Markov operators, classical orthogonal polynomial ensembles, and random matrices

Size: px
Start display at page:

Download "Markov operators, classical orthogonal polynomial ensembles, and random matrices"

Transcription

1 Markov operators, classical orthogonal polynomial ensembles, and random matrices M. Ledoux, Institut de Mathématiques de Toulouse, France 5ecm Amsterdam, July 2008

2 recent study of random matrix and random growth models

3 recent study of random matrix and random growth models new asymptotics common, non central, rate (mean) 1/3 universal limiting Tracy-Widom distribution

4 recent study of random matrix and random growth models new asymptotics common, non central, rate (mean) 1/3 universal limiting Tracy-Widom distribution random matrices, longest increasing subsequence, random growth models, last passage percolation... P. Forrester, C. Tracy, H. Widom, J. Baik, P. Deift, K. Johansson

5 invariant random matrix models

6 invariant random matrix models P(dX ) = 1 Z exp ( Tr ( v(x ) )) dx, v : R R X = X N real symmetric or Hermitian N N matrix

7 invariant random matrix models P(dX ) = 1 Z exp ( Tr ( v(x ) )) dx, v : R R X = X N real symmetric or Hermitian N N matrix v(x) = β x 2 /4 Gaussian Orthogonal (β = 1) Unitary (β = 2) Ensembles

8 invariant random matrix models P(dX ) = 1 Z exp ( Tr ( v(x ) )) dx, v : R R X = X N real symmetric or Hermitian N N matrix v(x) = β x 2 /4 Gaussian Orthogonal (β = 1) Unitary (β = 2) Ensembles joint law of the eigenvalues (λ N 1 λn N ) of X N

9 invariant random matrix models P(dX ) = 1 Z exp ( Tr ( v(x ) )) dx, v : R R X = X N real symmetric or Hermitian N N matrix v(x) = β x 2 /4 Gaussian Orthogonal (β = 1) Unitary (β = 2) Ensembles joint law of the eigenvalues (λ N 1 λn N ) of X N P N (dx) = 1 Z N (x) β N i=1 dµ(x i ), x = (x 1,..., x N ) R N N (x) = i<j (x i x j ), dµ(x) = e v(x) dx

10 random growth models directed last passage percolation

11 random growth models directed last passage percolation w ij, 1 i, j N, iid geometric random variables

12 random growth models directed last passage percolation w ij, 1 i, j N, iid geometric random variables W N = max π (i,j) π w ij π up/right paths from (1, 1) to (N, N)

13 random growth models directed last passage percolation w ij, 1 i, j N, iid geometric random variables W N = max π (i,j) π w ij π up/right paths from (1, 1) to (N, N) K. Johansson (2000)

14 random growth models directed last passage percolation w ij, 1 i, j N, iid geometric random variables W N = max π (i,j) π w ij π up/right paths from (1, 1) to (N, N) P ( W N t) = K. Johansson (2000) {max x i t+n 1} 1 Z N(x) 2 N dµ(x i ) i=1

15 random growth models directed last passage percolation w ij, 1 i, j N, iid geometric random variables W N = max π (i,j) π w ij π up/right paths from (1, 1) to (N, N) P ( W N t) = K. Johansson (2000) {max x i t+n 1} 1 Z N(x) 2 N dµ(x i ) i=1 µ({x}) = (1 q)q x, x N geometric distribution

16 law of (λ N 1,..., λ N N ) : PN (dx) = 1 Z N (x) β N i=1 dµ(x i )

17 law of (λ N 1,..., λ N N ) : PN (dx) = 1 Z N (x) β global regime : spectral measure N i=1 dµ(x i )

18 law of (λ N 1,..., λ N N ) : PN (dx) = 1 Z N (x) β global regime : spectral measure N i=1 dµ(x i ) large deviation asymptotics (every β)

19 law of (λ N 1,..., λ N N ) : PN (dx) = 1 Z N (x) β global regime : spectral measure N i=1 dµ(x i ) P N (dx) = 1 Z exp ( N v(x i ) + β i<j i=1 ) log x i x j dx

20 law of (λ N 1,..., λ N N ) : PN (dx) = 1 Z N (x) β global regime : spectral measure N i=1 dµ(x i ) P N (dx) = 1 Z exp ( N v(x i ) + β i<j i=1 ) log x i x j dx spectral measure : λn i = λ N i suitably normalized N µ N = 1 N i=1 δ bλ N i

