solio is iq. For ha, i is ogh o show ha h homogos qaio λ has oly a rivial solio. Idd, i λ, h [ a,b] ad, accordig o Thorm 6. ), λ b a, h ( ) ( b a) λ [ ] [ ] > Bcas λ <, ( b a) ( b a) yilds, ha ( ) or all [ a,b] homogos qaio. λ ad, hror,. Tha. So, oly h rivial solio iss or h Th o-homogos qaio λ ca b rwri i h orm ( I λ ) whr I is a idiy opraor Th solio o his qaio ca b rad as a ivrsio o h opraor ( I λ ) Thror, i λ <, h hr iss a ivrs opraor ( I λ ). b a ( ) Th abovmiod rsls ca b ormlad i h ollowig horm:

12 hapr INTERAL EUATIONS Dcmbr 4, 8 Thorm 7. Frdholm s igral qaio λ wih λ < ad coios rl (, y) ( b a) iq solio ( ) [ a,b] or ay ( ) [ a,b]. This solio is giv by a covrg Nma sris has a ad saisis I λ < ( I ) λ. ( b a) ( ) λ ( ) λ ( b a), h hr iss a ivrs opraor. odiios o Thorm 7. ar oly js sici codiios; i hs codiios ar o saisid, solio o h igral qaio sill ca iss ad h Nma sris ca b covrg. Eampl 7. Fid h solio o h igral qaio ( ) ( y) by h mhod o sccssiv approimaios ad i h orm o h Nma sris. Idiy: (, y) ( ) b a λ hc codiio: λ < < < ( b a) ) iraios: ( ) ( ) y ( y) ( ) ( ) ( ) ( y) [ ] Th solio o h igral qaio is a limi o iraios ( ) lim ( ) lim This rsl ca b validad by a dirc sbsiio io h giv igral qaio.

13 hapr INTERAL EUATIONS Dcmbr 4, 8 ) Nma sris: ( ) λ ( ) λ λ ( ) ( ) Th h Nma sris is ( ) ( ) ( ) ( ) ( ) ( ) ( ) So, h Nma sris approach prodcs h sam solio.

14 hapr INTERAL EUATIONS Dcmbr 4, 8. Th hod o Sccssiv Sbsiios or Frdholm s Igral Eqaio (h Rsolv hod) Irad rl L igral opraor has a coios rl (, y) Rpad opraor ( ) ( ), h di:,,... I has a has a rl (, y) (, y ) ( y, y) Idd, ( )( ) (, y) ( y) ( )( ) [ ( )]( ) (, y ) ( y, y) ( y) (, y ) ( y, y) ( y) rl (, y) (, y ) ( y, y) is calld a irad rl. rls (, y) ( a,b), h (, y) ( b a) (, y ) ( y, y) ar coios, ad i domai Rsolv Fcio did by h iii sris is calld a rsolv. R (, y, λ ) λ (, y) Thorm 6.4 Solio o igral qaio λ wih coios rl (, y) is iq i [ a,b] or λ <, ad or b a ay [ a,b] is giv by b ( ) ( ) λ R(, y, λ) ( y) a i.. hr iss ivrs opraor ( I λ ) I λr, λ < ( b a) ( )

15 hapr INTERAL EUATIONS Dcmbr 4, 8 Eampl 6. Fid solio o igral qaio ( ) y( y) 6 8 by h rsolv mhod. Idiy: (, y) y ( ) b a 6 λ 8 hc codiio: Irad rls: (, y) y λ < < < 8 ( b a) y y y y y (, y) (, y ) ( y, y) y y y (, y) (, y ) ( y, y) y y y y (, y) y Rsolv: R (, y,λ) λ (, y) Solio: y y y y y y y 4 4 y ( ) ( ) λ R(, y, λ) ( y) b 8 a 4 y y 6 y y

16 hapr INTERAL EUATIONS Dcmbr 4, 8. Th hod o Sccssiv Approimaios or h Volrra Igral Eqaio o h d id osidr h Volrra igral qaio o h d id (o ha qaio o h s id ca b rdcd o h d id by dirrio) ( ) λ ( ) ( ) ( ), y y whr (, y) is a coios Volrra rl. Th mhod o sccssiv approimaio is did by h ollowig iraios: ( ) ( ) ( ) λ λ Thorm 6.5 Th Volrra igral qaio o h d id ( ) λ ( ) ( ) ( ), y y wih coios Volrra rl (, y) ad wih ay λ R has a iq solio ( ) [,a] or ay ( ) [,a]. This solio is giv by a iormly covrg Nma sris ( ) λ ( )( ) ad is orm saisis λ a ( ) Eampl 6. Fid solio o igral qaio ( ) ( y) by h mhod o sccssiv approimaios. Idiy: (, y) ( ) λ ( ) (, y)( )( y) [ y ] (, y)( )( y) y y y y (, y)( )( y)! Solio: ( ) ( )( ) λ!

