Maximal height of non-intersecting Brownian motions

Size: px
Start display at page:

Download "Maximal height of non-intersecting Brownian motions"

Transcription

1 Maximal height of non-intersecting Brownian motions G. Schehr Laboratoire de Physique Théorique et Modèles Statistiques CNRS-Université Paris Sud-XI, Orsay Collaborators: A. Comtet (LPTMS, Orsay) P. J. Forrester (Dept. of Math., Melbourne) S. N. Majumdar (LPTMS, Orsay) J. Rambeau (Inst. Theor. Phys., Cologne) J. Randon-Furling (Univ. Paris 1, Paris) G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

2 Maximal height of non-intersecting Brownian motions G. Schehr Laboratoire de Physique Théorique et Modèles Statistiques CNRS-Université Paris Sud-XI, Orsay References: G. S., S. N. Majumdar, A. Comtet, J. Randon-Furling, Phys. Rev. Lett. 101, (2008) J. Rambeau, G. S., Europhys. Lett. 91, (2010); Phys. Rev. E 83, (2011) P. J. Forrester, S. N. Majumdar, G. S., Nucl. Phys. B 844, 500 (2011) G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

3 Height of rooted planar tree Height of rooted plane trees H 1,n with n + 1 nodes H 1,n=3 = 3 H 1,n=3 = 2 H 1,n=3 = 2 H 1,n=3 = 1 Q : H 1,n for large n? G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

4 Height of rooted planar tree Mapping between rooted plane trees and Dyck paths n = 6 steps H 1,n H 1,n π lim = H 1 = n 2n 2 G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

5 Generalization to N non-intersecting Dyck paths H N=8,n 2n steps G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

6 Generalization to N non-intersecting Dyck paths H N=8,n 2n steps = numerical estimate for H N=8,n G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

7 Generalization to N non-intersecting Dyck paths H N,n num 2n = H N num 1.67 N G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

8 Generalization to N non-intersecting Dyck paths H N,n num 2n = H N num 1.67 N H N,n num 2n = H N num 0.82 N G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

9 Generalization to N non-intersecting Dyck paths H N,n num 2n = H N num 1.67 N H N,n num 2n = H N num 0.82 N Q : can one compute H N? G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

10 Non-intersecting Brownian motions in 1d N Brownian motions in one-dimension ẋ i (t) = ζ i (t), ζ i (t)ζ j (t ) = δ i,j δ(t t ) x 1 (0) < x 2 (0) <... < x N (0) Non-intersecting condition x i (t) x 4 (0) x 1 (t) < x 2 (t) <... < x N (t), t 0 x 3 (0) x 2 (0) x 1(0) 0 t G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

11 Non-intersecting Brownian motions in 1d N Brownian motions in one-dimension ẋ i (t) = ζ i (t), ζ i (t)ζ j (t ) = δ i,j δ(t t ) x 1 (0) < x 2 (0) <... < x N (0) Non-intersecting condition x i (t) N = 4 x 1 (t) < x 2 (t) <... < x N (t), t watermelons G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

12 Non-intersecting Brownian motions in 1d N Brownian motions in one-dimension ẋ i (t) = ζ i (t), ζ i (t)ζ j (t ) = δ i,j δ(t t ) x 1 (0) < x 2 (0) <... < x N (0) Non-intersecting condition x i (t) N = 4 x 1 (t) < x 2 (t) <... < x N (t), t t watermelons "with a wall" G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

13 Vicious walkers in physics G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

14 Vicious walkers in physics and maths P. G. de Gennes, Soluble Models for fibrous structures with steric constraints (1968) M. E. Fisher, Walks, Walls, Wetting and Melting (1984) D. J. Grabiner, Brownian motion in a Weyl chamber, non-colliding particles, and random matrices (1999) C. Krattenthaler, A. J. Guttmann, X. G. Viennot, Vicious walkers, friendly walkers and Young tableaux (2000) P. L. Ferrari, K. Johansson, N. O Connell, M. Praehofer, H. Spohn, C. Tracy, H. Widom... Stochastic growth models, directed polymers (from 2000)... G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

15 Extreme statistics of vicious walkers x i (t) Maximal height of watermelons H 4 x 1 (t) < x 2 (t) <... < x N (t) 0 1 t H N = max[x N (τ), 0 τ 1] τ H N =? G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

16 Extreme statistics of Brownian motion Brownian bridge H 1 = max[x(τ), 0 τ 1] τ π H 1 = 8 Brownian excursion H 1 = max[x(τ), 0 τ 1] τ π H 1 = 2 de Bruijn, Knuth, Rice 72 G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

17 Numerical computation of H N N. Bonichon, M. Mosbah (2003) H N = max τ [x N (τ), 0 τ 1] H N num 0.82 N H N num 1.67 N G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

18 Main results 1 Connection between watermelons and random matrices = exact asymptotic results for H N for N 1 H N N H N 2 N G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

19 Main results 2 Exact results for the full distribution of H N Cumulative distribution F N (M) F 1 ( 2 11/6 N 1/6 M 2N ) F N (M) = Proba[H N M], N F 1 is the Tracy-Widom distribution for GOE random matrices G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

20 Outline 1 Vicious walkers and random matrices 2 Connection with stochastic growth models 3 Exact computation using Feynman-Kac formula 4 Large N limit using discrete orthogonal polynomials 5 Conclusion G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

21 Outline 1 Vicious walkers and random matrices 2 Connection with stochastic growth models 3 Exact computation using Feynman-Kac formula 4 Large N limit using discrete orthogonal polynomials 5 Conclusion G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

22 Non intersecting Brownian motions and RMT x i (t) 0 τ 1 t Joint probability of x 1 (τ), x 2 (τ),, x N (τ) at fixed time τ P joint (x 1, x 2,, x N, τ) σ(τ) = 2τ(1 τ) N i<j=1 (x i x j ) 2 e 1 N σ 2 (τ) i=1 x 2 i The rescaled positions x i σ(τ) are distributed like the eigenvalues of random matrices of the Gaussian Unitary Ensemble (GUE, β = 2) G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

23 Non intersecting Brownian motions and RMT x i(t) 0 τ 1 t H H(t), N N Hermitian matrices from GUE: 1 2 (B mn (t) + i B ) mn (t), m < n, H mn (t) = B mm (t), m = n 1 2 (B nm (t) i B ) nm (t), m > n, where B m,n, B m,n independent Brownian bridges Eigenvalues of H(t) {λ 1 (t) < λ 2 (t) < < λ N (t)} d = {x 1 (t) < x 2 (t) < < x N (t)} G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

24 Non intersecting Brownian motions and RMT x i (t) 0 τ 1 t Joint probability of x 1 (τ), x 2 (τ),, x N (τ) at fixed time τ P joint (x, τ) N i=1 x 2 i 1 i<j N (xi 2 xj 2 ) 2 e x 2 σ 2 (τ) The rescaled positions x i σ(τ) are distributed like the eigenvalues of random matrices of the Bogoliubov-de Gennes type (class C) A. Atland, M. R. Zirnbauer 96 G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