21 law of (λ N 1,..., λ N N ) : PN (dx) = 1 Z N (x) β global regime : spectral measure N i=1 dµ(x i ) P N (dx) = 1 Z exp ( N v(x i ) + β i<j i=1 ) log x i x j dx spectral measure : λn i = λ N i suitably normalized µ N = 1 N N i=1 δ bλ N i equilibrium measure

22 law of (λ N 1,..., λ N N ) : PN (dx) = 1 Z N (x) β global regime : spectral measure N i=1 dµ(x i ) P N (dx) = 1 Z exp ( N v(x i ) + β i<j i=1 ) log x i x j dx spectral measure : λn i = λ N i suitably normalized µ N = 1 N δ bλ N N i i=1 equilibrium measure minimizer of 2 v dν β log x y dν(x)dν(y) weighted logarithmic potential theory

23 local regime : individual behavior (spacings, extreme values)

24 local regime : individual behavior (spacings, extreme values) β = 2 orthogonal polynomial method

25 local regime : individual behavior (spacings, extreme values) β = 2 orthogonal polynomial method P l, l N orthogonal polynomials for µ

26 local regime : individual behavior (spacings, extreme values) β = 2 orthogonal polynomial method P l, l N orthogonal polynomials for µ N (x) = C n det ( P l 1 (x k ) ) 1 k,l N

27 local regime : individual behavior (spacings, extreme values) β = 2 orthogonal polynomial method P l, l N orthogonal polynomials for µ N (x) 2 = C 2 n det 2( P l 1 (x k ) ) 1 k,l N

28 local regime : individual behavior (spacings, extreme values) β = 2 orthogonal polynomial method P l, l N orthogonal polynomials for µ N (x) 2 = C 2 n det 2( P l 1 (x k ) ) 1 k,l N P N (dx) = 1 Z N(x) 2 N i=1 dµ(x i)

29 local regime : individual behavior (spacings, extreme values) β = 2 orthogonal polynomial method P l, l N orthogonal polynomials for µ N (x) 2 = C 2 n det 2( P l 1 (x k ) ) 1 k,l N P N determinantal random point field structure

30 local regime : individual behavior (spacings, extreme values) β = 2 orthogonal polynomial method P l, l N orthogonal polynomials for µ N (x) 2 = C 2 n det 2( P l 1 (x k ) ) 1 k,l N P N determinantal random point field structure marginals of P N : determinants of the kernel K N (x, y) = N 1 l=0 P l (x)p l (y)

31 local regime : individual behavior (spacings, extreme values) β = 2 orthogonal polynomial method P l, l N orthogonal polynomials for µ N (x) 2 = C 2 n det 2( P l 1 (x k ) ) 1 k,l N P N determinantal random point field structure marginals of P N : determinants of the kernel K N (x, y) = N 1 l=0 P l (x)p l (y) orthogonal polynomial ensemble

32 (common) asymptotics of orthogonal polynomials universal local regime : spacings and edge behavior

33 (common) asymptotics of orthogonal polynomials universal local regime : spacings and edge behavior top edge behavior largest eigenvalue (particle) fluctuates at the rate (mean) 1/3 limiting Tracy-Widom distribution F TW

34 (common) asymptotics of orthogonal polynomials universal local regime : spacings and edge behavior top edge behavior largest eigenvalue (particle) fluctuates at the rate (mean) 1/3 limiting Tracy-Widom distribution F TW C. Tracy, H. Widom, P. Deift, X. Zhou, J. Baik, K. Johansson,. Kriecherbauer, K. McLaughlin, P. Miller, S. Venakides, M. Vanlessen, D. Gioev, P. Bleher, A. Its, A. Kuijlaars, M. Shcherbina, L. Pastur...