17 hapr INTERAL EUATIONS Dcmbr 4, 8.6 ocio bw igral qaios ad iiial ad bodary val problms. Rdcio o IVP o h Volrra igral qaio Eampl 7.4 Rdc IVP ( ) o h Volrra igral qaio. Igra h dirial qaio rom o : ( ) d ( ) d ( ) d ( ) ( ) d s h iiial codiio ( ) ( ) d is a Volrra qaio wih (, y). Rdcio o h Volrra igral qaio o IVP Rcall h Libiz rl or diriaio o prssios wih igrals: d b( ) b( ) g g(, y) (, y ) d a( ) I pariclarly, a( ) g [,b( ) ] ( ) db d g [,a( ) ] ( ) d da d d g ( y) g( ) d g g(, y) (, y ) d g (, ) Rdcio o h Volrra igral qaio o IVP is prormd by cosciv diriaio o h igral qaio wih rspc o variabl ad sbsiio or sig o h iiial codiios. Eampl 7.5 Rdc h Volrra igral qaio ( ) ( y) ( y) iiial val problm. sbsi o g iiial codiio ( ) ( y) ( y) ( ) ( y) ( y) ( )

18 hapr INTERAL EUATIONS Dcmbr 4, 8 ( ) ( y) ( y) ( ) ( y) ( y) ( ) ( ) ( y) ( ) ( y) ( ) ( ) 6 ( ) Thror, h igral qaio is rdcd o IVP or rd ordr ODE: ( ) 6 ( ) ( ) ( ) ( ). Rdcio o BVP o h Frdholm igral qaio Rcall rpad igraio ormlas: d d d d d ( ) ( ) ( ) (! ) Eampl 7.6 Rdc h bodary val problm y y, ( ) ( ) ( ) y ( ) y( ) o h Frdholm igral qaio. S y ( ) ( ) igra y ( ) d ( ) y d ( ) y ( ) ( ) igra [ y ( ) y ( ) ] d ( ) d d Us h irs bodary codiio I his prssio, ( ) y y y d ( ) y( ) y ( ) ( ) d d ( ) y( ) y ( ) ( ) ( )d rpad igraio ( ) y ( ) ( ) ( )d y is o ow. Sbsi ad apply h scod bodary codiio

19 hapr INTERAL EUATIONS Dcmbr 4, 8 ( ) ( ) ( ) ( )d y y ( ) ( ) ( )d y Solv or ( ) y ( ) ( ) ( )d y Th ( ) y ( ) ( ) ( ) ( )d d ( ) ( ) ( ) ( )d d Now sbsi his prssio or ( ) y ad ( ) ( ) y io h origial dirial qaio ( ) ( ) ( ) ( ) d d ( ) ( ) ( ) ( ) d d ( ) ( ) ( ) ( )d d ( ) ( ) ( ) ( ) ( ) ( )d d d ( ) ( ) ( ) ( ) ( ) ( )d d d ( ) ( ) ( ) ( ) ( ) ( )d d d ( ) ( ) ( ) ( ) ( )d d ( ) ( ) ( ) ( )d d I yilds a Frdholm igral qaio ( ) ( ), d wih a rl ( ) ( ) ( ),