25 Non intersecting Brownian motions and RMT x i(t) 0 τ 1 t C(t), 2N 2N Herm. rand. mat. of Bologoliubov-de-Gennes type ( ) H(t) S(t) C(t) = S (t) t A. Atland, M. R. Zirnbauer 96 H(t) H(t) is N N Hermitian, S(t) is N N complex symmetric, where the entries are Brownian bridges C(t) is symplectic, C(t) sp(2n), i.e.: ( t Op I C(t) J + J C(t) = 0, J = p I p O p ) G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

26 Non intersecting Brownian motions and RMT x i(t) 0 τ 1 t C(t), 2N 2N Herm. rand. mat. of Bologoliubov-de-Gennes type ( ) H(t) S(t) C(t) = S (t) t A. Atland, M. R. Zirnbauer 96 H(t) H(t) is N N Hermitian, S(t) is N N complex symmetric, where the entries are Brownian bridges Positive eigenvalues of C(t) d = positions of walkers M. Katori et al. 03 λ N > > λ 2 > λ 1 > λ 1 > λ 2 > λ N, λ i > 0 G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

27 Non intersecting Brownian motions and RMT x i (t) 0 τ 1 t Joint probability of x 1 (τ), x 2 (τ),, x N (τ) at fixed time τ P joint (x 1, x 2,, x N, τ) σ(τ) = 2τ(1 τ) N i<j=1 (x i x j ) 2 e 1 N σ 2 (τ) i=1 x 2 i The rescaled positions x i σ(τ) are distributed like the eigenvalues of random matrices of the Gaussian Unitary Ensemble (GUE, β = 2) G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

28 Non intersecting Brownian motions and RMT The rescaled positions x i σ(τ) are distributed like the eigenvalues of random matrices of Gaussian Unitary Ensemble (GUE, β = 2) Mean density ρ(λ) of eigenvalues λ 1, λ 2,, λ N for GUE ρ(λ) = 1 N N δ(λ λ α ) α=1 WIGNER SEMI CIRCLE ρ (λ) SEA TRACY WIDOM N 1/6 (2N) 1/2 0 λ (2N) 1/2 G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

29 Non intersecting Brownian motions and RMT The rescaled positions x i σ(τ) are distributed like the eigenvalues of random matrices of Gaussian Unitary Ensemble (GUE, β = 2) Largest eigenvalue of random matrices from GUE λ max = max 1 i N λ i WIGNER SEMI CIRCLE ρ (λ) TRACY WIDOM = 2 N + N χ 2 SEA N 1/6 Pr[χ 2 ξ] = F 2 (ξ) Tracy Widom distribution (2N) 1/2 0 λ (2N) 1/2 G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

30 Non intersecting Brownian motions and RMT The rescaled positions x i σ(τ) are distributed like the eigenvalues of random matrices of Gaussian Unitary Ensemble (GUE, β = 2) Largest eigenvalue of random matrices from GUE λ max = max 1 i N λ i Pr[χ 2 ξ] = F 2 (ξ) = 2 N + N χ 2 Tracy Widom distribution [ F 2 (ξ) = exp ξ ] (s ξ)q 2 (s) ds where q(s) satisfies Painlevé II q (s) = s q(s) + 2q 3 (s) q(s) Ai(s), s C. Tracy, H. Widom 94 G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

31 Watermelons in the limit of large N Consequences for watermelons without wall for large N x N (τ) 2τ(1 τ) 2N + N 1/6 2 χ 2 Proba[χ 2 ξ] = F 2 (ξ), Tracy-Widom distribution for β = 2 When N, x N (τ) reaches a deterministic elliptic shape x N (τ) 2 N τ(1 τ) 0 τ 1 G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

32 Asymptotic behavior of H N : without wall Consequences for watermelons without wall for large N x N (τ) 2τ(1 τ) 2N + N 1/6 2 χ 2 x N (τ) 2 N τ(1 τ) 0 τ 1 The maximal height is reached for τ = 1/2 H N = max[x N (τ), 0 τ 1] τ H N = x N (τ = 1 2 ) N vs. H N num 0.82 N G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

33 Asymptotic behavior of H N : with wall Consequences for watermelons without wall for large N x N (τ) 2τ(1 τ) 2 N + N 1/6 2 2/3 χ 2 Proba[χ 2 ξ] = F 2 (ξ), Tracy-Widom distribution for β = 2 The maximal height is reached for τ = 1/2 H N = max[x N (τ), 0 τ 1] τ H N = x N (τ = 1 2 ) 2N vs. H N num 1.67 N G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

34 Summary I Connection between watermelons and random matrices = exact asymptotic results for H N for N 1 H N N H N 2 N G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

35 Summary I Connection between watermelons and random matrices = exact asymptotic results for H N for N 1 H N N H N 2 N What about the fluctuations of H N? G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

36 Fluctuations of H N in the limit of large N Consequences for watermelons without wall for large N x N (τ) 2τ(1 τ) 2N + N 1/6 2 χ 2 Proba[χ 2 ξ] = F 2 (ξ), Tracy-Widom distribution for β = 2 When N, x N (τ) reaches a deterministic elliptic shape x N (τ) 2 N τ(1 τ) Fluctuations 0 τ 1 x N (τ = 1/2) N N 1 6 G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

37 Outline 1 Vicious walkers and random matrices 2 Connection with stochastic growth models 3 Exact computation using Feynman-Kac formula 4 Large N limit using discrete orthogonal polynomials 5 Conclusion G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

38 Curved growing interface : the PNG droplet Polynuclear Growth Model t = 0 t = t 1 > 0 t = t 2 > t 1 seed G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

39 Curved growing interface : the PNG droplet Polynuclear Growth Model t = 0 t = t 1 > 0 t = t 2 > t 1 seed At large time t the profile becomes droplet-like h(x, t) h(x, t) 2t 1 (x/t) 2 t +t x G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

40 Curved growing interface : the PNG droplet Polynuclear Growth Model t = 0 t = t 1 > 0 t = t 2 > t 1 seed At large time t the profile becomes droplet-like h(x, t) h(x, t) 2t 1 (x/t) 2 Fluctuations : KPZ equation t h(x, t) = ν 2 h(x, t) + λ 2 ( h(x, t))2 + ζ(x, t) ζ(x, t)ζ(x, t ) = Dδ(x x )δ(t t ) t +t x G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

41 Curved growing interface : the PNG droplet Fluctuations : focus on extreme statistics M h(x, t) t X M +t x G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

42 Curved growing interface : the PNG droplet Fluctuations : focus on extreme statistics M h(x, t) KPZ scaling M 2t t 1/3 X M t 2/3 t X M +t x G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

43 Curved growing interface : the PNG droplet Fluctuations : focus on extreme statistics M h(x, t) KPZ scaling M 2t t 1/3 X M t 2/3 t X M +t x What is the joint distribution of M, X M? G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

44 Connection with the Directed Polymer (DPRM) DP in random media with one free end ( point to line ) E(C) = i,j C ɛ ij t X M x M Energy of the optimal polymer X M Transverse coordinate of the optimal polymer G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

45 Vicious walkers and PNG droplet watermelons PNG droplet x N (τ) 2 N τ(1 τ) h(x, t) h(x, t) 2t 1 (x/t) 2 0 τ 1 t +t x x N h τ x N t G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