35 example : Gaussian Unitary Ensemble (GUE)

36 example : Gaussian Unitary Ensemble (GUE) dµ(x) = e x2 /2 dx 2π, K N Hermite kernel, λn i = λ N i / N

37 example : Gaussian Unitary Ensemble (GUE) dµ(x) = e x2 /2 dx 2π, K N Hermite kernel, λn i = λ N i / N spectral measure µ N = 1 N N i=1 δ bλ N 1 4 x i 2π 2 dx on ( 2, +2) Wigner semi-circle law

38 example : Gaussian Unitary Ensemble (GUE) dµ(x) = e x2 /2 dx 2π, K N Hermite kernel, λn i = λ N i / N spectral measure µ N = 1 N N i=1 δ bλ N 1 4 x i 2π 2 dx on ( 2, +2) Wigner semi-circle law largest eigenvalue λ N N

39 example : Gaussian Unitary Ensemble (GUE) dµ(x) = e x2 /2 dx 2π, K N Hermite kernel, λn i = λ N i / N spectral measure µ N = 1 N N i=1 δ bλ N 1 4 x i 2π 2 dx on ( 2, +2) Wigner semi-circle law largest eigenvalue λ N N / N 2

40 example : Gaussian Unitary Ensemble (GUE) dµ(x) = e x2 /2 dx 2π, K N Hermite kernel, λn i = λ N i / N spectral measure µ N = 1 N N i=1 δ bλ N 1 4 x i 2π 2 dx on ( 2, +2) Wigner semi-circle law largest eigenvalue λ N N / N 2 N 1/6[ λ N N 2 N ] F TW Tracy-Widom distribution

41 example : Gaussian Unitary Ensemble (GUE) dµ(x) = e x2 /2 dx 2π, K N Hermite kernel, λn i = λ N i / N spectral measure µ N = 1 N N i=1 δ bλ N 1 4 x i 2π 2 dx on ( 2, +2) Wigner semi-circle law largest eigenvalue λ N N / N 2 N 1/6[ λ N N 2 N ] F TW Tracy-Widom distribution ( F TW (s) = exp u = 2u 3 + xu s (x s)u(x) 2 dx Painlevé II equation ), s R

42 example : last passage percolation W N = max π (i,j) π w ij

43 example : last passage percolation W N = max π (i,j) π w ij µ geometric, K N Meixner kernel, λn i = λ N i /N

44 example : last passage percolation W N = max π (i,j) π w ij µ geometric, K N Meixner kernel, λn i = λ N i /N spectral measure µ N = 1 N N δ bλ N equilibrium measure on (a, b) i i=1

45 example : last passage percolation W N = max π (i,j) π w ij µ geometric, K N Meixner kernel, λn i = λ N i /N spectral measure µ N = 1 N N δ bλ N equilibrium measure on (a, b) i i=1 largest particle λ N N W N

46 example : last passage percolation W N = max π (i,j) π w ij µ geometric, K N Meixner kernel, λn i = λ N i /N spectral measure µ N = 1 N N δ bλ N equilibrium measure on (a, b) i i=1 largest particle λ N N W N/N b

47 example : last passage percolation W N = max π (i,j) π w ij µ geometric, K N Meixner kernel, λn i = λ N i /N spectral measure µ N = 1 N N δ bλ N equilibrium measure on (a, b) i i=1 largest particle λ N N W N/N b N 1/3[ W N bn ] F TW Tracy-Widom distribution K. Johansson (2000)

48 Markov operator tools

49 Markov operator tools for classical orthogonal polynomial ensembles of random matrix and random growth models

50 Markov operator tools for classical orthogonal polynomial ensembles of random matrix and random growth models non asymptotic results

51 Markov operator tools for classical orthogonal polynomial ensembles of random matrix and random growth models non asymptotic results spectral description (universal arcsine law)

52 Markov operator tools for classical orthogonal polynomial ensembles of random matrix and random growth models non asymptotic results spectral description (universal arcsine law) recurrence equations for moments (map enumeration)

53 Markov operator tools for classical orthogonal polynomial ensembles of random matrix and random growth models non asymptotic results spectral description (universal arcsine law) recurrence equations for moments (map enumeration) recurrence equations for real symmetric models (Gaussian Orthogonal Ensemble)

54 Markov operator tools for classical orthogonal polynomial ensembles of random matrix and random growth models non asymptotic results spectral description (universal arcsine law) recurrence equations for moments (map enumeration) recurrence equations for real symmetric models (Gaussian Orthogonal Ensemble) non asymptotic tail inequalities for largest eigenvalues (optimal rate)

55 classical orthogonal polynomial ensembles Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn

56 classical orthogonal polynomial ensembles Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn differential equations and operators

57 classical orthogonal polynomial ensembles Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn differential equations and operators mean spectral measure µ N = E ( 1 N i=1 δ λ N ) i

58 classical orthogonal polynomial ensembles Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn differential equations and operators mean spectral measure µ N = E ( 1 N i=1 δ λ N ) i f, µ N = f (x) 1 N K N(x, x) dµ(x) = f N 1 1 Pl 2 N dµ l=0

59 classical orthogonal polynomial ensembles Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn differential equations and operators mean spectral measure µ N = E ( 1 N i=1 δ λ N ) i f, µ N = f (x) 1 N K N(x, x) dµ(x) = f N 1 1 Pl 2 N dµ l=0 example : Gaussian Unitary Ensemble (GUE)

60 classical orthogonal polynomial ensembles Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn differential equations and operators mean spectral measure µ N = E ( 1 N i=1 δ λ N ) i f, µ N = f (x) 1 N K N(x, x) dµ(x) = f N 1 1 Pl 2 N dµ l=0 example : Gaussian Unitary Ensemble (GUE) P l, l N Hermite polynomials for dµ(x) = e x2 /2 dx 2π normalized in L 2 (µ)

61 f, µ N = f N 1 1 Pl 2 N dµ l=0

62 f, µ N = f N 1 1 Pl 2 N dµ l=0 preliminary investigation : measure P 2 N dµ

63 f, µ N = f N 1 1 Pl 2 N dµ l=0 preliminary investigation : measure P 2 N dµ Laplace transform : ϕ(t) = e tx P 2 N dµ, t R

64 f, µ N = f N 1 1 Pl 2 N dµ l=0 preliminary investigation : measure P 2 N dµ Laplace transform : ϕ(t) = e tx P 2 N dµ, t R Hermite operator : Lf = f x f

65 f, µ N = f N 1 1 Pl 2 N dµ l=0 preliminary investigation : measure P 2 N dµ Laplace transform : ϕ(t) = e tx P 2 N dµ, t R Hermite operator : Lf = f x f Gaussian integration by parts : f ( Lg)dµ = f g dµ

66 f, µ N = f N 1 1 Pl 2 N dµ l=0 preliminary investigation : measure P 2 N dµ Laplace transform : ϕ(t) = e tx P 2 N dµ, t R Hermite operator : Lf = f x f Gaussian integration by parts : f ( Lg)dµ = f g dµ LP N = N P N eigenvectors

67 Laplace transform : ϕ(t) = e tx P 2 N dµ second order differential equation tϕ + ϕ t(t 2 + 4N + 2)ϕ = 0

68 Laplace transform : ϕ(t) = e tx P 2 N dµ second order differential equation tϕ + ϕ t(t 2 + 4N + 2)ϕ = 0 under the GUE scaling : t t/ N ( λ N i = λ N i / N)

69 Laplace transform : ϕ(t) = e tx P 2 N dµ second order differential equation tϕ + ϕ t(t 2 + 4N + 2)ϕ = 0 under the GUE scaling : t t/ N ( λ N i = λ N i / N) limiting differential equation t Φ + Φ 4t Φ = 0

70 Laplace transform : ϕ(t) = e tx P 2 N dµ second order differential equation tϕ + ϕ t(t 2 + 4N + 2)ϕ = 0 under the GUE scaling : t t/ N ( λ N i = λ N i / N) limiting differential equation t Φ + Φ 4t Φ = 0 Φ Laplace transform of the arcsine law dx π 4 x 2 on ( 2, +2)

71 common behavior, with the limiting arcsine law for the classical orthogonal polynomials of (normalized) measures P 2 N dµ

72 common behavior, with the limiting arcsine law for the classical orthogonal polynomials of (normalized) measures P 2 N dµ continuous variable : Hermite, Laguerre, Jacobi

73 common behavior, with the limiting arcsine law for the classical orthogonal polynomials of (normalized) measures P 2 N dµ continuous variable : Hermite, Laguerre, Jacobi discrete variable : Charlier, Meixner, Krawtchouk, Hahn

74 common behavior, with the limiting arcsine law for the classical orthogonal polynomials of (normalized) measures P 2 N dµ continuous variable : Hermite, Laguerre, Jacobi discrete variable : Charlier, Meixner, Krawtchouk, Hahn varying parameters (in N)