20 Erciss hapr INTERAL EUATIONS Dcmbr 4, 8. Prov par ) o h Thorm 6... lassiy ach o h ollowig igral qaios as Frdholm or Volrra igral qaio, liar or o-liar, homogos or o-homogos, idiy h paramr λ ad h rl (,y ) : y( y ) a) ( ) b) ( ) ( ) c) ( ) y ( y ) y ( y ) d) ( ) ( ) ) ( ) y ( y ) 4 y ( y ). Rdc h ollowig igral qaio o a iiial val problm ( ) ( ) ( ) y y 4. Fid h qival Volrra igral qaio o h ollowig iiial val problm y ( ) y ( ) cos ( ) y y ( ) 5. Driv h qival Frdholm igral qaio or h ollowig bodary val problm (,) y ( ) ( ) y y y 6. Solv h ollowig igral qaios by sig h sccssiv approimaio mhod ad h rsolv mhod: a) ( ) λ ( ) y y b) ( ) ( ) cos y 4 7. Solv h ollowig igral qaio by sig h sccssiv approimaio mhod ( ) ( ) ( ) y y 8. Solv h ollowig igral qaios: a) ( ) ( ) ( ) si s si s ds as b) ( ) ( s) ds ( )

Chapter 7 INTEGRAL EQUATIONS

Chapter 7 INTEGRAL EQUATIONS hapr 7 INTERAL EQUATIONS hapr 7 INTERAL EUATIONS hapr 7 Igral Eqaios 7. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. ach-baowsi iqali 5. iowsi iqali 7. Liar Opraors

More information

Chapter 7 INTEGRAL EQUATIONS

Chapter 7 INTEGRAL EQUATIONS hpr 7 INTERAL EQUATIONS hpr 7 INTERAL EQUATIONS hpr 7 Igrl Eqios 7. Normd Vcor Spcs. Eclidi vcor spc. Vcor spc o coios cios ( ) 3. Vcor Spc L ( ) 4. chy-byowsi iqliy 5. iowsi iqliy 7. Lir Oprors - coios

More information

ISSN: [Bellale* et al., 6(1): January, 2017] Impact Factor: 4.116

ISSN: [Bellale* et al., 6(1): January, 2017] Impact Factor: 4.116 IESRT INTERNTIONL OURNL OF ENGINEERING SCIENCES & RESERCH TECHNOLOGY HYBRID FIED POINT THEOREM FOR NONLINER DIFFERENTIL EQUTIONS Sidhshwar Sagram Bllal*, Gash Babrwa Dapk * Dparm o Mahmaics, Daaad Scic

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

Fourier Techniques Chapters 2 & 3, Part I

Fourier Techniques Chapters 2 & 3, Part I Fourir chiqus Chaprs & 3, Par I Dr. Yu Q. Shi Dp o Elcrical & Compur Egirig Nw Jrsy Isiu o chology Email: shi@i.du usd or h cours: , 4 h Ediio, Lahi ad Dog, Oord

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Overview. Review Elliptic and Parabolic. Review General and Hyperbolic. Review Multidimensional II. Review Multidimensional

Overview. Review Elliptic and Parabolic. Review General and Hyperbolic. Review Multidimensional II. Review Multidimensional Mlil idd variabls March 9 Mlidisioal Parial Dirial Eaios arr aro Mchaical Egirig 5B iar i Egirig Aalsis March 9 Ovrviw Rviw las class haracrisics ad classiicaio o arial dirial aios Probls i or ha wo idd

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

82A Engineering Mathematics

82A Engineering Mathematics Class Nos 5: Sod Ordr Diffrial Eqaio No Homoos 8A Eiri Mahmais Sod Ordr Liar Diffrial Eqaios Homoos & No Homoos v q Homoos No-homoos q ar iv oios fios o h o irval I Sod Ordr Liar Diffrial Eqaios Homoos

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

Boyce/DiPrima/Meade 11 th ed, Ch 4.1: Higher Order Linear ODEs: General Theory

Boyce/DiPrima/Meade 11 th ed, Ch 4.1: Higher Order Linear ODEs: General Theory Bo/DiPima/Mad h d Ch.: High Od Lia ODEs: Gal Tho Elma Diffial Eqaios ad Boda Val Poblms h diio b William E. Bo Rihad C. DiPima ad Dog Mad 7 b Joh Wil & Sos I. A h od ODE has h gal fom d d P P P d d W assm

More information

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations,

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations, Shiraz Uivrsiy of Tchology From h SlcdWorks of Habibolla Laifizadh Th Dvlopm of Suiabl ad Wll-foudd Numrical Mhods o Solv Sysms of Igro- Diffrial Equaios, Habibolla Laifizadh, Shiraz Uivrsiy of Tchology