46 Vicious walkers and PNG droplet watermelons PNG droplet x N (τ) 2 N τ(1 τ) h(x, t) h(x, t) 2t 1 (x/t) 2 0 τ 1 t +t x h(ut 2 3, t) 2t t 1 3 d = [ 2 x N ( u 2 N 1 3 ) ] N N 1 6 d = A 2 (u) u 2 Prähofer & Spohn 00 A 2 (u) Airy 2 process G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

47 Vicious walkers and PNG droplet Use this correspondence to study extreme statistics of PNG M x i (τ) N = 4 M h(x, t) 0 τ M τ 1 HERE: exact computation of the distribution P N (M) t X M +t x P N (M) in the N limit G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

48 Outline 1 Vicious walkers and random matrices 2 Connection with stochastic growth models 3 Exact computation using Feynman-Kac formula 4 Large N limit using discrete orthogonal polynomials 5 Conclusion G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

49 Transition probability x i (t) u 4 v 4 P N (v 1, v 2,, v N, t 2 u 1, u 2,, u N, t 1 ) =? u 3 u 2 u 1 t 1 t 2 v 3 v 2 v 1 The case N = 2: a reflection principle Karlin-Mc Gregor (1959), Lindström (1973), Gessel-Viennot (1985) t P 2 (v 1, v 2, t 2 u 1, u 2, t 1 ) = P 1 (v 1, t 2 u 1, t 1 )P 1 (v 2, t 2 u 2, t 1 ) P 1 (v 2, t 2 u 1, t 1 )P 1 (v 1, t 2 u 2, t 1 ) = P 2 (v 1, v 2, t 2 u 1, u 2, t 1 ) P 2 (v 2, v 1, t 2 u 1, u 2, t 1 ) where P 2 (..) transition probability for two free particles (allowed to cross each other) G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

50 Watermelons configurations : regularization procedure Brownian motion has an infinite density of zero-crossings H 4 x i (t) Such configurations are ill-defined for Brownian motion : x i (0) = x i+1 (0) 0 1 t AND x i (t = 0 + ) < x i+1 (t = 0 + ) G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

51 Watermelons configurations : regularization procedure Brownian motion has an infinite density of zero-crossings H 4 x i (t) Such configurations are ill-defined for Brownian motion : x i (0) = x i+1 (0) 0 1 t AND x i (t = 0 + ) < x i+1 (t = 0 + ) A need for regularization : introduce cut-offs ɛ i s ǫ 4 ǫ 3 ǫ 2 ǫ 4 ǫ 3 ǫ 2 Only at the end take the limit ɛ i 0 ǫ 1 ǫ G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

52 Distribution of the maximal height : without wall Cumulative distribution of the maximal height M F N (M) = Pr [x N (τ) M, 0 τ 1] ǫ 4 ǫ 3 ǫ 4 ǫ 3 ǫ 2 ǫ 2 ǫ 1 ǫ Path integral (Feynman-Kac formula) for free fermions 2) F N (M) = 2 (N N 1 j=0 j! det [( 1) i 1 H i+j 2 (0) H i+j 2 ( 2M)e 2M2] 1 i,j N where H n (M) Hermite Polynomials see also T. Feierl 08 G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

53 Distribution of the maximal height : without wall 2) F N (M) = 2 (N N 1 j=0 j! det [( 1) i 1 H i+j 2 (0) H i+j 2 ( 2M)e 2M2] 1 i,j N Shape and asymptotic behavior without wall N=2 without wall N=3 F N (M) M N2 +N, M 0 1 F N (M) e 2M2, M F N (M) M G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

54 Exact value of the H N H 1 = H 2 = H 3 = H 4 =... π 2 4 π ( 1 + ) 2 4 π 96 π ( ) 6 ( ) 6 G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

55 Comparison with numerics by Bonichon & Mosbah Numerical estimate by Bonichon & Mosbah H N 2 num 0.82N <H N > N Exact behavior at large N H N 2 N G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

56 Distribution of the maximal height : with a wall Cumulative distribution of the maximal height G. S., S. N. Majumdar, A. Comtet, J. Randon-Furling 08 F N (M) = A N = A N M 2N2 +N + N n 1,,n N =0 i=1 π 2N2 +N n 2 i 1 j<k N (n 2 j n 2 k) 2 e π2 2M 2 N i=1 n2 i 2 N2 N/2 N 1 j=0 Γ(2 + j)γ( cf Selberg integral j) see also T. Feierl 08 and 12, N. Kobayashi et al. 08 G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

57 Distribution of the maximal height : with a wall Cumulative distribution of the maximal height G. S., S. N. Majumdar, A. Comtet, J. Randon-Furling 08 F N (M) = A N = A N M 2N2 +N + N n 1,,n N =0 i=1 π 2N2 +N n 2 i 1 j<k N (n 2 j n 2 k) 2 e π2 2M 2 N i=1 n2 i 2 N2 N/2 N 1 j=0 Γ(2 + j)γ( cf Selberg integral j) see also T. Feierl 08 and 12, N. Kobayashi et al. 08 Shape and asymptotic behavior with wall N=2 with wall N=3 F N (M) α N π 2 M 2N2 +N e 1 F N (M) e 2M2, M 12M 2 N(N+1)(2N+1), M 0 F N (M) G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44 M

58 Distribution of the maximal height : with a wall Cumulative distribution of the maximal height G. S., S. N. Majumdar, A. Comtet, J. Randon-Furling 08 F N (M) = A N = A N M 2N2 +N + N n 1,,n N =0 i=1 π 2N2 +N n 2 i 1 j<k N (n 2 j n 2 k) 2 e π2 2M 2 N i=1 n2 i 2 N2 N/2 N 1 j=0 Γ(2 + j)γ( cf Selberg integral j) see also T. Feierl 08 and 12, N. Kobayashi et al. 08 What about the asymptotic behavior of F N (M) for N? G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

59 Outline 1 Vicious walkers and random matrices 2 Connection with stochastic growth models 3 Exact computation using Feynman-Kac formula 4 Large N limit using discrete orthogonal polynomials 5 Conclusion G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

60 Discrete orthogonal polynomials Large N analysis of F N (M) = A N M 2N2 +N + N n 1,,n N =0 i=1 n 2 i 1 j<k N (n 2 j n 2 k )2 e π2 2M 2 N i=1 n2 i Discrete orthogonal polynomials n= p k (n)p k (n)e π2 2M 2 n2 = δ k,k h k, p k (n) = n k + Useful expression for asymptotic anaysis F N (M) = B N M 2N2 +N N k=1 h 2k 1 G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

61 Large N limit for F N (M) For large N, in the "double-scaling limit" P. J. Forrester, S. N. Majumdar, G. S. 11 i.e. d 2 ( dt 2 log F N 2N(1 + t/(2 7/3 N ))) 2/3 = 1 ( ) q 2 (t) q (t) 2 q (t) = 2q 3 (t) + tq(t), q(t) Ai(t), t F N (M) F 1 ( 2 11/6 p 1/6 M 2N ) F 1 (t) = exp ( 1 ( (s t) q 2 (s) q(s) ) ) ds 2 t Tracy-Widom distribution for GOE G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