75 common behavior, with the limiting arcsine law for the classical orthogonal polynomials of (normalized) measures P 2 N dµ continuous variable : Hermite, Laguerre, Jacobi discrete variable : Charlier, Meixner, Krawtchouk, Hahn varying parameters (in N) compact case : A. Maté, P. Nevai, V. Totik (1985)

76 spectral measure : averaging procedure

77 spectral measure : averaging procedure GUE E ( f, µ N ) = 1 N N 1 l=0 ( ) l f N x Pl 2 dµ l

78 spectral measure : averaging procedure GUE E ( f, µ N ) = 1 N N 1 l=0 ( ) l f N x Pl 2 dµ l µ N = 1 N N i=1 δ bλ N i U ξ U uniform, ξ arcsine, independent

79 spectral measure : averaging procedure GUE E ( f, µ N ) = 1 N N 1 l=0 ( ) l f N x Pl 2 dµ l µ N = 1 N N i=1 δ bλ N i U ξ U uniform, ξ arcsine, independent U ξ semi-circle law on ( 2, +2)

80 spectral measure : averaging procedure GUE E ( f, µ N ) = 1 N N 1 l=0 ( ) l f N x Pl 2 dµ l µ N = 1 N N i=1 δ bλ N i U ξ U uniform, ξ arcsine, independent U ξ semi-circle law on ( 2, +2) Meixner example (µ geometric) : equilibrium measure

81 example : last passage percolation W N = max π (i,j) π w ij µ geometric, K N Meixner kernel, λn i = λ N i /N spectral measure µ N = 1 N N δ bλ N equilibrium measure on (a, b) i i=1 largest particle λ N N W N/N b N 1/3[ W N bn ] F TW Tracy-Widom distribution K. Johansson (2000)

82 spectral measure : averaging procedure GUE E ( f, µ N ) = 1 N N 1 l=0 ( ) l f N x Pl 2 dµ l µ N = 1 N N i=1 δ bλ N i U ξ U uniform, ξ arcsine, independent U ξ semi-circle law on ( 2, +2) Meixner example (µ geometric) : equilibrium measure

83 spectral measure : averaging procedure GUE E ( f, µ N ) = 1 N N 1 l=0 ( ) l f N x Pl 2 dµ l µ N = 1 N N i=1 δ bλ N i U ξ U uniform, ξ arcsine, independent U ξ semi-circle law on ( 2, +2) Meixner example (µ geometric) : equilibrium measure 1 ( [ ] ) qu(1 + U) ξ + U + q(1 + U) 1 q

84 moment recursion formula

85 moment recursion formula E ( e t Tr(X N ) ) = ψ(t) = N 1 e tx l=0 P 2 l dµ, t R differential equation

86 moment recursion formula E ( e t Tr(X N ) ) = ψ(t) = N 1 e tx l=0 P 2 l dµ, t R differential equation GUE tψ + 3ψ t(t 2 + 4N)ψ = 0 U. Haagerup, S. Thorbjørnsen (2003)

87 moment recursion formula E ( e t Tr(X N ) ) = ψ(t) = N 1 e tx l=0 P 2 l dµ, t R differential equation GUE tψ + 3ψ t(t 2 + 4N)ψ = 0 U. Haagerup, S. Thorbjørnsen (2003) recurrence equation on moments ( E Tr ( (X N ) p ) ) = N 1 x p l=0 P 2 l dµ, p N

88 ( ap N = E Tr ( (X N ) 2p ) ), X N GUE three term recurrence equation (p + 1)a N p = (4p 2)Na N p 1 + (p 1)(2p 1)(2p 3)aN p 2 J. Harer, D. Zagier (1986)

89 ( ap N = E Tr ( (X N ) 2p ) ), X N GUE three term recurrence equation (p + 1)a N p = (4p 2)Na N p 1 + (p 1)(2p 1)(2p 3)aN p 2 J. Harer, D. Zagier (1986) map enumeration (Wick products)

90 ( ap N = E Tr ( (X N ) 2p ) ), X N GUE three term recurrence equation (p + 1)a N p = (4p 2)Na N p 1 + (p 1)(2p 1)(2p 3)aN p 2 J. Harer, D. Zagier (1986) map enumeration (Wick products) a N p = g 0 ε g (p) N p+1 2g genus series (oriented case)

