Distribution of Bipartite Entanglement of a Random Pure State

Size: px
Start display at page:

Download "Distribution of Bipartite Entanglement of a Random Pure State"

Transcription

1 Distribution of Bipartite Entanglement of a Random Pure State Satya N. Majumdar Laboratoire de Physique Théorique et Modèles Statistiques,CNRS, Université Paris-Sud, France Collaborators: C. Nadal (Oxford University, UK) M. Vergassola (Institut Pasteur, Paris, France) Refs: Phys. Rev. Lett. 104, (2010) J. Stat. Phys. 142, 403 (2011) (long version)

2 Plan Plan: Bipartite entanglement of a random pure state

3 Plan Plan: Bipartite entanglement of a random pure state Reduced density matrix random matrix theory

4 Plan Plan: Bipartite entanglement of a random pure state Reduced density matrix random matrix theory Distribution of the Renyi entropy Results Coulomb gas technique for large systems Phase transitions

5 Plan Plan: Bipartite entanglement of a random pure state Reduced density matrix random matrix theory Distribution of the Renyi entropy Results Coulomb gas technique for large systems Phase transitions Summary and Conclusions

6 Coupled Bipartite System A B N dim. M dim. i A α B Coupled Bipartite System N M Bipartite quantum system A B: Hilbert space H A H B subsystem A: dimension N (the system to study) subsystem B: dimension M N ( environment )

7 Coupled Bipartite System A B N dim. M dim. i A α B Coupled Bipartite System N M Bipartite quantum system A B: Hilbert space H A H B subsystem A: dimension N (the system to study) subsystem B: dimension M N ( environment ) Large system: limit N 1 and M 1 with M N.

8 Pure State and Reduced Density Matrix A B N dim. M dim. i A α B Coupled Bipartite System N M

9 Pure State and Reduced Density Matrix A B N dim. M dim. i A α B Coupled Bipartite System N M Any pure state of the full system: ψ >= i,α x i,α i A > α B > X = [x i,α ] (N M) rectangular Coupling matrix

10 Pure State of Bipartite System ψ >= i,α x i,α i A > α B >

11 Pure State of Bipartite System ψ >= i,α x i,α i A > α B > If x i,α = a i b α then ψ >= i a i i A > α b α α B >= Φ A > Φ B >

12 Pure State of Bipartite System ψ >= i,α x i,α i A > α B > If x i,α = a i b α then ψ >= i a i i A > α b α α B >= Φ A > Φ B > Fully separable (factorised)

13 Pure State of Bipartite System ψ >= i,α x i,α i A > α B > If x i,α = a i b α then ψ >= i a i i A > α b α α B >= Φ A > Φ B > Fully separable (factorised)

14 Pure State of Bipartite System ψ >= i,α x i,α i A > α B > If x i,α = a i b α then ψ >= i a i i A > α b α α B >= Φ A > Φ B > Fully separable (factorised) Otherwise Entangled (non-factorisable)

15 Pure State of Bipartite System ψ >= i,α x i,α i A > α B > If x i,α = a i b α then ψ >= i a i i A > α b α α B >= Φ A > Φ B > Fully separable (factorised) Otherwise Entangled (non-factorisable) Density matrix of the composite system ˆρ = ψ >< ψ with Tr[ˆρ] = 1

16 Pure State of Bipartite System ψ >= i,α x i,α i A > α B > If x i,α = a i b α then ψ >= i a i i A > α b α α B >= Φ A > Φ B > Fully separable (factorised) Otherwise Entangled (non-factorisable) Density matrix of the composite system ˆρ = ψ >< ψ with Tr[ˆρ] = 1 Pure state: ˆρ k p k ψ k >< ψ k not a Mixed state

17 Reduced Density Matrix of subsystem A: A B N dim. M dim. i A α B Coupled Bipartite System N M

18 Reduced Density Matrix of subsystem A: A B N dim. M dim. i A α B Coupled Bipartite System N M Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [ ψ ψ ] with Tr[ˆρ A ] = 1

19 Reduced Density Matrix of subsystem A: A B N dim. M dim. i A α B Coupled Bipartite System N M Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [ ψ ψ ] with Tr[ˆρ A ] = 1 Measurement ÔA = Tr[Ô ˆρ A]

20 Reduced Density Matrix of subsystem A: A B N dim. M dim. i A α B Coupled Bipartite System N M Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [ ψ ψ ] with Tr[ˆρ A ] = 1 Measurement ÔA = Tr[Ô ˆρ A] ˆρ A = Tr B [ˆρ]

21 Reduced Density Matrix of subsystem A: A B N dim. M dim. i A α B Coupled Bipartite System N M Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [ ψ ψ ] with Tr[ˆρ A ] = 1 Measurement ÔA = Tr[Ô ˆρ A] M ˆρ A = Tr B [ˆρ] = < α B ˆρ α B > α=1

22 Reduced Density Matrix of subsystem A: A B N dim. M dim. i A α B Coupled Bipartite System N M Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [ ψ ψ ] with Tr[ˆρ A ] = 1 Measurement ÔA = Tr[Ô ˆρ A] [ M N M ] ˆρ A = Tr B [ˆρ] = < α B ˆρ α B > = x i,α xj,α i A >< j A α=1 i,j=1 α=1

23 Reduced Density Matrix of subsystem A: A B N dim. M dim. i A α B Coupled Bipartite System N M Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [ ψ ψ ] with Tr[ˆρ A ] = 1 Measurement ÔA = Tr[Ô ˆρ A] [ M N M ] ˆρ A = Tr B [ˆρ] = < α B ˆρ α B > = x i,α xj,α i A >< j A α=1 = i,j=1 α=1 N W i,j i A >< j A i,j=1 where the N N matrix: W = XX

24 Eigenvalues of W: In the diagonal representation N N ˆρ A = W i,j i A >< j A λ i λ A i >< λ A i i,j=1 i=1

25 Eigenvalues of W: In the diagonal representation N N ˆρ A = W i,j i A >< j A λ i λ A i >< λ A i i,j=1 i=1 {λ 1, λ 2,..., λ N } non-negative eigenvalues of W = XX

26 Eigenvalues of W: In the diagonal representation N N ˆρ A = W i,j i A >< j A λ i λ A i >< λ A i i,j=1 i=1 {λ 1, λ 2,..., λ N } non-negative eigenvalues of W = XX Tr[ˆρ A ] = 1 N λ i = 1 0 λ i 1 i=1

27 Eigenvalues of W: In the diagonal representation N N ˆρ A = W i,j i A >< j A λ i λ A i >< λ A i i,j=1 i=1 {λ 1, λ 2,..., λ N } non-negative eigenvalues of W = XX Tr[ˆρ A ] = 1 N λ i = 1 0 λ i 1 i=1 M Similarly ˆρ B = Tr A [ˆρ] = W α,β α B >< β B α,β=1

28 Eigenvalues of W: In the diagonal representation N N ˆρ A = W i,j i A >< j A λ i λ A i >< λ A i i,j=1 i=1 {λ 1, λ 2,..., λ N } non-negative eigenvalues of W = XX Tr[ˆρ A ] = 1 N λ i = 1 0 λ i 1 i=1 M Similarly ˆρ B = Tr A [ˆρ] = W α,β α B >< β B α,β=1 W = X X (M M) matrix with M eigenvalues (recall N M)

29 Eigenvalues of W: In the diagonal representation N N ˆρ A = W i,j i A >< j A λ i λ A i >< λ A i i,j=1 i=1 {λ 1, λ 2,..., λ N } non-negative eigenvalues of W = XX Tr[ˆρ A ] = 1 N λ i = 1 0 λ i 1 i=1 Similarly ˆρ B = Tr A [ˆρ] = M α,β=1 W α,β α B >< β B W = X X (M M) matrix with M eigenvalues (recall N M) {λ 1, λ 2,..., λ N, 0, 0,..., 0}

30 Eigenvalues of W: In the diagonal representation N N ˆρ A = W i,j i A >< j A λ i λ A i >< λ A i i,j=1 i=1 {λ 1, λ 2,..., λ N } non-negative eigenvalues of W = XX Tr[ˆρ A ] = 1 N λ i = 1 0 λ i 1 i=1 Similarly ˆρ B = Tr A [ˆρ] = M α,β=1 W α,β α B >< β B W = X X (M M) matrix with M eigenvalues (recall N M) {λ 1, λ 2,..., λ N, 0, 0,..., 0} Schmidt decomposition: ψ >= N λi λ A i > λ B i > i=1