62 Large N limit for F N (M) F N (M) F 1 ( 2 11/6 p 1/6 M 2N ) F 1 (t) = exp ( 1 ( (s t) q 2 (s) q(s) ) ) ds 2 t Tracy-Widom distribution for GOE F N (M) TW right tail left tail 2 N M G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

63 Outline 1 Vicious walkers and random matrices 2 Connection with stochastic growth models 3 Exact computation using Feynman-Kac formula 4 Large N limit using discrete orthogonal polynomials 5 Conclusion G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

64 Conclusion Exact results for H N for large N Exact result for distribution of the maximal height H N using path integral techniques Connections with stochastic growth models for large N Large N limit F N (M) F 1 ( 2 11/6 N 1/6 M 2N ), N see also Liechty 11 for a recent rigorous proof G. Schehr (LPTMS Orsay) Max. height of vicious walkers Marseille, Aléa / 44

Vicious Walkers, Random Matrices and 2-d Yang-Mills theory

Vicious Walkers, Random Matrices and 2-d Yang-Mills theory Vicious Walkers, Random Matrices and 2-d Yang-Mills theory Laboratoire de Physique Théorique et Modèles Statistiques,CNRS, Université Paris-Sud, France Collaborators: A. Comtet (LPTMS, Orsay) P. J. Forrester

More information

Large deviations of the top eigenvalue of random matrices and applications in statistical physics

Large deviations of the top eigenvalue of random matrices and applications in statistical physics Large deviations of the top eigenvalue of random matrices and applications in statistical physics Grégory Schehr LPTMS, CNRS-Université Paris-Sud XI Journées de Physique Statistique Paris, January 29-30,

More information

Near extreme eigenvalues and the first gap of Hermitian random matrices

Near extreme eigenvalues and the first gap of Hermitian random matrices Near extreme eigenvalues and the first gap of Hermitian random matrices Grégory Schehr LPTMS, CNRS-Université Paris-Sud XI Sydney Random Matrix Theory Workshop 13-16 January 2014 Anthony Perret, G. S.,

More information

arxiv: v1 [cond-mat.stat-mech] 16 Oct 2012

arxiv: v1 [cond-mat.stat-mech] 16 Oct 2012 Noname manuscript No. will be inserted by the editor) arxiv:110.4438v1 [cond-mat.stat-mech] 16 Oct 01 Grégory Schehr Satya N. Majumdar Alain Comtet Peter J. Forrester Reunion probability of N vicious walkers:

More information

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium SEA 06@MIT, Workshop on Stochastic Eigen-Analysis and its Applications, MIT, Cambridge,

More information

Real roots of random polynomials and zero crossing properties of diffusion equation

Real roots of random polynomials and zero crossing properties of diffusion equation Real roots of random polynomials and zero crossing properties of diffusion equation Grégory Schehr Laboratoire de Physique Théorique et Modèles Statistiques Orsay, Université Paris XI G. S., S. N. Majumdar,

More information

Painlevé Representations for Distribution Functions for Next-Largest, Next-Next-Largest, etc., Eigenvalues of GOE, GUE and GSE

Painlevé Representations for Distribution Functions for Next-Largest, Next-Next-Largest, etc., Eigenvalues of GOE, GUE and GSE Painlevé Representations for Distribution Functions for Next-Largest, Next-Next-Largest, etc., Eigenvalues of GOE, GUE and GSE Craig A. Tracy UC Davis RHPIA 2005 SISSA, Trieste 1 Figure 1: Paul Painlevé,

More information

A determinantal formula for the GOE Tracy-Widom distribution

A determinantal formula for the GOE Tracy-Widom distribution A determinantal formula for the GOE Tracy-Widom distribution Patrik L. Ferrari and Herbert Spohn Technische Universität München Zentrum Mathematik and Physik Department e-mails: ferrari@ma.tum.de, spohn@ma.tum.de

More information

JINHO BAIK Department of Mathematics University of Michigan Ann Arbor, MI USA

JINHO BAIK Department of Mathematics University of Michigan Ann Arbor, MI USA LIMITING DISTRIBUTION OF LAST PASSAGE PERCOLATION MODELS JINHO BAIK Department of Mathematics University of Michigan Ann Arbor, MI 48109 USA E-mail: baik@umich.edu We survey some results and applications

More information

KPZ growth equation and directed polymers universality and integrability

KPZ growth equation and directed polymers universality and integrability KPZ growth equation and directed polymers universality and integrability P. Le Doussal (LPTENS) with : Pasquale Calabrese (Univ. Pise, SISSA) Alberto Rosso (LPTMS Orsay) Thomas Gueudre (LPTENS,Torino)

More information

Beyond the Gaussian universality class

Beyond the Gaussian universality class Beyond the Gaussian universality class MSRI/Evans Talk Ivan Corwin (Courant Institute, NYU) September 13, 2010 Outline Part 1: Random growth models Random deposition, ballistic deposition, corner growth

More information

Airy and Pearcey Processes

Airy and Pearcey Processes Airy and Pearcey Processes Craig A. Tracy UC Davis Probability, Geometry and Integrable Systems MSRI December 2005 1 Probability Space: (Ω, Pr, F): Random Matrix Models Gaussian Orthogonal Ensemble (GOE,

More information

Distinct sites, common sites and maximal displacement of N random walkers

Distinct sites, common sites and maximal displacement of N random walkers Distinct sites, common sites and maximal displacement of N random walkers Anupam Kundu GGI workshop Florence Joint work with Satya N. Majumdar, LPTMS Gregory Schehr, LPTMS Outline 1. N independent walkers

More information

TOP EIGENVALUE OF CAUCHY RANDOM MATRICES

TOP EIGENVALUE OF CAUCHY RANDOM MATRICES TOP EIGENVALUE OF CAUCHY RANDOM MATRICES with Satya N. Majumdar, Gregory Schehr and Dario Villamaina Pierpaolo Vivo (LPTMS - CNRS - Paris XI) Gaussian Ensembles N = 5 Semicircle Law LARGEST EIGENVALUE

More information

Markov operators, classical orthogonal polynomial ensembles, and random matrices

Markov operators, classical orthogonal polynomial ensembles, and random matrices Markov operators, classical orthogonal polynomial ensembles, and random matrices M. Ledoux, Institut de Mathématiques de Toulouse, France 5ecm Amsterdam, July 2008 recent study of random matrix and random

More information

Memory in Kardar-Parisi-Zhang growth:! exact results via the replica Bethe ansatz, and experiments

Memory in Kardar-Parisi-Zhang growth:! exact results via the replica Bethe ansatz, and experiments Memory in Kardar-Parisi-Zhang growth:! exact results via the replica Bethe ansatz, and experiments P. Le Doussal (LPTENS) - growth in plane, local stoch. rules => 1D KPZ class (integrability) - discrete

More information

Differential Equations for Dyson Processes

Differential Equations for Dyson Processes Differential Equations for Dyson Processes Joint work with Harold Widom I. Overview We call Dyson process any invariant process on ensembles of matrices in which the entries undergo diffusion. Dyson Brownian