More information

Approximate solutions for the time-space fractional nonlinear of partial differential equations using reduced differential transform method

Approximate solutions for the time-space fractional nonlinear of partial differential equations using reduced differential transform method Global Joral o Pr ad Applid Mahmaics ISSN 97-768 Volm Nmbr 6 7 pp 5-6 sarch Idia Pblicaios hp://wwwripblicaiocom Approima solios or h im-spac racioal oliar o parial dirial qaios sig rdcd dirial rasorm

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

Variational iteration method: A tools for solving partial differential equations

Variational iteration method: A tools for solving partial differential equations Elham Salhpoor Hossi Jafari/ TJMCS Vol. o. 388-393 Th Joral of Mahmaics a Compr Scic Availabl oli a hp://www.tjmcs.com Th Joral of Mahmaics a Compr Scic Vol. o. 388-393 Variaioal iraio mho: A ools for

More information

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function Chapr VII Spcial Fucios Ocobr 7, 7 479 CHAPTER VII SPECIAL FUNCTIONS Cos: Havisid sp fucio, filr fucio Dirac dla fucio, modlig of impuls procsss 3 Si igral fucio 4 Error fucio 5 Gamma fucio E Epoial igral

More information

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem Mahmacal ascs 8 Chapr VIII amplg Dsrbos ad h Cral Lm Thorm Fcos of radom arabls ar sall of rs sascal applcao Cosdr a s of obsrabl radom arabls L For ampl sppos h arabls ar a radom sampl of s from a poplao

More information

Laguerre wavelet and its programming

Laguerre wavelet and its programming Iraioal Joural o Mahaics rds ad chology (IJM) Volu 49 Nubr Spbr 7 agurr l ad is prograig B Sayaaraya Y Pragahi Kuar Asa Abdullah 3 3 Dpar o Mahaics Acharya Nagarjua Uivrsiy Adhra pradsh Idia Dpar o Mahaics

More information

Variational Iteration Method for Solving Initial and Boundary Value Problems of Bratu-type

Variational Iteration Method for Solving Initial and Boundary Value Problems of Bratu-type Availabl a hp://pvamd/aam Appl Appl Mah ISSN: 9-9 Vol Iss J 8 pp 89 99 Prviosl Vol No Applicaios ad Applid Mahmaics: A Iraioal Joral AAM Variaioal Iraio Mhod for Solvig Iiial ad Bodar Val Problms of Bra-p

More information

Fractional Complex Transform for Solving the Fractional Differential Equations

Fractional Complex Transform for Solving the Fractional Differential Equations Global Joral of Pr ad Applid Mahmaics. SSN 97-78 Volm Nmbr 8 pp. 7-7 Rsarch dia Pblicaios hp://www.ripblicaio.com Fracioal Compl rasform for Solvig h Fracioal Diffrial Eqaios A. M. S. Mahdy ad G. M. A.

More information

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Mathematical Preliminaries for Transforms, Subbands, and Wavelets Mahmaical Prlimiaris for rasforms, Subbads, ad Wavls C.M. Liu Prcpual Sigal Procssig Lab Collg of Compur Scic Naioal Chiao-ug Uivrsiy hp://www.csi.cu.du.w/~cmliu/courss/comprssio/ Offic: EC538 (03)5731877

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series I Jorl of Mh Alysis, Vol 4, 2, o 2, 4-47 Approximio of Fcios Blogig o Lipschiz Clss by Triglr Mrix Mhod of Forir Sris Shym Ll Dprm of Mhmics Brs Hid Uivrsiy, Brs, Idi shym _ll@rdiffmilcom Biod Prsd Dhl

More information

What Is the Difference between Gamma and Gaussian Distributions?

What Is the Difference between Gamma and Gaussian Distributions? Applid Mahmaics,,, 85-89 hp://ddoiorg/6/am Publishd Oli Fbruary (hp://wwwscirporg/joural/am) Wha Is h Diffrc bw Gamma ad Gaussia Disribuios? iao-li Hu chool of Elcrical Egirig ad Compur cic, Uivrsiy of

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

NAME: SOLUTIONS EEE 203 HW 1

NAME: SOLUTIONS EEE 203 HW 1 NAME: SOLUIONS EEE W Problm. Cosir sigal os grap is so blo. Sc folloig sigals: -, -, R, r R os rflcio opraio a os sif la opraio b. - - R - Problm. Dscrib folloig sigals i rms of lmar fcios,,r, a comp a.