31 Entanglement N Schmidt decomposition: ψ >= λi λ A i > λ B i > N Reduced density matrix: ˆρ A = Tr B [ ψ >< ψ ] = λ i λ A i >< λ A i i=1 i=1

32 Entanglement N Schmidt decomposition: ψ >= λi λ A i > λ B i > N Reduced density matrix: ˆρ A = Tr B [ ψ >< ψ ] = λ i λ A i >< λ A i i=1 {λ 1, λ 2,..., λ N } eigenvalues of W = XX with N 0 λ i 1 and λ i = 1 i=1 i=1

33 Entanglement Schmidt decomposition: ψ >= N λi λ A i > λ B i > i=1 Reduced density matrix: ˆρ A = Tr B [ ψ >< ψ ] = {λ 1, λ 2,..., λ N } eigenvalues of W = XX with N 0 λ i 1 and λ i = 1 (i) Unentangled λ i0 = 1, λ j = 0 j i 0 ψ = λ A i 0 λ B i 0 is separable ˆρ A = λ A i 0 λ A i 0 is pure i=1 N λ i λ A i >< λ A i i=1 (ii) Maximally entangled λ j = 1/N for all j (all eigenvalues equal) ψ is a superposition of all product states ˆρ A = 1 N N i=1 λa i λ A i = 1 N 1 A is completely mixed

34 Entanglement entropy Subsystem A described by ˆρ A = N i=1 λ i λ A i λ A i Von Neuman entropy: S VN = Tr [ˆρ A ln ˆρ A ] = N i=1 λ i ln λ i

35 Entanglement entropy Subsystem A described by ˆρ A = N i=1 λ i λ A i λ A i Von Neuman entropy: S VN = Tr [ˆρ A ln ˆρ A ] = N i=1 λ i ln λ i [ Renyi entropy: S q = 1 1 q ln N ] i=1 λq i and Σ q = N i=1 λq i

36 Entanglement entropy Subsystem A described by ˆρ A = N i=1 λ i λ A i λ A i Von Neuman entropy: S VN = Tr [ˆρ A ln ˆρ A ] = N i=1 λ i ln λ i [ Renyi entropy: S q = 1 1 q ln N ] i=1 λq i and Σ q = N i=1 λq i S q 1 = S VN and S q = ln(λ max ) Σ 2 = exp[ S q=2 ] Purity

37 Entanglement entropy Subsystem A described by ˆρ A = N i=1 λ i λ A i λ A i Von Neuman entropy: S VN = Tr [ˆρ A ln ˆρ A ] = N i=1 λ i ln λ i [ Renyi entropy: S q = 1 1 q ln N ] i=1 λq i and Σ q = N i=1 λq i S q 1 = S VN and S q = ln(λ max ) Σ 2 = exp[ S q=2 ] Purity (i) Unentangled λ i0 = 1, λ j = 0 j i 0 ˆρ A = λ A i 0 λ A i 0 is pure S VN = 0 = S q is minimal (ii) Maximally entangled λ j = 1/N for all j ˆρ A = 1 N N i=1 λa i λ A i mixed S VN = ln N = S q is maximal

38 A Simple Diagram for N=3 (0,0,1) λ 3 (1/3,1/3,1/3) MOST ENTANGLED S=log(N) (0,1,0) λ 2 λ 1 (1,0,0) LEAST ENTANGLED S=0

39 A Simple Diagram for N=3 (0,0,1) λ 3 (1/3,1/3,1/3) MOST ENTANGLED S=log(N) (0,1,0) λ 2 λ 1 (1,0,0) LEAST ENTANGLED S=0

40 Random Pure State: Haar Measure ψ >= x i,α i A > α B > = i,α N λi λ A i > λ B i > i=1

41 Random Pure State: Haar Measure ψ >= i,α x i,α i A > α B > = N λi λ A i > λ B i > random pure state where X = [x i,α ] are uniformly distributed among the sets of {x i,α } satisfying i,α x i,α 2 = Trρ = 1 i=1 Haar measure

42 Random Pure State: Haar Measure ψ >= i,α x i,α i A > α B > = N λi λ A i > λ B i > random pure state where X = [x i,α ] are uniformly distributed among the sets of {x i,α } satisfying i,α x i,α 2 = Trρ = 1 i=1 Haar measure Equivalently, for the N M matrix P(X ) δ ( Tr(XX ) 1 )

43 Random Pure State: Haar Measure ψ >= i,α x i,α i A > α B > = N λi λ A i > λ B i > random pure state where X = [x i,α ] are uniformly distributed among the sets of {x i,α } satisfying i,α x i,α 2 = Trρ = 1 i=1 Haar measure Equivalently, for the N M matrix P(X ) δ ( Tr(XX ) 1 ) In the basis i A of H A : ˆρ A = W = XX Distribution of the eigenvalues λ i of ˆρ A? Distribution of the entanglement entropies S VN, S q?

44 Joint PDF of Eigenvalues the joint pdf P(λ 1, λ 2,..., λ N ) where {λ 1, λ 2,..., λ N } eigenvalues of the Wishart matrix W = XX (X N M Gaussian random matrix) with an additional constraint N λ i = 1 i=1

45 Joint PDF of Eigenvalues the joint pdf P(λ 1, λ 2,..., λ N ) where {λ 1, λ 2,..., λ N } eigenvalues of the Wishart matrix W = XX (X N M Gaussian random matrix) with an additional constraint N λ i = 1 i=1 Joint distribution of Wishart eigenvalues (James 64): [ P({λ i }) exp β N λ i] λ β 2 (1+M N) 1 i λ j λ k β 2 i=1 i j<k

46 Joint PDF of Eigenvalues the joint pdf P(λ 1, λ 2,..., λ N ) where {λ 1, λ 2,..., λ N } eigenvalues of the Wishart matrix W = XX (X N M Gaussian random matrix) with an additional constraint N λ i = 1 i=1 Joint distribution of Wishart eigenvalues (James 64): [ ( P({λ i }) exp β N λ i] λ β 2 (1+M N) 1 N ) i λ j λ k β δ λ i 1 2 i=1 i i=1 j<k (Llyod & Pagels 88, Zyczkowski & Sommers 2001)

47 Joint PDF of Eigenvalues the joint pdf P(λ 1, λ 2,..., λ N ) where {λ 1, λ 2,..., λ N } eigenvalues of the Wishart matrix W = XX (X N M Gaussian random matrix) with an additional constraint N λ i = 1 i=1 Joint distribution of Wishart eigenvalues (James 64): [ ( P({λ i }) exp β N λ i] λ β 2 (1+M N) 1 N ) i λ j λ k β δ λ i 1 2 i=1 i i=1 j<k (Llyod & Pagels 88, Zyczkowski & Sommers 2001) Given this pdf, what is the distribution of the Renyi entropy: [ S q = 1 1 q ln N ] i=1 λq i

48 Random Pure State: Well Studied Average von Neumann entropy: S VN ln N N 2M for M N 1 Near Maximal [Page ( 93), Foong and Kanno ( 94), Sánchez-Ruiz ( 95), Sen ( 96)]

49 Random Pure State: Well Studied Average von Neumann entropy: S VN ln N N 2M for M N 1 Near Maximal [Page ( 93), Foong and Kanno ( 94), Sánchez-Ruiz ( 95), Sen ( 96)] statistics of observables such as average density of eigenvalues, concurrence, purity, minimum eigenvalue λ min etc. [Lubkin ( 78), Zyczkowski & Sommers (2001, 2004), Cappellini, Sommers and Zyczkowski (2006), Giraud (2007), Znidaric (2007), S.M., Bohigas and Lakshminarayan (2008), Kubotini, Adachi and Toda (2008), Chen, Liu and Zhou (2010), Vivo (2010),...]