More information

Top eigenvalue of a random matrix: Large deviations

Top eigenvalue of a random matrix: Large deviations Top eigenvalue of a random matrix: Large deviations Satya N. Majumdar Laboratoire de Physique Théorique et Modèles Statistiques,CNRS, Université Paris-Sud, France First Appearence of Random Matrices Covariance

More information

Exact results from the replica Bethe ansatz from KPZ growth and random directed polymers

Exact results from the replica Bethe ansatz from KPZ growth and random directed polymers Exact results from the replica Bethe ansatz from KPZ growth and random directed polymers P. Le Doussal (LPTENS) with : Pasquale Calabrese (Univ. Pise, SISSA) Alberto Rosso (LPTMS Orsay) Thomas Gueudre

More information

The one-dimensional KPZ equation and its universality

The one-dimensional KPZ equation and its universality The one-dimensional KPZ equation and its universality T. Sasamoto Based on collaborations with A. Borodin, I. Corwin, P. Ferrari, T. Imamura, H. Spohn 28 Jul 2014 @ SPA Buenos Aires 1 Plan of the talk

More information

Maximal distance travelled by N vicious walkers till their survival arxiv: v1 [cond-mat.stat-mech] 17 Feb 2014

Maximal distance travelled by N vicious walkers till their survival arxiv: v1 [cond-mat.stat-mech] 17 Feb 2014 Noname manuscript No. will be inserted by the editor Anupam Kundu Satya N. Majumdar Grégory Schehr Maximal distance travelled by N vicious walkers till their survival arxiv:4.3964v [cond-mat.stat-mech]

More information

Geometric Dyson Brownian motion and May Wigner stability

Geometric Dyson Brownian motion and May Wigner stability Geometric Dyson Brownian motion and May Wigner stability Jesper R. Ipsen University of Melbourne Summer school: Randomness in Physics and Mathematics 2 Bielefeld 2016 joint work with Henning Schomerus

More information

Domino tilings, non-intersecting Random Motions and Critical Processes

Domino tilings, non-intersecting Random Motions and Critical Processes Domino tilings, non-intersecting Random Motions and Critical Processes Pierre van Moerbeke Université de Louvain, Belgium & Brandeis University, Massachusetts Institute of Physics, University of Edinburgh

More information

arxiv: v1 [cond-mat.stat-mech] 18 Aug 2008

arxiv: v1 [cond-mat.stat-mech] 18 Aug 2008 Deformations of the Tracy-Widom distribution arxiv:0808.2434v1 [cond-mat.stat-mech] 18 Aug 2008 O. Bohigas 1, J. X. de Carvalho 2,3 and M. P. Pato 1,2 1 CNRS, Université Paris-Sud, UMR8626, LPTMS, Orsay

More information

Random matrices and determinantal processes

Random matrices and determinantal processes Random matrices and determinantal processes Patrik L. Ferrari Zentrum Mathematik Technische Universität München D-85747 Garching 1 Introduction The aim of this work is to explain some connections between

More information

RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS

RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS David García-García May 13, 2016 Faculdade de Ciências da Universidade de Lisboa OVERVIEW Random Matrix Theory Introduction Matrix ensembles A sample computation:

More information

Exploring Geometry Dependence of Kardar-Parisi-Zhang Interfaces

Exploring Geometry Dependence of Kardar-Parisi-Zhang Interfaces * This is a simplified ppt intended for public opening Exploring Geometry Dependence of Kardar-Parisi-Zhang Interfaces Kazumasa A. Takeuchi (Tokyo Tech) Joint work with Yohsuke T. Fukai (Univ. Tokyo &

More information

Appearance of determinants for stochastic growth models

Appearance of determinants for stochastic growth models Appearance of determinants for stochastic growth models T. Sasamoto 19 Jun 2015 @GGI 1 0. Free fermion and non free fermion models From discussions yesterday after the talk by Sanjay Ramassamy Non free

More information

NONCOLLIDING BROWNIAN MOTIONS AND HARISH-CHANDRA FORMULA

NONCOLLIDING BROWNIAN MOTIONS AND HARISH-CHANDRA FORMULA Elect. Comm. in Probab. 8 (003) ELECTRONIC COMMUNICATIONS in PROBABILITY NONCOLLIDING BROWNIAN MOTIONS AND HARISH-CHANDRA FORMULA MAKOTO KATORI Department of Physics, Faculty of Science and Engineering,

More information

arxiv: v2 [cond-mat.stat-mech] 12 Jun 2009

arxiv: v2 [cond-mat.stat-mech] 12 Jun 2009 onintersecting Brownian Interfaces and Wishart Random Matrices Céline adal and Satya. Majumdar Laboratoire de Physique Théorique et Modèles Statistiques UMR 866 du CRS, Université Paris-Sud, Bâtiment 945

More information

Grégory Schehr. Citizenship : French Date of birth : March 29, Senior Researcher (DR2) at CNRS in Theoretical Physics.

Grégory Schehr. Citizenship : French Date of birth : March 29, Senior Researcher (DR2) at CNRS in Theoretical Physics. Curriculum Vitae Grégory Schehr Citizenship : French Date of birth : March 29, 1977 Current position Senior Researcher (DR2) at CNRS in Theoretical Physics. Professional address Laboratoire de Physique

More information

arxiv: v4 [cond-mat.stat-mech] 28 May 2015

arxiv: v4 [cond-mat.stat-mech] 28 May 2015 arxiv:1311.0580v4 [cond-mat.stat-mech] 28 May 2015 Top eigenvalue of a random matrix: large deviations and third order phase transition Satya N. Majumdar Université Paris-Sud, LPTMS, CNRS (UMR 8626), 91405

More information

Determinantal point processes and random matrix theory in a nutshell

Determinantal point processes and random matrix theory in a nutshell Determinantal point processes and random matrix theory in a nutshell part II Manuela Girotti based on M. Girotti s PhD thesis, A. Kuijlaars notes from Les Houches Winter School 202 and B. Eynard s notes

More information

Exponential tail inequalities for eigenvalues of random matrices

Exponential tail inequalities for eigenvalues of random matrices Exponential tail inequalities for eigenvalues of random matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify

More information

Triangular matrices and biorthogonal ensembles

Triangular matrices and biorthogonal ensembles /26 Triangular matrices and biorthogonal ensembles Dimitris Cheliotis Department of Mathematics University of Athens UK Easter Probability Meeting April 8, 206 2/26 Special densities on R n Example. n

More information

Stochastic Differential Equations Related to Soft-Edge Scaling Limit

Stochastic Differential Equations Related to Soft-Edge Scaling Limit Stochastic Differential Equations Related to Soft-Edge Scaling Limit Hideki Tanemura Chiba univ. (Japan) joint work with Hirofumi Osada (Kyushu Unv.) 2012 March 29 Hideki Tanemura (Chiba univ.) () SDEs

More information

Strong Markov property of determinantal processes associated with extended kernels

Strong Markov property of determinantal processes associated with extended kernels Strong Markov property of determinantal processes associated with extended kernels Hideki Tanemura Chiba university (Chiba, Japan) (November 22, 2013) Hideki Tanemura (Chiba univ.) () Markov process (November