More information

Department of Mathematics. Birla Institute of Technology, Mesra, Ranchi MA 2201(Advanced Engg. Mathematics) Session: Tutorial Sheet No.

Department of Mathematics. Birla Institute of Technology, Mesra, Ranchi MA 2201(Advanced Engg. Mathematics) Session: Tutorial Sheet No. Dpm o Mhmics Bi Isi o Tchoog Ms Rchi MA Advcd gg. Mhmics Sssio: 7---- MODUL IV Toi Sh No. --. Rdc h oowig i homogos dii qios io h Sm Liovi om: i. ii. iii. iv. Fid h ig-vs d ig-cios o h oowig Sm Liovi bod

More information

From Fourier Series towards Fourier Transform

From Fourier Series towards Fourier Transform From Fourir Sris owards Fourir rasform D D d D, d wh lim Dparm of Elcrical ad Compur Eiri D, d wh lim L s Cosidr a fucio G d W ca xprss D i rms of Gw D G Dparm of Elcrical ad Compur Eiri D G G 3 Dparm

More information

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016 MAT3700/0//06 Tuorial Lr 0//06 Mahmaics III (Egirig) MAT3700 Smsr Dparm of Mahmaical scics This uorial lr coais soluios ad aswrs o assigms. BARCODE CONTENTS Pag SOLUTIONS ASSIGNMENT... 3 SOLUTIONS ASSIGNMENT...

More information

Modified Variational Iteration Method for the Solution of nonlinear Partial Differential Equations

Modified Variational Iteration Method for the Solution of nonlinear Partial Differential Equations Iraioal Joral of Sciific & Egirig Rsarch Volm Iss Oc- ISSN 9-558 Modifid Variaioal Iraio Mhod for h Solio of oliar Parial Diffrial Eqaios Olayiwola M O Akipl F O Gbolagad A W Absrac-Th Variaioal Iraio

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

1.7 Vector Calculus 2 - Integration

1.7 Vector Calculus 2 - Integration cio.7.7 cor alculus - Igraio.7. Ordiary Igrals o a cor A vcor ca b igrad i h ordiary way o roduc aohr vcor or aml 5 5 d 6.7. Li Igrals Discussd hr is h oio o a dii igral ivolvig a vcor ucio ha gras a scalar.

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform Aalyi o No-Siuoidal Wavorm Par Laplac raorm I h arlir cio, w lar ha h Fourir Sri may b wri i complx orm a ( ) C jω whr h Fourir coici C i giv by o o jωo C ( ) d o I h ymmrical orm, h Fourir ri i wri wih

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

, R we have. x x. ) 1 x. R and is a positive bounded. det. International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:10 No:06 11

, R we have. x x. ) 1 x. R and is a positive bounded. det. International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:10 No:06 11 raioal Joral of asic & ppli Scics JS-JENS Vol: No:6 So Dirichl ors a Pso Diffrial Opraors wih Coiioall Epoial Cov cio aa. M. Kail Dpar of Mahaics; acl of Scic; Ki laziz Uivrsi Jah Sai raia Eail: fkail@ka..sa

More information

An Analytical Study on Fractional Partial Differential Equations by Laplace Transform Operator Method

An Analytical Study on Fractional Partial Differential Equations by Laplace Transform Operator Method Iraioal Joural o Applid Egirig Rsarch ISSN 973-456 Volum 3 Numbr (8 pp 545-549 Rsarch Idia Publicaios hp://wwwripublicaiocom A Aalical Sud o Fracioal Parial Dirial Euaios b aplac Trasorm Opraor Mhod SKElaga

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 1

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 1 TH ROAL TATITICAL OCIT 6 AINATION OLTION GRADAT DILOA ODL T oci i providig olio o ai cadida prparig or aiaio i 7. T olio ar idd a larig aid ad old o b a "odl awr". r o olio old alwa b awar a i a ca r ar

More information

Numerical KDV equation by the Adomian decomposition method

Numerical KDV equation by the Adomian decomposition method America Joral o oder Physics ; () : -5 Pblished olie ay (hp://wwwsciecepblishiggropcom/j/ajmp) doi: 648/jajmp merical KDV eqaio by he Adomia decomposiio mehod Adi B Sedra Uiversié Ib Toail Faclé des Scieces