50 Random Pure State: Well Studied Average von Neumann entropy: S VN ln N N 2M for M N 1 Near Maximal [Page ( 93), Foong and Kanno ( 94), Sánchez-Ruiz ( 95), Sen ( 96)] statistics of observables such as average density of eigenvalues, concurrence, purity, minimum eigenvalue λ min etc. [Lubkin ( 78), Zyczkowski & Sommers (2001, 2004), Cappellini, Sommers and Zyczkowski (2006), Giraud (2007), Znidaric (2007), S.M., Bohigas and Lakshminarayan (2008), Kubotini, Adachi and Toda (2008), Chen, Liu and Zhou (2010), Vivo (2010),...] Laplace transform of the purity (q = 2) distribution for large N [Facchi et. al. (2008, 2010)]

51 Results: Entropy Distribution Scaling for large N: λ typ 1 N as N i=1 λ i = 1

52 Results: Entropy Distribution Scaling for large N: λ typ 1 N as N i=1 λ i = 1 Renyi entropy: S q = 1 1 q ln [Σ q] with Σ q = N i=1 λq i, q > 1

53 Results: Entropy Distribution Scaling for large N: λ typ 1 N as N i=1 λ i = 1 Renyi entropy: S q = 1 1 q ln [Σ q] with Σ q = N i=1 λq i, q > 1 Σ q = N 1 q s for large N S q = ln N ln s q 1

54 Results: Entropy Distribution Scaling for large N: λ typ 1 N as N i=1 λ i = 1 Renyi entropy: S q = 1 1 q ln [Σ q] with Σ q = N i=1 λq i, q > 1 Σ q = N 1 q s for large N S q = ln N ln s q 1 (i) Unentangled S q = 0 is minimal Σ q = 1 (or s ) (ii) Maximally entangled S q = ln N is maximal Σ q = N 1 q (or s = 1)

55 Results: Entropy Distribution Scaling for large N: λ typ 1 N as N i=1 λ i = 1 Renyi entropy: S q = 1 1 q ln [Σ q] with Σ q = N i=1 λq i, q > 1 Σ q = N 1 q s for large N S q = ln N ln s q 1 (i) Unentangled S q = 0 is minimal Σ q = 1 (or s ) (ii) Maximally entangled S q = ln N is maximal Σ q = N 1 q (or s = 1) Average entropy for large N: Σ q N 1 q s(q) S q ln N ln s(q) q 1 where s(q) = Γ(q+1/2) πγ(q+2) 4 q

56 Results: Entropy Distribution Scaling for large N: λ typ 1 N as N i=1 λ i = 1 Renyi entropy: S q = 1 1 q ln [Σ q] with Σ q = N i=1 λq i, q > 1 Σ q = N 1 q s for large N S q = ln N ln s q 1 (i) Unentangled S q = 0 is minimal Σ q = 1 (or s ) (ii) Maximally entangled S q = ln N is maximal Σ q = N 1 q (or s = 1) Average entropy for large N: Σ q N 1 q s(q) S q ln N ln s(q) q 1 where s(q) = Γ(q+1/2) πγ(q+2) 4 q For q = 2, Σ 2 2 N (purity); For q 1, S VN ln N 1 2

57 Results: pdf of Σ q = i λq i P ( Σ q = N 1 q s ) exp { βn 2 Φ I (s) } exp { βn 2 Φ II (s) } { exp βn 1+ 1 q } ΨIII (s) for 1 s < s 1 (q) for s 1 (q) < s < s 2 (q) for s > s 2 (q) P ( Σ q = N 1 q s ) s(q) (a) ln [ P ( Σ q = N 1 q s )] (b) I II III I II III 1 s 1 (q) s 2 (q) max. entangled unentangled s 1s 1 (q) s(q) s 2 (q) s

58 Computation of the pdf of Σ q : Coulomb gas method PDF of Σ q = i λq i ( ) ( ) P(Σ q, N) = P(λ 1,..., λ N ) δ λ q i Σ q dλ i. i i

59 Computation of the pdf of Σ q : Coulomb gas method PDF of Σ q = i λq i ( ) ( ) P(Σ q, N) = P(λ 1,..., λ N ) δ λ q i Σ q dλ i. i i The joint pdf of the eigenvalues can be interpreted as a Boltzmann weight at inverse temperature β: P(λ 1,..., λ N ) δ ( λ i 1 ) i N i=1 exp { βe [{λ i }]} λ β 2 (M N+1) 1 i λ i λ j β i<j where E [{λ i }] = γ N i=1 ln λ i i<j ln λ i λ j (with i λ i = 1) effective energy of a 2D Coulomb gas of charges

60 Charge Density and Effective Energy E{λ i } = γ N ln λ i ln λ i λ j with λ i = 1 i<j i i=1

61 Charge Density and Effective Energy E{λ i } = γ N ln λ i ln λ i λ j with λ i = 1 i<j i i=1 Continuous charge density in the large N limit (regimes I, II): {λ i } ρ(x) = 1 δ (x λ i N) N i P ( Σ q = N 1 q s, N ) D [ρ] exp { βn 2 E s [ρ] }

62 Charge Density and Effective Energy E{λ i } = γ N ln λ i ln λ i λ j with i<j i i=1 λ i = 1 Continuous charge density in the large N limit (regimes I, II): {λ i } ρ(x) = 1 δ (x λ i N) N i P ( Σ q = N 1 q s, N ) D [ρ] exp { βn 2 E s [ρ] } with effective energy E s [ρ] = 1 dx dx ρ(x)ρ(x ) ln x x ( ) +µ 0 dx ρ(x) 1 0 ( ) ( +µ 1 dx x ρ(x) 1 + µ 2 where µ 0, µ 1 and µ 2 are Lagrange multipliers 0 0 ) dx x q ρ(x) s

63 Saddle Point Solution E s [ρ]= 1 ( dxdx ρ(x)ρ(x ) ln x x + µ ( ) ( +µ 1 dx x ρ(x) 1 + µ ) dx ρ(x) 1 0 ) dx x q ρ(x) s

64 Saddle Point Solution E s [ρ]= 1 ( dxdx ρ(x)ρ(x ) ln x x + µ ( ) ( +µ 1 dx x ρ(x) 1 + µ ) dx ρ(x) 1 0 ) dx x q ρ(x) s Saddle point method for large N: P ( Σ q = N 1 q s, N ) D [ρ] exp { βn 2 E s [ρ] } exp { βn 2 E s [ρ c ] } where ρ c minimizes the energy: δe s δρ = 0 ρ=ρc

65 Saddle Point Solution E s [ρ]= 1 ( dxdx ρ(x)ρ(x ) ln x x + µ ( ) ( +µ 1 dx x ρ(x) 1 + µ ) dx ρ(x) 1 0 ) dx x q ρ(x) s Saddle point method for large N: P ( Σ q = N 1 q s, N ) D [ρ] exp { βn 2 E s [ρ] } exp { βn 2 E s [ρ c ] } where ρ c minimizes the energy: 0 δe s δρ = 0 giving ρ=ρc dx ρ c (x ) ln x x = µ 0 + µ 1 x + µ 2 x q V (x) V (x) effective potential for the charges.

66 Saddle Point Solution E s [ρ]= 1 ( dxdx ρ(x)ρ(x ) ln x x + µ ( ) ( +µ 1 dx x ρ(x) 1 + µ ) dx ρ(x) 1 0 ) dx x q ρ(x) s Saddle point method for large N: P ( Σ q = N 1 q s, N ) D [ρ] exp { βn 2 E s [ρ] } exp { βn 2 E s [ρ c ] } where ρ c minimizes the energy: 0 δe s δρ = 0 giving ρ=ρc dx ρ c (x ) ln x x = µ 0 + µ 1 x + µ 2 x q V (x) V (x) effective potential for the charges. Taking derivative with respect to x gives P 0 dx ρ c(x ) x x = µ 1 + q µ 2 x q 1 = V (x)

67 Steps for Computing the PDF of Σ q (i) find the solution ρ c (x) of the integral equation P 0 dx ρ c(x ) x x = µ 1 + q µ 2 x q 1 = V (x) Tricomi s solution: density ρ c (x) with finite support [L 1, L 2 ]: [ 1 L2 ] ρ c (x) = π dy y L1 L2 y C P V (y), x L 1 L2 x π x y where C = L 2 L 1 dx ρ c (x) is a constant L 1