More information

Bulk scaling limits, open questions

Bulk scaling limits, open questions Bulk scaling limits, open questions Based on: Continuum limits of random matrices and the Brownian carousel B. Valkó, B. Virág. Inventiones (2009). Eigenvalue statistics for CMV matrices: from Poisson

More information

Integrable Probability. Alexei Borodin

Integrable Probability. Alexei Borodin Integrable Probability Alexei Borodin What is integrable probability? Imagine you are building a tower out of standard square blocks that fall down at random time moments. How tall will it be after a large

More information

Combinatorial Interpretation of the Scalar Products of State Vectors of Integrable Models

Combinatorial Interpretation of the Scalar Products of State Vectors of Integrable Models Combinatorial Interpretation of the Scalar Products of State Vectors of Integrable Models arxiv:40.0449v [math-ph] 3 Feb 04 N. M. Bogoliubov, C. Malyshev St.-Petersburg Department of V. A. Steklov Mathematical

More information

Numerical Methods for Random Matrices

Numerical Methods for Random Matrices Numerical Methods for Random Matrices MIT 18.95 IAP Lecture Series Per-Olof Persson (persson@mit.edu) January 23, 26 1.9.8.7 Random Matrix Eigenvalue Distribution.7.6.5 β=1 β=2 β=4 Probability.6.5.4.4

More information

Height fluctuations for the stationary KPZ equation

Height fluctuations for the stationary KPZ equation Firenze, June 22-26, 2015 Height fluctuations for the stationary KPZ equation P.L. Ferrari with A. Borodin, I. Corwin and B. Vető arxiv:1407.6977; To appear in MPAG http://wt.iam.uni-bonn.de/ ferrari Introduction

More information

The height of watermelons with wall - Extended Abstract

The height of watermelons with wall - Extended Abstract The height of watermelons with wall - Extended Abstract Thomas Feierl To cite this version: Thomas Feierl. The height of watermelons with wall - Extended Abstract. Jacquet, Philippe. 2007 Conference on

More information

Fluctuation results in some positive temperature directed polymer models

Fluctuation results in some positive temperature directed polymer models Singapore, May 4-8th 2015 Fluctuation results in some positive temperature directed polymer models Patrik L. Ferrari jointly with A. Borodin, I. Corwin, and B. Vető arxiv:1204.1024 & arxiv:1407.6977 http://wt.iam.uni-bonn.de/

More information

Fluctuations of interacting particle systems

Fluctuations of interacting particle systems Stat Phys Page 1 Fluctuations of interacting particle systems Ivan Corwin (Columbia University) Stat Phys Page 2 Interacting particle systems & ASEP In one dimension these model mass transport, traffic,

More information

Fredholm determinant with the confluent hypergeometric kernel

Fredholm determinant with the confluent hypergeometric kernel Fredholm determinant with the confluent hypergeometric kernel J. Vasylevska joint work with I. Krasovsky Brunel University Dec 19, 2008 Problem Statement Let K s be the integral operator acting on L 2

More information

Fourier-like bases and Integrable Probability. Alexei Borodin

Fourier-like bases and Integrable Probability. Alexei Borodin Fourier-like bases and Integrable Probability Alexei Borodin Over the last two decades, a number of exactly solvable, integrable probabilistic systems have been analyzed (random matrices, random interface

More information

Some problems in the statistical mechanics of polymers

Some problems in the statistical mechanics of polymers Some problems in the statistical mechanics of polymers Universität Bielefeld Bielefeld, Germany Eindhoven, June 21, 2007 Motivation viewpoint: combinatorics and asymptotic enumeration compute limit laws

More information

Universality for random matrices and log-gases

Universality for random matrices and log-gases Universality for random matrices and log-gases László Erdős IST, Austria Ludwig-Maximilians-Universität, Munich, Germany Encounters Between Discrete and Continuous Mathematics Eötvös Loránd University,

More information

Universal phenomena in random systems

Universal phenomena in random systems Tuesday talk 1 Page 1 Universal phenomena in random systems Ivan Corwin (Clay Mathematics Institute, Columbia University, Institute Henri Poincare) Tuesday talk 1 Page 2 Integrable probabilistic systems

More information

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW Serials Publications www.serialspublications.com OMPLEX HERMITE POLYOMIALS: FROM THE SEMI-IRULAR LAW TO THE IRULAR LAW MIHEL LEDOUX Abstract. We study asymptotics of orthogonal polynomial measures of the

More information

arxiv: v1 [cond-mat.mes-hall] 23 Jun 2009

arxiv: v1 [cond-mat.mes-hall] 23 Jun 2009 EPJ manuscript No. (will be inserted by the editor) Conductance distribution in two-dimensional localized systems with and without magnetic fields J. Prior 1,2, A. M. Somoza 3 and M. Ortuño 3 arxiv:0906.4188v1

More information

arxiv: v1 [math-ph] 19 Oct 2018

arxiv: v1 [math-ph] 19 Oct 2018 COMMENT ON FINITE SIZE EFFECTS IN THE AVERAGED EIGENVALUE DENSITY OF WIGNER RANDOM-SIGN REAL SYMMETRIC MATRICES BY G.S. DHESI AND M. AUSLOOS PETER J. FORRESTER AND ALLAN K. TRINH arxiv:1810.08703v1 [math-ph]

More information

Concentration Inequalities for Random Matrices

Concentration Inequalities for Random Matrices Concentration Inequalities for Random Matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify the asymptotic

More information

The Tracy-Widom distribution is not infinitely divisible.

The Tracy-Widom distribution is not infinitely divisible. The Tracy-Widom distribution is not infinitely divisible. arxiv:1601.02898v1 [math.pr] 12 Jan 2016 J. Armando Domínguez-Molina Facultad de Ciencias Físico-Matemáticas Universidad Autónoma de Sinaloa, México

More information

Integrable probability: Beyond the Gaussian universality class

Integrable probability: Beyond the Gaussian universality class SPA Page 1 Integrable probability: Beyond the Gaussian universality class Ivan Corwin (Columbia University, Clay Mathematics Institute, Institute Henri Poincare) SPA Page 2 Integrable probability An integrable

More information

Directed random polymers and Macdonald processes. Alexei Borodin and Ivan Corwin

Directed random polymers and Macdonald processes. Alexei Borodin and Ivan Corwin Directed random polymers and Macdonald processes Alexei Borodin and Ivan Corwin Partition function for a semi-discrete directed random polymer are independent Brownian motions [O'Connell-Yor 2001] satisfies

More information

The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap

The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap Institute of Fundamental Sciences Massey University New Zealand 29 August 2017 A. A. Kapaev Memorial Workshop Michigan

More information

From longest increasing subsequences to Whittaker functions and random polymers

From longest increasing subsequences to Whittaker functions and random polymers From longest increasing subsequences to Whittaker functions and random polymers Neil O Connell University of Warwick British Mathematical Colloquium, April 2, 2015 Collaborators: I. Corwin, T. Seppäläinen,

More information

Fluctuations of random tilings and discrete Beta-ensembles

Fluctuations of random tilings and discrete Beta-ensembles Fluctuations of random tilings and discrete Beta-ensembles Alice Guionnet CRS (E S Lyon) Workshop in geometric functional analysis, MSRI, nov. 13 2017 Joint work with A. Borodin, G. Borot, V. Gorin, J.Huang

More information

Grégory Schehr. Citizenship : French Date of birth : March 29, First class Junior Scientist (CR1) at CNRS in Theoretical Physics.