91 ( ap N = E Tr ( (X N ) 2p ) ), X N GUE three term recurrence equation (p + 1)a N p = (4p 2)Na N p 1 + (p 1)(2p 1)(2p 3)aN p 2 J. Harer, D. Zagier (1986) map enumeration (Wick products) a N p = g 0 ε g (p) N p+1 2g genus series (oriented case) ε 0 (p) Catalan numbers

92 Markov operator technology similar recursion formulas for the classical orthogonal polynomial ensembles

93 Markov operator technology similar recursion formulas for the classical orthogonal polynomial ensembles continuous variable : Hermite, Laguerre, Jacobi

94 Markov operator technology similar recursion formulas for the classical orthogonal polynomial ensembles continuous variable : Hermite, Laguerre, Jacobi discrete variables : Charlier, Meixner, Krawtchouk, Hahn explicit expressions for the (factorial) moments

95 Gaussian Orthogonal Ensemble β = 1

96 Gaussian Orthogonal Ensemble β = 1 P N (dx) = 1 Z N (x) N dµ(x i ), x = (x 1,..., x N ) R N i=1 dµ(x) = e x2 /2 dx 2π

97 Gaussian Orthogonal Ensemble β = 1 P N (dx) = 1 Z N (x) N dµ(x i ), x = (x 1,..., x N ) R N i=1 dµ(x) = e x2 /2 dx 2π Pfaffian instead of determinant

98 Gaussian Orthogonal Ensemble β = 1 P N (dx) = 1 Z N (x) N dµ(x i ), x = (x 1,..., x N ) R N i=1 dµ(x) = e x2 /2 dx 2π Pfaffian instead of determinant limiting spectral distribution : Wigner semi-circle law Tracy-Widom edge asymptotics

99 moment recursion formula?

100 moment recursion formula? mean spectral measure ( E Tr ( f (X N ) )) = f (x) µ N GOE(x)dµ(x)

101 moment recursion formula? mean spectral measure ( E Tr ( f (X N ) )) = f (x) µ N GOE(x)dµ(x) P l, l N Hermite polynomials µ N GOE = N 1 Pl 2 l=0

102 moment recursion formula? mean spectral measure ( E Tr ( f (X N ) )) = f (x) µ N GOE(x)dµ(x) P l, l N Hermite polynomials µ N GOE = N 1 l=0 P 2 l + ex2 /4 P N 1 e x 2 /4 P N 1 dµ 1 N odd πn + /4 8 ex2 P N 1 sgn (x y) e x2 /4 (y)p N (y)dµ(y)

103 Markov operator tools : differential equation on the Laplace transform of the spectral measure

104 Markov operator tools : differential equation on the Laplace transform of the spectral measure b N p moment recursion formula ( = E Tr ( (X N ) 2p ) ), p N

105 Markov operator tools : differential equation on the Laplace transform of the spectral measure b N p moment recursion formula ( = E Tr ( (X N ) 2p ) ), p N recursion formula coupled with the moments a N p of the GUE b N p = (4N 2)b N p 1 + 4(2p 2)(2p 3)b N p 2 + a N p (4N 3)a N p 1 (2p 2)(2p 3)a N p 2

106 effective values a0 N = N a1 N = N 2 GUE a2 N = 2N 3 + N a3 N = 5N N 2 a N 4 = 14N N N b0 N = N b1 N = N 2 + N GOE b2 N = 2N 3 + 5N 2 + 5N b3 N = 5N N N N b4 N = 14N N N N N

107 b N p ( = E Tr ( (X N ) 2p ) ), X N GOE recursion formula coupled with the moments a N p of the GUE b N p = (4N 2)b N p 1 + 4(2p 2)(2p 3)b N p 2 + a N p (4N 3)a N p 1 (2p 2)(2p 3)a N p 2

108 b N p ( = E Tr ( (X N ) 2p ) ), X N GOE recursion formula coupled with the moments a N p of the GUE b N p = (4N 2)b N p 1 + 4(2p 2)(2p 3)b N p 2 + a N p (4N 3)a N p 1 (2p 2)(2p 3)a N p 2 b N p five term recurrence equation