68 Steps for Computing the PDF of Σ q (i) find the solution ρ c (x) of the integral equation P 0 dx ρ c(x ) x x = µ 1 + q µ 2 x q 1 = V (x) Tricomi s solution: density ρ c (x) with finite support [L 1, L 2 ]: [ 1 L2 ] ρ c (x) = π dy y L1 L2 y C P V (y), x L 1 L2 x π x y where C = L 2 L 1 dx ρ c (x) is a constant (ii) for a given s, the unknown Lagrange multipliers µ 0, µ 1 and µ 2 are fixed by the three conditions: 0 ρ c (x) dx = 1, 0 L 1 x ρ c (x) dx = 1 and 0 x q ρ c (x) dx = s

69 Steps for Computing the PDF of Σ q (i) find the solution ρ c (x) of the integral equation P 0 dx ρ c(x ) x x = µ 1 + q µ 2 x q 1 = V (x) Tricomi s solution: density ρ c (x) with finite support [L 1, L 2 ]: [ 1 L2 ] ρ c (x) = π dy y L1 L2 y C P V (y), x L 1 L2 x π x y where C = L 2 L 1 dx ρ c (x) is a constant (ii) for a given s, the unknown Lagrange multipliers µ 0, µ 1 and µ 2 are fixed by the three conditions: 0 ρ c (x) dx = 1, 0 L 1 x ρ c (x) dx = 1 and (iii) evaluate the saddle point energy E s [ρ c ] 0 x q ρ c (x) dx = s

70 Phase Transitions Regime I: 1 < s < s 1 (s 1 (q = 2) = 5/4 ) Regime II: s 1 < s < s 2 (s 2 (q = 2) = /3 N 1/3 ) V (x) V (x) V (x) Regime III: s > s 2 (weakly entangled) I II III 0 x x 0 x 0 x (a) (b) (c) ρ c (λ, N) ρ c (λ, N) ρ c (λ, N) I II III L 1 /N L 2 /N λ λ λ 0 L/N 0 ζ t

71 q = 2 : Purity Regime I: 1 < s < 5/4 ρ c (x) = L2 x x L 1 2π (s 1) P (Σ 2 = s ) N, N e βn2 Φ I (s), Φ I (s) = 1 4 ln (s 1) 1 8,

72 q = 2 : Purity Regime I: 1 < s < 5/4 ρ c (x) = L2 x x L 1 2π (s 1) P (Σ 2 = s ) N, N e βn2 Φ I (s), Φ I (s) = 1 4 ln (s 1) 1 8 Regime II: 5/4 < s < /3 N 1/3 ρ c (x) = 1 L x ( (A + B x) with L = 2 3 ) 9 4s π x P (Σ 2 = s ) N, N e βn2 Φ II (s), Φ II (s) = 1 ( ) L 2 ln L 2 5 L + 7 8,

73 q = 2 : Purity Regime I: 1 < s < 5/4 ρ c (x) = L2 x x L 1 2π (s 1) P (Σ 2 = s ) N, N e βn2 Φ I (s), Φ I (s) = 1 4 ln (s 1) 1 8 Regime II: 5/4 < s < /3 N 1/3 ρ c (x) = 1 L x ( (A + B x) with L = 2 3 ) 9 4s π x P (Σ 2 = s ) N, N e βn2 Φ II (s), Φ II (s) = 1 ( ) L 2 ln L 2 5 L + 7 8, 3-rd order phase transition at s = 5/4 d 3 Φ I (s) ds 3 s=5/4 = 32 while d 3 Φ II (s) s=5/4 ds = 16 3

74 Regime III Regime III: s > /3 Continuous density with support [0, ζ] with N 1/3 ζ 4 N and separated λ max ζ: λ max = t s 2 N P (Σ 2 = s ) N, N e βn 3 2 Ψ III (s), Ψ III (s) = s 2 2

75 Numerical simulations Monte Carlo Simulations (non-standard Metropolis algorithm): pdf of Σ 2 (purity) for N = 1000 (second phase transition) ln P (Σ 2 = s N ) βn Φ III = Ψ III N Φ II s(2) s 2 (2) s

76 Numerical Simulations (2) Jump of the maximal eigenvalue (rightmost charge) at s = s 2 for q = 2 and different values of N N t = N λ max for Σ 2 = s N N = 1000 N = N = s s 2 (N = 1000) s2 (N = 500) s

77 The limit q 1 von Neumann Entropy S VN = S q 1 = N i=1 λ i ln(λ i ) = ln(n) z

78 The limit q 1 von Neumann Entropy 0 z S VN = S q 1 = N i=1 λ i ln(λ i ) = ln(n) z exp { βn 2 φ I (z) } for 0 z < z 1 = 2 3 ln ( 3 2) = (S VN = ln(n) z) exp { βn 2 φ II (z) } for < z < z 2 = 1/2 { } exp β N2 ln(n) φ III (z) for z > z 2 = 1/2 P(S VN = ln(n) z) II III z= I maximally entangled z 1 = = 0.5 z

79 The limit q Maximal eigenvalue S q = ln (λ max )

80 The limit q Maximal eigenvalue S q = ln (λ max ) ( P λ max = t ) N exp { βn 2 χ I (t) } for 1 t < t 1 = 4 3 exp { βn 2 χ II (t) } for 4 3 < t < t 2 = 4 exp { βn χ III (t)} for t > t 2 = 4

81 The limit q Maximal eigenvalue S q = ln (λ max ) ( P λ max = t ) N exp { βn 2 χ I (t) } for 1 t < t 1 = 4 3 exp { βn 2 χ II (t) } for 4 3 < t < t 2 = 4 exp { βn χ III (t)} for t > t 2 = 4 Around its mean, λ max = 4/N, the typical fluctuations ( O(N 5/3 )) are described by the Tracy-Widom distribution λ max = 4 N + 24/3 N 5/3 Y β Y β random variable distributed via Tracy-Widom law

82 The limit q Maximal eigenvalue S q = ln (λ max ) ( P λ max = t ) N exp { βn 2 χ I (t) } for 1 t < t 1 = 4 3 exp { βn 2 χ II (t) } for 4 3 < t < t 2 = 4 exp { βn χ III (t)} for t > t 2 = 4 Around its mean, λ max = 4/N, the typical fluctuations ( O(N 5/3 )) are described by the Tracy-Widom distribution λ max = 4 N + 24/3 N 5/3 Y β Y β random variable distributed via Tracy-Widom law For finite N and M, see P. Vivo (2011)

83 Summary and Conclusions Exact distribution of the Renyi entanglement entropy S q for a random pure state in a large bipartite quantum system (M N 1)

84 Summary and Conclusions Exact distribution of the Renyi entanglement entropy S q for a random pure state in a large bipartite quantum system (M N 1) Coulomb gas method saddle point solution

85 Summary and Conclusions Exact distribution of the Renyi entanglement entropy S q for a random pure state in a large bipartite quantum system (M N 1) Coulomb gas method saddle point solution 2 critical points direct consequence of 2 phase transitions in the associated Coulomb gas

86 Summary and Conclusions Exact distribution of the Renyi entanglement entropy S q for a random pure state in a large bipartite quantum system (M N 1) Coulomb gas method saddle point solution 2 critical points direct consequence of 2 phase transitions in the associated Coulomb gas at the second critical point: λ max suddenly jumps to a value N (1 1/q) much larger than the other λ i 1/N

87 Summary and Conclusions Exact distribution of the Renyi entanglement entropy S q for a random pure state in a large bipartite quantum system (M N 1) Coulomb gas method saddle point solution 2 critical points direct consequence of 2 phase transitions in the associated Coulomb gas at the second critical point: λ max suddenly jumps to a value N (1 1/q) much larger than the other λ i 1/N While the average entropy of a random pure state is indeed close to its maximal value ln N, the probability of occurrence of the maximally entangled state (all λ i = 1/N) is actually very small.

88 Summary and Conclusions Exact distribution of the Renyi entanglement entropy S q for a random pure state in a large bipartite quantum system (M N 1) Coulomb gas method saddle point solution 2 critical points direct consequence of 2 phase transitions in the associated Coulomb gas at the second critical point: λ max suddenly jumps to a value N (1 1/q) much larger than the other λ i 1/N While the average entropy of a random pure state is indeed close to its maximal value ln N, the probability of occurrence of the maximally entangled state (all λ i = 1/N) is actually very small. Work in progress (C. Nadal, S.M with C. Pineda and T. Seligman) Distribution of entropy for N finite but M N (large environment)?