Grégory Schehr. Citizenship : French Date of birth : March 29, First class Junior Scientist (CR1) at CNRS in Theoretical Physics. Curriculum Vitae Grégory Schehr Citizenship : French Date of birth : March 29, 1977 Current position First class Junior Scientist (CR1) at CNRS in Theoretical Physics. Professional address Laboratoire

More information

Sum of matrix entries of representations of the symmetric group and its asymptotics

Sum of matrix entries of representations of the symmetric group and its asymptotics Sum of matrix entries of representations of the symmetric group and its asymptotics Dario De Stavola 7 September 2015 Advisor: Valentin Féray Affiliation: University of Zürich Preliminaries Partitions

More information

MATRIX KERNELS FOR THE GAUSSIAN ORTHOGONAL AND SYMPLECTIC ENSEMBLES

MATRIX KERNELS FOR THE GAUSSIAN ORTHOGONAL AND SYMPLECTIC ENSEMBLES Ann. Inst. Fourier, Grenoble 55, 6 (5), 197 7 MATRIX KERNELS FOR THE GAUSSIAN ORTHOGONAL AND SYMPLECTIC ENSEMBLES b Craig A. TRACY & Harold WIDOM I. Introduction. For a large class of finite N determinantal

More information

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices László Erdős University of Munich Oberwolfach, 2008 Dec Joint work with H.T. Yau (Harvard), B. Schlein (Cambrigde) Goal:

More information

The KPZ line ensemble: a marriage of integrability and probability

The KPZ line ensemble: a marriage of integrability and probability The KPZ line ensemble: a marriage of integrability and probability Ivan Corwin Clay Mathematics Institute, Columbia University, MIT Joint work with Alan Hammond [arxiv:1312.2600 math.pr] Introduction to

More information

A Remark on Hypercontractivity and Tail Inequalities for the Largest Eigenvalues of Random Matrices

A Remark on Hypercontractivity and Tail Inequalities for the Largest Eigenvalues of Random Matrices A Remark on Hypercontractivity and Tail Inequalities for the Largest Eigenvalues of Random Matrices Michel Ledoux Institut de Mathématiques, Université Paul Sabatier, 31062 Toulouse, France E-mail: ledoux@math.ups-tlse.fr

More information

SEA s workshop- MIT - July 10-14

SEA s workshop- MIT - July 10-14 Matrix-valued Stochastic Processes- Eigenvalues Processes and Free Probability SEA s workshop- MIT - July 10-14 July 13, 2006 Outline Matrix-valued stochastic processes. 1- definition and examples. 2-

More information

Strong Markov property of determinatal processes

Strong Markov property of determinatal processes Strong Markov property of determinatal processes Hideki Tanemura Chiba university (Chiba, Japan) (August 2, 2013) Hideki Tanemura (Chiba univ.) () Markov process (August 2, 2013) 1 / 27 Introduction The

More information

Geometric RSK, Whittaker functions and random polymers

Geometric RSK, Whittaker functions and random polymers Geometric RSK, Whittaker functions and random polymers Neil O Connell University of Warwick Advances in Probability: Integrability, Universality and Beyond Oxford, September 29, 2014 Collaborators: I.

More information

Free Probability and Random Matrices: from isomorphisms to universality

Free Probability and Random Matrices: from isomorphisms to universality Free Probability and Random Matrices: from isomorphisms to universality Alice Guionnet MIT TexAMP, November 21, 2014 Joint works with F. Bekerman, Y. Dabrowski, A.Figalli, E. Maurel-Segala, J. Novak, D.

More information

Fluctuations of random tilings and discrete Beta-ensembles

Fluctuations of random tilings and discrete Beta-ensembles Fluctuations of random tilings and discrete Beta-ensembles Alice Guionnet CRS (E S Lyon) Advances in Mathematics and Theoretical Physics, Roma, 2017 Joint work with A. Borodin, G. Borot, V. Gorin, J.Huang

More information

Combinatorics of non-associative binary operations

Combinatorics of non-associative binary operations Combinatorics of non-associative binary operations Jia Huang University of Nebraska at Kearney E-mail address: huangj2@unk.edu December 26, 2017 This is joint work with Nickolas Hein (Benedictine College),

More information

Universality of local spectral statistics of random matrices

Universality of local spectral statistics of random matrices Universality of local spectral statistics of random matrices László Erdős Ludwig-Maximilians-Universität, Munich, Germany CRM, Montreal, Mar 19, 2012 Joint with P. Bourgade, B. Schlein, H.T. Yau, and J.

More information

Random Matrix: From Wigner to Quantum Chaos

Random Matrix: From Wigner to Quantum Chaos Random Matrix: From Wigner to Quantum Chaos Horng-Tzer Yau Harvard University Joint work with P. Bourgade, L. Erdős, B. Schlein and J. Yin 1 Perhaps I am now too courageous when I try to guess the distribution

More information

Modification of the Porter-Thomas distribution by rank-one interaction. Eugene Bogomolny

Modification of the Porter-Thomas distribution by rank-one interaction. Eugene Bogomolny Modification of the Porter-Thomas distribution by rank-one interaction Eugene Bogomolny University Paris-Sud, CNRS Laboratoire de Physique Théorique et Modèles Statistiques, Orsay France XII Brunel-Bielefeld

More information

Second Order Freeness and Random Orthogonal Matrices

Second Order Freeness and Random Orthogonal Matrices Second Order Freeness and Random Orthogonal Matrices Jamie Mingo (Queen s University) (joint work with Mihai Popa and Emily Redelmeier) AMS San Diego Meeting, January 11, 2013 1 / 15 Random Matrices X

More information

A new type of PT-symmetric random matrix ensembles

A new type of PT-symmetric random matrix ensembles A new type of PT-symmetric random matrix ensembles Eva-Maria Graefe Department of Mathematics, Imperial College London, UK joint work with Steve Mudute-Ndumbe and Matthew Taylor Department of Mathematics,

More information

arxiv:hep-th/ v1 14 Oct 1992

arxiv:hep-th/ v1 14 Oct 1992 ITD 92/93 11 Level-Spacing Distributions and the Airy Kernel Craig A. Tracy Department of Mathematics and Institute of Theoretical Dynamics, University of California, Davis, CA 95616, USA arxiv:hep-th/9210074v1

More information

Two-periodic Aztec diamond

Two-periodic Aztec diamond Two-periodic Aztec diamond Arno Kuijlaars (KU Leuven) joint work with Maurice Duits (KTH Stockholm) Optimal and Random Point Configurations ICERM, Providence, RI, U.S.A., 27 February 2018 Outline 1. Aztec

More information

Universal Fluctuation Formulae for one-cut β-ensembles

Universal Fluctuation Formulae for one-cut β-ensembles Universal Fluctuation Formulae for one-cut β-ensembles with a combinatorial touch Pierpaolo Vivo with F. D. Cunden Phys. Rev. Lett. 113, 070202 (2014) with F.D. Cunden and F. Mezzadri J. Phys. A 48, 315204