109 b N p ( = E Tr ( (X N ) 2p ) ), X N GOE recursion formula coupled with the moments a N p of the GUE b N p = (4N 2)b N p 1 + 4(2p 2)(2p 3)b N p 2 + a N p (4N 3)a N p 1 (2p 2)(2p 3)a N p 2 b N p five term recurrence equation closed form : I. Goulden, D. Jackson (1997)

110 b N p ( = E Tr ( (X N ) 2p ) ), X N GOE recursion formula coupled with the moments a N p of the GUE b N p = (4N 2)b N p 1 + 4(2p 2)(2p 3)b N p 2 + a N p (4N 3)a N p 1 (2p 2)(2p 3)a N p 2 b N p five term recurrence equation closed form : I. Goulden, D. Jackson (1997) map enumeration : unoriented case

111 b N p ( = E Tr ( (X N ) 2p ) ), X N GOE recursion formula coupled with the moments a N p of the GUE b N p = (4N 2)b N p 1 + 4(2p 2)(2p 3)b N p 2 + a N p (4N 3)a N p 1 (2p 2)(2p 3)a N p 2 b N p five term recurrence equation closed form : I. Goulden, D. Jackson (1997) map enumeration : unoriented case duality with Symplectic Ensemble (β = 4)

112 recursion formulas lead to sharp moment bounds

113 recursion formulas lead to sharp moment bounds Gaussian Unitary Ensemble (GUE) three term recurrence equation

114 recursion formulas lead to sharp moment bounds Gaussian Unitary Ensemble (GUE) three term recurrence equation ( E Tr ( (X N ) 2p)) C (4N) p e Cp3 /N 2, p 3 N 2

115 recursion formulas lead to sharp moment bounds Gaussian Unitary Ensemble (GUE) three term recurrence equation ( E Tr ( (X N ) 2p)) C (4N) p e Cp3 /N 2, p 3 N 2 similar bounds for classical orthogonal polynomial ensembles (β = 2) Gaussian Orthogonal Ensemble (GOE) (β = 1)

116 non asymptotic small deviation inequalities

117 non asymptotic small deviation inequalities P ( λ N N 2 N + s N 1/6) F TW (s), s R

118 non asymptotic small deviation inequalities P ( λ N N 2 N + s N 1/6) F TW (s), s R C 1 e C s3/2 1 F TW (s) C e s3/2 /C (s )

119 non asymptotic small deviation inequalities P ( λ N N 2 N + s N 1/6) F TW (s), s R C 1 e C s3/2 1 F TW (s) C e s3/2 /C (s ) moment bounds (GUE, GOE) P ( λ N N 2 N + ε ) C e N1/4 ε 3/2 /C, 0 < ε N

120 non asymptotic small deviation inequalities P ( λ N N 2 N + s N 1/6) F TW (s), s R C 1 e C s3/2 1 F TW (s) C e s3/2 /C (s ) moment bounds (GUE, GOE) P ( λ N N 2 N + ε ) C e N1/4 ε 3/2 /C, 0 < ε N fits the Tracy-Widom asymptotics (ε = s N 1/6 )

121 non asymptotic small deviation inequalities P ( λ N N 2 N + s N 1/6) F TW (s), s R C 1 e C s3/2 1 F TW (s) C e s3/2 /C (s ) moment bounds (GUE, GOE) P ( λ N N 2 N + ε ) C e N1/4 ε 3/2 /C, 0 < ε N fits the Tracy-Widom asymptotics (ε = s N 1/6 ) deviation inequality on last passage percolation W N K. Johansson (2000)

122 moment comparison Wigner matrices (independent entries)

123 moment comparison Wigner matrices (independent entries) example : sign matrix Y N = Y N ij = ±1

124 moment comparison Wigner matrices (independent entries) example : sign matrix Y N = Y N ij = ±1 asymptotic result : Y. Sinai, A. Soshnikov ( ) P ( λ N N (Y ) 2 N + s N 1/6) F TW (s), s R

125 moment comparison Wigner matrices (independent entries) example : sign matrix Y N = Y N ij = ±1 asymptotic result : Y. Sinai, A. Soshnikov ( ) P ( λ N N (Y ) 2 N + s N 1/6) F TW (s), s R ( E Tr ( (Y N ) 2p)) ( E Tr ( (X N ) 2p)), X N GOE