89 References On the large N distribution of the Renyi entropy: C. Nadal, S.M. and M. Vergassola, Phys. Rev. Lett. 104, (2010) long version: J. Stat. Phys. 142, 403 (2011) On the distribution of the minimum Schmidt number λ min : S.M., O. Bohigas and A. Lakshminarayan, J. Stat. Phys. 131, 33 (2008) see also S.M. in Handbook of Random Matrix Theory (ed. by G. Akemann, J. Baik and P. Di Francesco and forwarded by F.J. Dyson) (Oxford Univ. Press, 2011) (arxiv: )

Large deviations of the top eigenvalue of random matrices and applications in statistical physics

Large deviations of the top eigenvalue of random matrices and applications in statistical physics Large deviations of the top eigenvalue of random matrices and applications in statistical physics Grégory Schehr LPTMS, CNRS-Université Paris-Sud XI Journées de Physique Statistique Paris, January 29-30,

More information

MP 472 Quantum Information and Computation

MP 472 Quantum Information and Computation MP 472 Quantum Information and Computation http://www.thphys.may.ie/staff/jvala/mp472.htm Outline Open quantum systems The density operator ensemble of quantum states general properties the reduced density

More information

Valerio Cappellini. References

Valerio Cappellini. References CETER FOR THEORETICAL PHYSICS OF THE POLISH ACADEMY OF SCIECES WARSAW, POLAD RADOM DESITY MATRICES AD THEIR DETERMIATS 4 30 SEPTEMBER 5 TH SFB TR 1 MEETIG OF 006 I PRZEGORZAłY KRAKÓW Valerio Cappellini

More information

Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement

Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement Karol Życzkowski in collaboration with Lukasz Rudnicki (Warsaw) Pawe l Horodecki (Gdańsk) Jagiellonian University, Cracow,

More information

Ensembles and incomplete information

Ensembles and incomplete information p. 1/32 Ensembles and incomplete information So far in this course, we have described quantum systems by states that are normalized vectors in a complex Hilbert space. This works so long as (a) the system

More information

Entropic Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement

Entropic Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement Entropic Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement Karol Życzkowski in collaboration with Lukasz Rudnicki (Warsaw) Pawe l Horodecki (Gdańsk) Phys. Rev. Lett. 107,

More information

1 More on the Bloch Sphere (10 points)

1 More on the Bloch Sphere (10 points) Ph15c Spring 017 Prof. Sean Carroll seancarroll@gmail.com Homework - 1 Solutions Assigned TA: Ashmeet Singh ashmeet@caltech.edu 1 More on the Bloch Sphere 10 points a. The state Ψ is parametrized on the

More information

Top eigenvalue of a random matrix: Large deviations

Top eigenvalue of a random matrix: Large deviations Top eigenvalue of a random matrix: Large deviations Satya N. Majumdar Laboratoire de Physique Théorique et Modèles Statistiques,CNRS, Université Paris-Sud, France First Appearence of Random Matrices Covariance

More information

Entanglement Measures and Monotones Pt. 2

Entanglement Measures and Monotones Pt. 2 Entanglement Measures and Monotones Pt. 2 PHYS 500 - Southern Illinois University April 8, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones Pt. 2 April 8, 2017 1 / 13 Entanglement

More information

TOP EIGENVALUE OF CAUCHY RANDOM MATRICES

TOP EIGENVALUE OF CAUCHY RANDOM MATRICES TOP EIGENVALUE OF CAUCHY RANDOM MATRICES with Satya N. Majumdar, Gregory Schehr and Dario Villamaina Pierpaolo Vivo (LPTMS - CNRS - Paris XI) Gaussian Ensembles N = 5 Semicircle Law LARGEST EIGENVALUE

More information

Concentration of Measure Effects in Quantum Information. Patrick Hayden (McGill University)

Concentration of Measure Effects in Quantum Information. Patrick Hayden (McGill University) Concentration of Measure Effects in Quantum Information Patrick Hayden (McGill University) Overview Superdense coding Random states and random subspaces Superdense coding of quantum states Quantum mechanical

More information

Quantum Chaos and Nonunitary Dynamics

Quantum Chaos and Nonunitary Dynamics Quantum Chaos and Nonunitary Dynamics Karol Życzkowski in collaboration with W. Bruzda, V. Cappellini, H.-J. Sommers, M. Smaczyński Phys. Lett. A 373, 320 (2009) Institute of Physics, Jagiellonian University,

More information

Algebraic Theory of Entanglement

Algebraic Theory of Entanglement Algebraic Theory of (arxiv: 1205.2882) 1 (in collaboration with T.R. Govindarajan, A. Queiroz and A.F. Reyes-Lega) 1 Physics Department, Syracuse University, Syracuse, N.Y. and The Institute of Mathematical

More information

arxiv:quant-ph/ v1 7 Mar 2007

arxiv:quant-ph/ v1 7 Mar 2007 Statistical bounds on the dynamical production of entanglement Rômulo F. Abreu and Raúl O. Vallejos Centro Brasileiro de Pesquisas Físicas (CBPF), Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil

More information

Eigenstate entanglement between quantum chaotic subsystems: universal transitions and power laws in the entanglement spectrum

Eigenstate entanglement between quantum chaotic subsystems: universal transitions and power laws in the entanglement spectrum Eigenstate entanglement between quantum chaotic subsystems: universal transitions and power laws in the entanglement spectrum Steven Tomsovic,,, 3 Arul Lakshminarayan,, 4 Shashi C. L. Srivastava,, 5, 6

More information

The Principles of Quantum Mechanics: Pt. 1

The Principles of Quantum Mechanics: Pt. 1 The Principles of Quantum Mechanics: Pt. 1 PHYS 476Q - Southern Illinois University February 15, 2018 PHYS 476Q - Southern Illinois University The Principles of Quantum Mechanics: Pt. 1 February 15, 2018

More information

arxiv: v4 [cond-mat.stat-mech] 28 May 2015

arxiv: v4 [cond-mat.stat-mech] 28 May 2015 arxiv:1311.0580v4 [cond-mat.stat-mech] 28 May 2015 Top eigenvalue of a random matrix: large deviations and third order phase transition Satya N. Majumdar Université Paris-Sud, LPTMS, CNRS (UMR 8626), 91405

More information

NON-GAUSSIANITY AND PURITY IN FINITE DIMENSION

NON-GAUSSIANITY AND PURITY IN FINITE DIMENSION International Journal of Quantum Information Vol. 7, Supplement (9) 97 13 c World Scientific Publishing Company NON-GAUSSIANITY AND PURITY IN FINITE DIMENSION MARCO G. GENONI, and MATTEO G. A. PARIS,,

More information

Statistical Inference and Random Matrices

Statistical Inference and Random Matrices Statistical Inference and Random Matrices N.S. Witte Institute of Fundamental Sciences Massey University New Zealand 5-12-2017 Joint work with Peter Forrester 6 th Wellington Workshop in Probability and

More information

Is the world more classical or more quantum?

Is the world more classical or more quantum? Is the world more classical or more quantum? A. Lovas, A. Andai BUTE, Department of Analysis XXVI International Fall Workshop on Geometry and Physics Braga, 4-7 September 2017 A. Lovas, A. Andai Is the

More information

arxiv: v2 [quant-ph] 18 Mar 2011

arxiv: v2 [quant-ph] 18 Mar 2011 Generating random density matrices arxiv:1010.3570v2 [quant-ph] 18 Mar 2011 Karol Życzkowski 1,2, Karol A. Penson 3, Ion Nechita 4,5 and Benoît Collins 4,6 1 Institute of Physics, Jagiellonian University,

More information

Introduction to Quantum Information Hermann Kampermann

Introduction to Quantum Information Hermann Kampermann Introduction to Quantum Information Hermann Kampermann Heinrich-Heine-Universität Düsseldorf Theoretische Physik III Summer school Bleubeuren July 014 Contents 1 Quantum Mechanics...........................