More information

Comparison Method in Random Matrix Theory

Comparison Method in Random Matrix Theory Comparison Method in Random Matrix Theory Jun Yin UW-Madison Valparaíso, Chile, July - 2015 Joint work with A. Knowles. 1 Some random matrices Wigner Matrix: H is N N square matrix, H : H ij = H ji, EH

More information

Rectangular Young tableaux and the Jacobi ensemble

Rectangular Young tableaux and the Jacobi ensemble Rectangular Young tableaux and the Jacobi ensemble Philippe Marchal October 20, 2015 Abstract It has been shown by Pittel and Romik that the random surface associated with a large rectangular Young tableau

More information

ON THE CONVERGENCE OF THE NEAREST NEIGHBOUR EIGENVALUE SPACING DISTRIBUTION FOR ORTHOGONAL AND SYMPLECTIC ENSEMBLES

ON THE CONVERGENCE OF THE NEAREST NEIGHBOUR EIGENVALUE SPACING DISTRIBUTION FOR ORTHOGONAL AND SYMPLECTIC ENSEMBLES O THE COVERGECE OF THE EAREST EIGHBOUR EIGEVALUE SPACIG DISTRIBUTIO FOR ORTHOGOAL AD SYMPLECTIC ESEMBLES Dissertation zur Erlangung des Doktorgrades der aturwissenschaften an der Fakultät für Mathematik

More information

Interacting particle systems out of equilibrium

Interacting particle systems out of equilibrium Interacting particle systems out of equilibrium Thomas Kriecherbauer Fakultät für Mathematik, Ruhr-Universität Bochum Joachim Krug Institut für Theoretische Physik, Universität zu Köln E-mail: thomas.kriecherbauer@ruhr-uni-bochum.de

More information

Uniformly Random Lozenge Tilings of Polygons on the Triangular Lattice

Uniformly Random Lozenge Tilings of Polygons on the Triangular Lattice Interacting Particle Systems, Growth Models and Random Matrices Workshop Uniformly Random Lozenge Tilings of Polygons on the Triangular Lattice Leonid Petrov Department of Mathematics, Northeastern University,

More information

Double contour integral formulas for the sum of GUE and one matrix model

Double contour integral formulas for the sum of GUE and one matrix model Double contour integral formulas for the sum of GUE and one matrix model Based on arxiv:1608.05870 with Tom Claeys, Arno Kuijlaars, and Karl Liechty Dong Wang National University of Singapore Workshop

More information

Increasing and Decreasing Subsequences

Increasing and Decreasing Subsequences Increasing and Decreasing Subsequences Richard P. Stanley M.I.T. Permutations Permutations First lecture: increasing and decreasing subsequences Permutations First lecture: increasing and decreasing

More information

Distribution of Bipartite Entanglement of a Random Pure State

Distribution of Bipartite Entanglement of a Random Pure State Distribution of Bipartite Entanglement of a Random Pure State Satya N. Majumdar Laboratoire de Physique Théorique et Modèles Statistiques,CNRS, Université Paris-Sud, France Collaborators: C. Nadal (Oxford

More information

Random Correlation Matrices, Top Eigenvalue with Heavy Tails and Financial Applications

Random Correlation Matrices, Top Eigenvalue with Heavy Tails and Financial Applications Random Correlation Matrices, Top Eigenvalue with Heavy Tails and Financial Applications J.P Bouchaud with: M. Potters, G. Biroli, L. Laloux, M. A. Miceli http://www.cfm.fr Portfolio theory: Basics Portfolio

More information

Anisotropic KPZ growth in dimensions: fluctuations and covariance structure

Anisotropic KPZ growth in dimensions: fluctuations and covariance structure arxiv:0811.0682v1 [cond-mat.stat-mech] 5 Nov 2008 Anisotropic KPZ growth in 2 + 1 dimensions: fluctuations and covariance structure Alexei Borodin, Patrik L. Ferrari November 4, 2008 Abstract In [5] we

More information

Numerical analysis and random matrix theory. Tom Trogdon UC Irvine

Numerical analysis and random matrix theory. Tom Trogdon UC Irvine Numerical analysis and random matrix theory Tom Trogdon ttrogdon@math.uci.edu UC Irvine Acknowledgements This is joint work with: Percy Deift Govind Menon Sheehan Olver Raj Rao Numerical analysis and random

More information

On the concentration of eigenvalues of random symmetric matrices

On the concentration of eigenvalues of random symmetric matrices On the concentration of eigenvalues of random symmetric matrices Noga Alon Michael Krivelevich Van H. Vu April 23, 2012 Abstract It is shown that for every 1 s n, the probability that the s-th largest

More information

1 Tridiagonal matrices

1 Tridiagonal matrices Lecture Notes: β-ensembles Bálint Virág Notes with Diane Holcomb 1 Tridiagonal matrices Definition 1. Suppose you have a symmetric matrix A, we can define its spectral measure (at the first coordinate

More information

Valerio Cappellini. References

Valerio Cappellini. References CETER FOR THEORETICAL PHYSICS OF THE POLISH ACADEMY OF SCIECES WARSAW, POLAD RADOM DESITY MATRICES AD THEIR DETERMIATS 4 30 SEPTEMBER 5 TH SFB TR 1 MEETIG OF 006 I PRZEGORZAłY KRAKÓW Valerio Cappellini

More information

Multiple orthogonal polynomials. Bessel weights

Multiple orthogonal polynomials. Bessel weights for modified Bessel weights KU Leuven, Belgium Madison WI, December 7, 2013 Classical orthogonal polynomials The (very) classical orthogonal polynomials are those of Jacobi, Laguerre and Hermite. Classical

More information

A Note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance Matrices

A Note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance Matrices A Note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance Matrices S. Dallaporta University of Toulouse, France Abstract. This note presents some central limit theorems

More information

Random Matrices and Multivariate Statistical Analysis

Random Matrices and Multivariate Statistical Analysis Random Matrices and Multivariate Statistical Analysis Iain Johnstone, Statistics, Stanford imj@stanford.edu SEA 06@MIT p.1 Agenda Classical multivariate techniques Principal Component Analysis Canonical

More information

Lecture I: Asymptotics for large GUE random matrices

Lecture I: Asymptotics for large GUE random matrices Lecture I: Asymptotics for large GUE random matrices Steen Thorbjørnsen, University of Aarhus andom Matrices Definition. Let (Ω, F, P) be a probability space and let n be a positive integer. Then a random

More information

Dynamics of a tagged monomer: Effects of elastic pinning and harmonic absorption. Shamik Gupta

Dynamics of a tagged monomer: Effects of elastic pinning and harmonic absorption. Shamik Gupta : Effects of elastic pinning and harmonic absorption Laboratoire de Physique Théorique et Modèles Statistiques, Université Paris-Sud, France Joint work with Alberto Rosso Christophe Texier Ref.: Phys.

More information

Update on the beta ensembles

Update on the beta ensembles Update on the beta ensembles Brian Rider Temple University with M. Krishnapur IISC, J. Ramírez Universidad Costa Rica, B. Virág University of Toronto The Tracy-Widom laws Consider a random Hermitian n

More information