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

Application of Homotopy Analysis Method for Solving Linear and Nonlinear Differential Equations with Fractional Orders

Application of Homotopy Analysis Method for Solving Linear and Nonlinear Differential Equations with Fractional Orders Zarqa Uivrsi Facl o Grada Sdis جبهعة الضسقبء كلية الذساسبت العليب Applicaio o Homoop Aalsis Mhod or Solvig Liar ad Noliar irial Eqaios wih Fracioal Ordrs B Haa Marai Mohammd Sprvisor r. Gharib Mosa Gharib

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals Rviw opics from Chapr 3&4 Fourir Sris Fourir rasform Liar im Ivaria (LI) Sysms Ergy-yp Sigals Powr-yp Sigals Fourir Sris Rprsaio for Priodic Sigals Dfiiio: L h sigal () b a priodic sigal wih priod. ()

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Mixing time with Coupling

Mixing time with Coupling Mixig im wih Couplig Jihui Li Mig Zhg Saisics Dparm May 7 Goal Iroducio o boudig h mixig im for MCMC wih couplig ad pah couplig Prsig a simpl xampl o illusra h basic ida Noaio M is a Markov chai o fii

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 6-2 Yıl:

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 6-2 Yıl: EÜED - ilimlri Esiüsü Drgisi Cil-Saı: 6- Yıl: 3 75-86 75 ON SEMIGOUP GENEAED Y OUIE- ESSEL ANSOM AND IESZ POENIAL ASSOCIAED WIH SEMIGOUP OUIE- ESSEL DÖNÜŞÜMÜ AAINDAN ÜEİLEN SEMİGUU VE - SEMİGUP AAINDAN

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

ON H-TRICHOTOMY IN BANACH SPACES

ON H-TRICHOTOMY IN BANACH SPACES CODRUTA STOICA IHAIL EGA O H-TRICHOTOY I BAACH SPACES Absrac: I his papr w mphasiz h oio of skw-oluio smiflows cosidrd a gralizaio of smigroups oluio opraors ad skw-produc smiflows which aris i h sabiliy

More information

ECE351: Signals and Systems I. Thinh Nguyen

ECE351: Signals and Systems I. Thinh Nguyen ECE35: Sigals ad Sysms I Thih Nguy FudamalsofSigalsadSysms x Fudamals of Sigals ad Sysms co. Fudamals of Sigals ad Sysms co. x x] Classificaio of sigals Classificaio of sigals co. x] x x] =xt s =x

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

VISCOSITY APPROXIMATION TO COMMON FIXED POINTS OF kn- LIPSCHITZIAN NONEXPANSIVE MAPPINGS IN BANACH SPACES

VISCOSITY APPROXIMATION TO COMMON FIXED POINTS OF kn- LIPSCHITZIAN NONEXPANSIVE MAPPINGS IN BANACH SPACES Joral o Maheaical Scieces: Advaces ad Alicaios Vole Nber 9 Pages -35 VISCOSIY APPROXIMAION O COMMON FIXED POINS OF - LIPSCHIZIAN NONEXPANSIVE MAPPINGS IN BANACH SPACES HONGLIANG ZUO ad MIN YANG Deare o

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

ANALYTICAL EXPRESSION FOR THE NON-ISOTHERMAL EFFECTIVENESS FACTOR: The n th -order reaction in a slab geometry

ANALYTICAL EXPRESSION FOR THE NON-ISOTHERMAL EFFECTIVENESS FACTOR: The n th -order reaction in a slab geometry ANALYTICAL XPRSSION FOR T NON-ISOTRMAL FFCTIVNSS FACTOR: Th h -ordr racio i a slab gomry riqu Muñoz Tavra Dparm o Biogirig, Ric Uivrsiy, ouso, TX 775-89 USA muoz@ric.du Absrac Th problm o calculaig h civss

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns Summary: Solvng a Homognous Sysm of Two Lnar Frs Ordr Equaons n Two Unknowns Gvn: A Frs fnd h wo gnvalus, r, and hr rspcv corrspondng gnvcors, k, of h coffcn mar A Dpndng on h gnvalus and gnvcors, h gnral

More information

International Journal of Modern Mathematical Sciences, 2013, 5(3): International Journal of Modern Mathematical Sciences