More information

Quantum Entanglement- Fundamental Aspects

Quantum Entanglement- Fundamental Aspects Quantum Entanglement- Fundamental Aspects Debasis Sarkar Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata- 700009, India Abstract Entanglement is one of the most useful

More information

2.1 Definition and general properties

2.1 Definition and general properties Chapter 2 Gaussian states Gaussian states are at the heart of quantum information processing with continuous variables. The basic reason is that the vacuum state of quantum electrodynamics is itself a

More information

Multipartite Monogamy of the Entanglement of Formation. Abstract

Multipartite Monogamy of the Entanglement of Formation. Abstract Multipartite Monogamy of the Entanglement of Formation Xian Shi Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China University of Chinese

More information

Entropy in Classical and Quantum Information Theory

Entropy in Classical and Quantum Information Theory Entropy in Classical and Quantum Information Theory William Fedus Physics Department, University of California, San Diego. Entropy is a central concept in both classical and quantum information theory,

More information

Modification of the Porter-Thomas distribution by rank-one interaction. Eugene Bogomolny

Modification of the Porter-Thomas distribution by rank-one interaction. Eugene Bogomolny Modification of the Porter-Thomas distribution by rank-one interaction Eugene Bogomolny University Paris-Sud, CNRS Laboratoire de Physique Théorique et Modèles Statistiques, Orsay France XII Brunel-Bielefeld

More information

FRACTAL DIMENSIONS FOR CERTAIN CRITICAL RANDOM MATRIX ENSEMBLES. Eugène Bogomolny

FRACTAL DIMENSIONS FOR CERTAIN CRITICAL RANDOM MATRIX ENSEMBLES. Eugène Bogomolny FRACTAL DIMENSIONS FOR CERTAIN CRITICAL RANDOM MATRIX ENSEMBLES Eugène Bogomolny Univ. Paris-Sud, CNRS, LPTMS, Orsay, France In collaboration with Olivier Giraud VI Brunel Workshop on PMT Brunel, 7-8 December

More information

Multipartite entanglement in fermionic systems via a geometric

Multipartite entanglement in fermionic systems via a geometric Multipartite entanglement in fermionic systems via a geometric measure Department of Physics University of Pune Pune - 411007 International Workshop on Quantum Information HRI Allahabad February 2012 In

More information

arxiv:quant-ph/ v1 22 Jul 2002

arxiv:quant-ph/ v1 22 Jul 2002 Conditional q-entropies and Quantum Separability: A Numerical Exploration J. Batle 1, A. R. Plastino 1,2, M. Casas 1, and A. Plastino 2 1 Departament de Física, Universitat de les Illes Balears, 07071

More information

Entanglement in Topological Phases

Entanglement in Topological Phases Entanglement in Topological Phases Dylan Liu August 31, 2012 Abstract In this report, the research conducted on entanglement in topological phases is detailed and summarized. This includes background developed

More information

The general reason for approach to thermal equilibrium of macroscopic quantu

The general reason for approach to thermal equilibrium of macroscopic quantu The general reason for approach to thermal equilibrium of macroscopic quantum systems 10 May 2011 Joint work with S. Goldstein, J. L. Lebowitz, C. Mastrodonato, and N. Zanghì. Claim macroscopic quantum

More information

Entanglement: concept, measures and open problems

Entanglement: concept, measures and open problems Entanglement: concept, measures and open problems Division of Mathematical Physics Lund University June 2013 Project in Quantum information. Supervisor: Peter Samuelsson Outline 1 Motivation for study

More information

Induced Ginibre Ensemble and random operations

Induced Ginibre Ensemble and random operations Induced Ginibre Ensemble and random operations Karol Życzkowski in collaboration with Wojciech Bruzda, Marek Smaczyński, Wojciech Roga Jonith Fischmann, Boris Khoruzhenko (London), Ion Nechita (Touluse),

More information

arxiv:quant-ph/ v2 24 Dec 2003

arxiv:quant-ph/ v2 24 Dec 2003 Quantum Entanglement in Heisenberg Antiferromagnets V. Subrahmanyam Department of Physics, Indian Institute of Technology, Kanpur, India. arxiv:quant-ph/0309004 v2 24 Dec 2003 Entanglement sharing among

More information

Shared Purity of Multipartite Quantum States

Shared Purity of Multipartite Quantum States Shared Purity of Multipartite Quantum States Anindya Biswas Harish-Chandra Research Institute December 3, 2013 Anindya Biswas (HRI) Shared Purity December 3, 2013 1 / 38 Outline of the talk 1 Motivation

More information

Nullity of Measurement-induced Nonlocality. Yu Guo

Nullity of Measurement-induced Nonlocality. Yu Guo Jul. 18-22, 2011, at Taiyuan. Nullity of Measurement-induced Nonlocality Yu Guo (Joint work with Pro. Jinchuan Hou) 1 1 27 Department of Mathematics Shanxi Datong University Datong, China guoyu3@yahoo.com.cn

More information

Quantum Systems Measurement through Product Hamiltonians

Quantum Systems Measurement through Product Hamiltonians 45th Symposium of Mathematical Physics, Toruń, June 1-2, 2013 Quantum Systems Measurement through Product Hamiltonians Joachim DOMSTA Faculty of Applied Physics and Mathematics Gdańsk University of Technology

More information

Mutual Information in Conformal Field Theories in Higher Dimensions

Mutual Information in Conformal Field Theories in Higher Dimensions Mutual Information in Conformal Field Theories in Higher Dimensions John Cardy University of Oxford Conference on Mathematical Statistical Physics Kyoto 2013 arxiv:1304.7985; J. Phys. : Math. Theor. 46

More information

Matrix Product States

Matrix Product States Matrix Product States Ian McCulloch University of Queensland Centre for Engineered Quantum Systems 28 August 2017 Hilbert space (Hilbert) space is big. Really big. You just won t believe how vastly, hugely,

More information

INSTITUT FOURIER. Quantum correlations and Geometry. Dominique Spehner

INSTITUT FOURIER. Quantum correlations and Geometry. Dominique Spehner i f INSTITUT FOURIER Quantum correlations and Geometry Dominique Spehner Institut Fourier et Laboratoire de Physique et Modélisation des Milieux Condensés, Grenoble Outlines Entangled and non-classical

More information

Vicious Walkers, Random Matrices and 2-d Yang-Mills theory

Vicious Walkers, Random Matrices and 2-d Yang-Mills theory Vicious Walkers, Random Matrices and 2-d Yang-Mills theory Laboratoire de Physique Théorique et Modèles Statistiques,CNRS, Université Paris-Sud, France Collaborators: A. Comtet (LPTMS, Orsay) P. J. Forrester

More information

Maximal height of non-intersecting Brownian motions

Maximal height of non-intersecting Brownian motions Maximal height of non-intersecting Brownian motions G. Schehr Laboratoire de Physique Théorique et Modèles Statistiques CNRS-Université Paris Sud-XI, Orsay Collaborators: A. Comtet (LPTMS, Orsay) P. J.

More information

Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2

Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2 Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2 arxiv:quant-ph/0410063v1 8 Oct 2004 Nilanjana Datta Statistical Laboratory Centre for Mathematical Sciences University of Cambridge

More information

Asymptotic Pure State Transformations

Asymptotic Pure State Transformations Asymptotic Pure State Transformations PHYS 500 - Southern Illinois University April 18, 2017 PHYS 500 - Southern Illinois University Asymptotic Pure State Transformations April 18, 2017 1 / 15 Entanglement

More information

arxiv: v3 [quant-ph] 5 Jun 2015

arxiv: v3 [quant-ph] 5 Jun 2015 Entanglement and swap of quantum states in two qubits Takaya Ikuto and Satoshi Ishizaka Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, 739-8521, Japan (Dated:

More information

Maximally entangled states and combinatorial designes

Maximally entangled states and combinatorial designes Maximally entangled states and combinatorial designes Karol Życzkowski in collaboration with Dardo Goyeneche (Concepcion/ Cracow/ Warsaw) Jagiellonian University (Cracow) & Polish Academy of Sciences (Warsaw)

More information

Mutual information-energy inequality for thermal states of a bipartite quantum system

Mutual information-energy inequality for thermal states of a bipartite quantum system Journal of Physics: Conference Series OPEN ACCESS Mutual information-energy inequality for thermal states of a bipartite quantum system To cite this article: Aleksey Fedorov and Evgeny Kiktenko 2015 J.

More information

Near extreme eigenvalues and the first gap of Hermitian random matrices

Near extreme eigenvalues and the first gap of Hermitian random matrices Near extreme eigenvalues and the first gap of Hermitian random matrices Grégory Schehr LPTMS, CNRS-Université Paris-Sud XI Sydney Random Matrix Theory Workshop 13-16 January 2014 Anthony Perret, G. S.,

More information

Measuring Entanglement Entropy in Valence Bond Quantum Monte Carlo Simulations

Measuring Entanglement Entropy in Valence Bond Quantum Monte Carlo Simulations Measuring Entanglement Entropy in Valence Bond Quantum Monte Carlo Simulations by Ann Berlinsky Kallin A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the

More information

Quantum Entanglement and the Bell Matrix

Quantum Entanglement and the Bell Matrix Quantum Entanglement and the Bell Matrix Marco Pedicini (Roma Tre University) in collaboration with Anna Chiara Lai and Silvia Rognone (La Sapienza University of Rome) SIMAI2018 - MS27: Discrete Mathematics,

More information

arxiv: v2 [nlin.si] 15 Oct 2008

arxiv: v2 [nlin.si] 15 Oct 2008 Random Quantum Operations Wojciech Bruzda 1, Valerio Cappellini 1, Hans-Jürgen Sommers 2, and Karol Życzkowski1,3 1 Mark Kac Complex Systems Research Centre, Institute of Physics, Jagiellonian University,

More information

Random Matrix: From Wigner to Quantum Chaos

Random Matrix: From Wigner to Quantum Chaos Random Matrix: From Wigner to Quantum Chaos Horng-Tzer Yau Harvard University Joint work with P. Bourgade, L. Erdős, B. Schlein and J. Yin 1 Perhaps I am now too courageous when I try to guess the distribution

More information

Some Bipartite States Do Not Arise from Channels

Some Bipartite States Do Not Arise from Channels Some Bipartite States Do Not Arise from Channels arxiv:quant-ph/0303141v3 16 Apr 003 Mary Beth Ruskai Department of Mathematics, Tufts University Medford, Massachusetts 0155 USA marybeth.ruskai@tufts.edu

More information

Physics 239/139 Spring 2018 Assignment 6

Physics 239/139 Spring 2018 Assignment 6 University of California at San Diego Department of Physics Prof. John McGreevy Physics 239/139 Spring 2018 Assignment 6 Due 12:30pm Monday, May 14, 2018 1. Brainwarmers on Kraus operators. (a) Check that

More information

Concentration Inequalities for Random Matrices

Concentration Inequalities for Random Matrices Concentration Inequalities for Random Matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify the asymptotic

More information

Entanglement Measures and Monotones

Entanglement Measures and Monotones Entanglement Measures and Monotones PHYS 500 - Southern Illinois University March 30, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones March 30, 2017 1 / 11 Quantifying

More information

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Problem 3: The EPR state (30 points) The Einstein-Podolsky-Rosen (EPR) paradox is based around a thought experiment of measurements

More information

Quantum Stochastic Maps and Frobenius Perron Theorem

Quantum Stochastic Maps and Frobenius Perron Theorem Quantum Stochastic Maps and Frobenius Perron Theorem Karol Życzkowski in collaboration with W. Bruzda, V. Cappellini, H.-J. Sommers, M. Smaczyński Institute of Physics, Jagiellonian University, Cracow,

More information

arxiv: v2 [quant-ph] 14 Mar 2018

arxiv: v2 [quant-ph] 14 Mar 2018 God plays coins or superposition principle for classical probabilities in quantum suprematism representation of qubit states. V. N. Chernega 1, O. V. Man ko 1,2, V. I. Man ko 1,3 1 - Lebedev Physical Institute,

More information

CS/Ph120 Homework 4 Solutions

CS/Ph120 Homework 4 Solutions CS/Ph10 Homework 4 Solutions November 3, 016 Problem 1: Robustness of GHZ and W states, part Solution: Due to Bolton Bailey a For the GHZ state, we have T r N GHZ N GHZ N = 1 0 N 1 0 N 1 + 1 N 1 1 N 1

More information

Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain

Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain TNSAA 2018-2019 Dec. 3-6, 2018, Kobe, Japan Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain Kouichi Seki, Kouichi Okunishi Niigata University,

More information

arxiv: v1 [cond-mat.str-el] 7 Oct 2017

arxiv: v1 [cond-mat.str-el] 7 Oct 2017 Universal Spectral Correlations in the Chaotic Wave Function, and the Development of Quantum Chaos Xiao Chen 1, and Andreas W.W. Ludwig 2 1 Kavli Institute for Theoretical Physics, arxiv:1710.02686v1 [cond-mat.str-el]

More information

Compression and entanglement, entanglement transformations

Compression and entanglement, entanglement transformations PHYSICS 491: Symmetry and Quantum Information April 27, 2017 Compression and entanglement, entanglement transformations Lecture 8 Michael Walter, Stanford University These lecture notes are not proof-read

More information

Entanglement, quantum critical phenomena and efficient simulation of quantum dynamics

Entanglement, quantum critical phenomena and efficient simulation of quantum dynamics Entanglement, quantum critical phenomena and efficient simulation of quantum dynamics Simons Conference on Reversible and Quantum Computation Stony Brook, May 28-31 2003 Guifre Vidal Institute for Quantum

More information

1 Tridiagonal matrices

1 Tridiagonal matrices Lecture Notes: β-ensembles Bálint Virág Notes with Diane Holcomb 1 Tridiagonal matrices Definition 1. Suppose you have a symmetric matrix A, we can define its spectral measure (at the first coordinate

More information

Principles of Quantum Mechanics Pt. 2

Principles of Quantum Mechanics Pt. 2 Principles of Quantum Mechanics Pt. 2 PHYS 500 - Southern Illinois University February 9, 2017 PHYS 500 - Southern Illinois University Principles of Quantum Mechanics Pt. 2 February 9, 2017 1 / 13 The

More information

arxiv: v2 [cond-mat.stat-mech] 20 May 2017

arxiv: v2 [cond-mat.stat-mech] 20 May 2017 manuscript No. (will be inserted by the editor) Truncated linear statistics associated with the eigenvalues of random matrices II. Partial sums over proper time delays for chaotic quantum dots arxiv:1612.05469v2

More information

An Introduction to Quantum Computation and Quantum Information

An Introduction to Quantum Computation and Quantum Information An to and Graduate Group in Applied Math University of California, Davis March 13, 009 A bit of history Benioff 198 : First paper published mentioning quantum computing Feynman 198 : Use a quantum computer

More information

Maximally Entangled State and Bell s Inequality in Qubits

Maximally Entangled State and Bell s Inequality in Qubits Maximally Entangled State and Bell s Inequality in Qubits arxiv:1711.04415v1 [quant-ph] 13 Nov 2017 Su-Kuan Chu a 1, Chen-Te Ma b 2, Rong-Xin Miao c 3 and Chih-Hung Wu b 4 a Joint Quantum Institute and

More information

arxiv: v2 [cond-mat.stat-mech] 12 Jun 2009

arxiv: v2 [cond-mat.stat-mech] 12 Jun 2009 onintersecting Brownian Interfaces and Wishart Random Matrices Céline adal and Satya. Majumdar Laboratoire de Physique Théorique et Modèles Statistiques UMR 866 du CRS, Université Paris-Sud, Bâtiment 945

More information

Quantification of Gaussian quantum steering. Gerardo Adesso

Quantification of Gaussian quantum steering. Gerardo Adesso Quantification of Gaussian quantum steering Gerardo Adesso Outline Quantum steering Continuous variable systems Gaussian entanglement Gaussian steering Applications Steering timeline EPR paradox (1935)

More information

PHY305: Notes on Entanglement and the Density Matrix

PHY305: Notes on Entanglement and the Density Matrix PHY305: Notes on Entanglement and the Density Matrix Here follows a short summary of the definitions of qubits, EPR states, entanglement, the density matrix, pure states, mixed states, measurement, and

More information

Universality of local spectral statistics of random matrices

Universality of local spectral statistics of random matrices Universality of local spectral statistics of random matrices László Erdős Ludwig-Maximilians-Universität, Munich, Germany CRM, Montreal, Mar 19, 2012 Joint with P. Bourgade, B. Schlein, H.T. Yau, and J.