International Journal of Modern Mathematical Sciences, 2013, 5(3): International Journal of Modern Mathematical Sciences Iraioal Joral of Mor Mahmaical Scic - Iraioal Joral of Mor Mahmaical Scic Joral hompagwwwmorsciificprcom/joral/ijmmap ISSN -X Floria USA Aricl Compario of Lagrag Mliplir for Noliar BVP Aif Mhmoo Farah

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition:

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition: Assigm Thomas Aam, Spha Brumm, Haik Lor May 6 h, 3 8 h smsr, 357, 7544, 757 oblm For R b X a raom variabl havig ormal isribuio wih ma µ a variac σ (his is wri as ~ (,) X. by: R a. Is X ) a urhrmor all

More information

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals ELECTOMAGNETIC COMPATIBILITY HANDBOOK Chapr : Spcra of Priodic ad Apriodic Sigals. Drmi whhr ach of h followig fucios ar priodic. If hy ar priodic, provid hir fudamal frqucy ad priod. a) x 4cos( 5 ) si(

More information

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering Lcur No Lcur-6-9 Ar rdig his lsso, you will lr ou Fourir sris xpsio rigoomric d xpoil Propris o Fourir Sris Rspos o lir sysm Normlizd powr i Fourir xpsio Powr spcrl dsiy Ec o rsr ucio o PSD. FOURIER SERIES

More information

15. Numerical Methods

15. Numerical Methods S K Modal' 5. Numrical Mhod. Th quaio + 4 4 i o b olvd uig h Nwo-Rapho mhod. If i ak a h iiial approimaio of h oluio, h h approimaio uig hi mhod will b [EC: GATE-7].(a (a (b 4 Nwo-Rapho iraio chm i f(

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

Gauge Theories. Elementary Particle Physics Strong Interaction Fenomenology. Diego Bettoni Academic year

Gauge Theories. Elementary Particle Physics Strong Interaction Fenomenology. Diego Bettoni Academic year Gau Thors Elmary Parcl Physcs Sro Iraco Fomoloy o Bo cadmc yar - Gau Ivarac Gau Ivarac Whr do Laraas or Hamloas com from? How do w kow ha a cra raco should dscrb a acual hyscal sysm? Why s h lcromac raco

More information

Finite Fourier Transform

Finite Fourier Transform Chp Th gl Tsom Mhods.3 Fii Foi Tsom Novmb 6 7 755.3 Fii Foi Tsom.3. odcio - Fii gl Tsom 756 Tbl Fii Foi Tsom 76.3. H Eqio i h Fii y 76.3.3 Codcio d Advcio 768.3.4 H Eqio i h Sph 774.3.5 Empls plg low ov

More information

Ring of Large Number Mutually Coupled Oscillators Periodic Solutions

Ring of Large Number Mutually Coupled Oscillators Periodic Solutions Iraioal Joural of horical ad Mahmaical Physics 4, 4(6: 5-9 DOI: 59/jijmp446 Rig of arg Numbr Muually Coupld Oscillaors Priodic Soluios Vasil G Aglov,*, Dafika z Aglova Dparm Nam of Mahmaics, Uivrsiy of

More information

UNIT III STANDARD DISTRIBUTIONS

UNIT III STANDARD DISTRIBUTIONS UNIT III STANDARD DISTRIBUTIONS Biomial, Poisso, Normal, Gomric, Uiform, Eoial, Gamma disribuios ad hir roris. Prard by Dr. V. Valliammal Ngaiv biomial disribuios Prard by Dr.A.R.VIJAYALAKSHMI Sadard Disribuios

More information

Linear Systems Analysis in the Time Domain

Linear Systems Analysis in the Time Domain Liar Sysms Aalysis i h Tim Domai Firs Ordr Sysms di vl = L, vr = Ri, d di L + Ri = () d R x= i, x& = x+ ( ) L L X() s I() s = = = U() s E() s Ls+ R R L s + R u () = () =, i() = L i () = R R Firs Ordr Sysms

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

Fixed Point Theorems for (, )-Uniformly Locally Generalized Contractions

Fixed Point Theorems for (, )-Uniformly Locally Generalized Contractions Global Joral o Pre ad Applied Mahemaics. ISSN 0973-768 Volme 4 Nmber 9 (208) pp. 77-83 Research Idia Pblicaios hp://www.ripblicaio.com Fied Poi Theorems or ( -Uiormly Locally Geeralized Coracios G. Sdhaamsh