More information

arxiv: v1 [cond-mat.stat-mech] 16 Oct 2012

arxiv: v1 [cond-mat.stat-mech] 16 Oct 2012 Noname manuscript No. will be inserted by the editor) arxiv:110.4438v1 [cond-mat.stat-mech] 16 Oct 01 Grégory Schehr Satya N. Majumdar Alain Comtet Peter J. Forrester Reunion probability of N vicious walkers:

More information

arxiv: v2 [quant-ph] 13 Aug 2011

arxiv: v2 [quant-ph] 13 Aug 2011 Entanglement transitions in random definite particle states Vikram S. Vijayaraghavan, 1, Udaysinh T. Bhosale, 1, and Arul Lakshminarayan 1, 1 Department of Physics, Indian Institute of Technology Madras,

More information

Entanglement Entropy in Extended Quantum Systems

Entanglement Entropy in Extended Quantum Systems Entanglement Entropy in Extended Quantum Systems John Cardy University of Oxford STATPHYS 23 Genoa Outline A. Universal properties of entanglement entropy near quantum critical points B. Behaviour of entanglement

More information

arxiv: v1 [hep-th] 26 Sep 2017

arxiv: v1 [hep-th] 26 Sep 2017 Eigenstate entanglement in the Sachdev-Ye-Kitaev model arxiv:709.0960v [hep-th] 6 Sep 07 Yichen Huang ( 黄溢辰 ) Institute for Quantum Information and Matter, California Institute of Technology Pasadena,

More information

arxiv: v2 [quant-ph] 10 Aug 2016

arxiv: v2 [quant-ph] 10 Aug 2016 Random MERA States and the Tightness of the Brandao-Horodecki Entropy Bound M. B. Hastings 1, 2 1 Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA 2 Quantum Architectures and Computation

More information

arxiv: v1 [quant-ph] 2 Nov 2018

arxiv: v1 [quant-ph] 2 Nov 2018 Entanglement and Measurement-induced quantum correlation in Heisenberg spin models arxiv:1811.733v1 [quant-ph] 2 Nov 218 Abstract Indrajith V S, R. Muthuganesan, R. Sankaranarayanan Department of Physics,

More information

Basic Notions of Entropy and Entanglement

Basic Notions of Entropy and Entanglement Basic Notions of Entropy and Entanglement Frank Wilczek Center for Theoretical Physics, MIT, Cambridge MA 02139 USA March 3, 2014 Abstract Entropy is a nineteenth-century invention, with origins in such

More information

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS P. Caban, K. Podlaski, J. Rembieliński, K. A. Smoliński and Z. Walczak Department of Theoretical Physics, University of Lodz Pomorska 149/153,

More information

arxiv:quant-ph/ v1 9 Apr 1998

arxiv:quant-ph/ v1 9 Apr 1998 On the volume of the set of mixed entangled states Karol Życzkowski Institute for Plasma Research, University of Maryland College Park, MD 20742 USA Pawe l Horodecki Faculty of Applied Physics and Mathematics

More information

Entanglement in Many-Body Fermion Systems

Entanglement in Many-Body Fermion Systems Entanglement in Many-Body Fermion Systems Michelle Storms 1, 2 1 Department of Physics, University of California Davis, CA 95616, USA 2 Department of Physics and Astronomy, Ohio Wesleyan University, Delaware,

More information

arxiv: v2 [quant-ph] 7 Apr 2014

arxiv: v2 [quant-ph] 7 Apr 2014 Quantum Chernoff bound as a measure of efficiency of quantum cloning for mixed states arxiv:1404.0915v [quant-ph] 7 Apr 014 Iulia Ghiu Centre for Advanced Quantum Physics, Department of Physics, University

More information

Applications to simulations: Monte-Carlo

Applications to simulations: Monte-Carlo Applications to simulations: Monte-Carlo A.C. Maggs ESPCI, Paris June 2016 Summary Algorithms Faster/simpler codes Thermodynamics of Electric fields Partition function of electric field Thermal Casimir/Lifshitz

More information

Ph 219/CS 219. Exercises Due: Friday 20 October 2006

Ph 219/CS 219. Exercises Due: Friday 20 October 2006 1 Ph 219/CS 219 Exercises Due: Friday 20 October 2006 1.1 How far apart are two quantum states? Consider two quantum states described by density operators ρ and ρ in an N-dimensional Hilbert space, and

More information

arxiv:quant-ph/ v1 15 Dec 2004

arxiv:quant-ph/ v1 15 Dec 2004 Entanglement in the XX Spin Chain with Energy Current V. Eisler, and Z. Zimborás 2, Institute for Theoretical Physics, Eötvös University, 7 Budapest, Pázmány sétány /a, Hungary 2 Research Institute for

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure : Bloch sphere. Representation of the Bloch vector ψ ok = ζ 0 + ξ k on the Bloch sphere of the Hilbert sub-space spanned by the states

More information

A Holevo-type bound for a Hilbert Schmidt distance measure

A Holevo-type bound for a Hilbert Schmidt distance measure Journal of Quantum Information Science, 205, *,** Published Online **** 204 in SciRes. http://www.scirp.org/journal/**** http://dx.doi.org/0.4236/****.204.***** A Holevo-type bound for a Hilbert Schmidt

More information

AVERAGE ENTROPY OF A SUBSYSTEM

AVERAGE ENTROPY OF A SUBSYSTEM AVERAGE ENTROPY OF A SUBSYSTEM arxiv:gr-qc/9305007v2 31 Aug 1993 Don N. Page CIAR Cosmology Program Theoretical Physics Institute Department of Physics University of Alberta Edmonton, Alberta Canada T6G

More information

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium SEA 06@MIT, Workshop on Stochastic Eigen-Analysis and its Applications, MIT, Cambridge,

More information

An Entropy depending only on the Probability (or the Density Matrix)

An Entropy depending only on the Probability (or the Density Matrix) An Entropy depending only on the Probability (or the Density Matrix) December, 2016 The Entropy and Superstatistics The Entropy and Superstatistics Boltzman-Gibbs (BG) statistics works perfectly well for

More information

A Condition for Entropy Exchange Between Atom and Field

A Condition for Entropy Exchange Between Atom and Field Commun. Theor. Phys. 57 (2012) 209 213 Vol. 57, No. 2, February 15, 2012 A Condition for Entropy Exchange Between Atom and Field YAN Xue-Qun ( ) and LÜ Yu-Guang (ù ½) Institute of Physics and Department

More information

Progress in the method of Ghosts and Shadows for Beta Ensembles

Progress in the method of Ghosts and Shadows for Beta Ensembles Progress in the method of Ghosts and Shadows for Beta Ensembles Alan Edelman (MIT) Alex Dubbs (MIT) and Plamen Koev (SJS) Oct 8, 2012 1/47 Wishart Matrices (arbitrary covariance) G=mxn matrix of Gaussians

More information

Volume of the set of separable states

Volume of the set of separable states PHYSICAL REVIEW A VOLUME 58, NUMBER 2 AUGUST 998 Volume of the set of separable states Karol Życzkowski* Institute for Plasma Research, University of Maryland, College Park, Maryland 2742 Paweł Horodecki

More information

Classical Monte Carlo Simulations

Classical Monte Carlo Simulations Classical Monte Carlo Simulations Hyejin Ju April 17, 2012 1 Introduction Why do we need numerics? One of the main goals of condensed matter is to compute expectation values O = 1 Z Tr{O e βĥ} (1) and

More information

Products of Rectangular Gaussian Matrices

Products of Rectangular Gaussian Matrices Products of Rectangular Gaussian Matrices Jesper R. Ipsen Department of Physics Bielefeld University in collaboration with Gernot Akemann Mario Kieburg Summer School on Randomness in Physics & Mathematics

More information

Eigenvectors under a generic perturbation: non-perturbative results from the random matrix approach

Eigenvectors under a generic perturbation: non-perturbative results from the random matrix approach epl draft igenvectors under a generic perturbation: non-perturbative results from the random matrix approach K. Truong and A. Ossipov School of Mathematical Sciences, University of Nottingham, Nottingham

More information

Insights into Large Complex Systems via Random Matrix Theory

Insights into Large Complex Systems via Random Matrix Theory Insights into Large Complex Systems via Random Matrix Theory Lu Wei SEAS, Harvard 06/23/2016 @ UTC Institute for Advanced Systems Engineering University of Connecticut Lu Wei Random Matrix Theory and Large

More information