More information

The Log-Gamma Distribution and Non-Normal Error

The Log-Gamma Distribution and Non-Normal Error Th Log-Gamma Disribio ad No-Normal Error Ligh J. Halliwll, FCAS, MAAA ABSTRACT Bcas isrd losss ar posiiv, loss disribios sar from zro ad ar righ-aild. Howvr, rsidals, or rrors, ar crd abo a ma of zro ad

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11, Prai paprs A ad B, produd by Edl i 9, wih mark shms Prai Papr A. Fid h valus of for whih 5 osh sih =, givig your aswrs as aural logarihms. (Toal 6 marks) k. A = k, whr k is a ral osa. 9 (a) Fid valus of

More information

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite Wb-basd Supplmary Marials for Sampl siz cosidraios for GEE aalyss of hr-lvl clusr radomizd rials by Sv Trsra, Big Lu, oh S. Prissr, Tho va Achrbrg, ad Gorg F. Borm Wb-appdix : macro o calcula h rag of

More information

Intrinsic formulation for elastic line deformed on a surface by an external field in the pseudo-galilean space 3. Nevin Gürbüz

Intrinsic formulation for elastic line deformed on a surface by an external field in the pseudo-galilean space 3. Nevin Gürbüz risic formuaio for asic i form o a surfac by a xra fi i h psuo-aia spac Nvi ürbüz Eskişhir Osmaazi Uivrsiy Mahmaics a Compur Scics Dparm urbuz@ouur Absrac: his papr w riv irisic formuaio for asic i form

More information

FourierSpectralMethodsforNumericalSolvingoftheKuramotoSivashinskyEquation

FourierSpectralMethodsforNumericalSolvingoftheKuramotoSivashinskyEquation Global Joral of Rsarhs i Egirig: I rial Mhods Vol Iss Vrsio. Yar Typ: Dobl Blid Pr Rviwd Iraioal Rsarh Joral Pblishr: Global Jorals I. USA Oli ISS: 9-596 & Pri ISS: 975-586 orir Spral Mhods for rial Solvig

More information

DIFFERENTIAL EQUATIONS MTH401

DIFFERENTIAL EQUATIONS MTH401 DIFFERENTIAL EQUATIONS MTH Virual Uivrsi of Pakisa Kowldg bod h boudaris Tabl of Cos Iroduio... Fudamals.... Elms of h Thor.... Spifi Eampls of ODE s.... Th ordr of a quaio.... Ordiar Diffrial Equaio....5

More information

Mixture of a New Integral Transform and Homotopy Perturbation Method for Solving Nonlinear Partial Differential Equations

Mixture of a New Integral Transform and Homotopy Perturbation Method for Solving Nonlinear Partial Differential Equations Adaces i Pre Mahemaics,,, 7- hp://d.doi.org/.46/apm..45 Pblished Olie May (hp://www.scirp.org/joral/apm) Mire of a New Iegral Trasform ad omoopy Perrbaio Mehod for Solig Noliear Parial Differeial Eqaios

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

(1) (2) sin. nx Derivation of the Euler Formulas Preliminary Orthogonality of trigonometric system

(1) (2) sin. nx Derivation of the Euler Formulas Preliminary Orthogonality of trigonometric system orir Sri Priodi io A io i lld priodi io o priod p i p p > p: ir I boh d r io o priod p h b i lo io o priod p orir Sri Priod io o priod b rprd i rm o rioomri ri o b i I h ri ovr i i lld orir ri o hr b r

More information

Adomian Decomposition Method for Dispersion. Phenomena Arising in Longitudinal Dispersion of. Miscible Fluid Flow through Porous Media

Adomian Decomposition Method for Dispersion. Phenomena Arising in Longitudinal Dispersion of. Miscible Fluid Flow through Porous Media dv. Thor. ppl. Mch. Vol. 3 o. 5 - domia Dcomposiio Mhod for Disprsio Phoma risig i ogiudial Disprsio of Miscibl Fluid Flow hrough Porous Mdia Ramakaa Mhr ad M.N. Mha Dparm of Mahmaics S.V. Naioal Isiu

More information