126 moment comparison Wigner matrices (independent entries) example : sign matrix Y N = Y N ij = ±1 asymptotic result : Y. Sinai, A. Soshnikov ( ) P ( λ N N (Y ) 2 N + s N 1/6) F TW (s), s R ( E Tr ( (Y N ) 2p)) ( E Tr ( (X N ) 2p)), X N GOE P ( λ N N (Y ) 2 N + ε ) C e N1/4 ε 3/2 /C, 0 < ε N

Exponential tail inequalities for eigenvalues of random matrices

Exponential tail inequalities for eigenvalues of random matrices Exponential tail inequalities for eigenvalues of random matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify

More information

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium SEA 06@MIT, Workshop on Stochastic Eigen-Analysis and its Applications, MIT, Cambridge,

More information

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW Serials Publications www.serialspublications.com OMPLEX HERMITE POLYOMIALS: FROM THE SEMI-IRULAR LAW TO THE IRULAR LAW MIHEL LEDOUX Abstract. We study asymptotics of orthogonal polynomial measures of the

More information

Concentration Inequalities for Random Matrices

Concentration Inequalities for Random Matrices Concentration Inequalities for Random Matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify the asymptotic

More information

Painlevé Representations for Distribution Functions for Next-Largest, Next-Next-Largest, etc., Eigenvalues of GOE, GUE and GSE

Painlevé Representations for Distribution Functions for Next-Largest, Next-Next-Largest, etc., Eigenvalues of GOE, GUE and GSE Painlevé Representations for Distribution Functions for Next-Largest, Next-Next-Largest, etc., Eigenvalues of GOE, GUE and GSE Craig A. Tracy UC Davis RHPIA 2005 SISSA, Trieste 1 Figure 1: Paul Painlevé,

More information

DEVIATION INEQUALITIES ON LARGEST EIGENVALUES

DEVIATION INEQUALITIES ON LARGEST EIGENVALUES DEVIATION INEQUALITIES ON LARGEST EIGENVALUES M. Ledoux University of Toulouse, France In these notes, we survey developments on the asymptotic behavior of the largest eigenvalues of random matrix and

More information

A Remark on Hypercontractivity and Tail Inequalities for the Largest Eigenvalues of Random Matrices

A Remark on Hypercontractivity and Tail Inequalities for the Largest Eigenvalues of Random Matrices A Remark on Hypercontractivity and Tail Inequalities for the Largest Eigenvalues of Random Matrices Michel Ledoux Institut de Mathématiques, Université Paul Sabatier, 31062 Toulouse, France E-mail: ledoux@math.ups-tlse.fr

More information

o f P r o b a b i l i t y Vol. 9 (2004), Paper no. 7, pages Journal URL ejpecp/

o f P r o b a b i l i t y Vol. 9 (2004), Paper no. 7, pages Journal URL  ejpecp/ E l e c t r o n i c J o u r n a l o f P r o b a b i l i t y Vol. 9 (2004), Paper no. 7, pages 177 208. Journal URL http://www.math.washington.edu/ ejpecp/ DIFFERENTIAL OPERATORS AND SPECTRAL DISTRIBUTIONS

More information

RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS

RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS David García-García May 13, 2016 Faculdade de Ciências da Universidade de Lisboa OVERVIEW Random Matrix Theory Introduction Matrix ensembles A sample computation:

More information

Random Matrix: From Wigner to Quantum Chaos

Random Matrix: From Wigner to Quantum Chaos Random Matrix: From Wigner to Quantum Chaos Horng-Tzer Yau Harvard University Joint work with P. Bourgade, L. Erdős, B. Schlein and J. Yin 1 Perhaps I am now too courageous when I try to guess the distribution

More information

Central Limit Theorems for linear statistics for Biorthogonal Ensembles

Central Limit Theorems for linear statistics for Biorthogonal Ensembles Central Limit Theorems for linear statistics for Biorthogonal Ensembles Maurice Duits, Stockholm University Based on joint work with Jonathan Breuer (HUJI) Princeton, April 2, 2014 M. Duits (SU) CLT s

More information

Airy and Pearcey Processes

Airy and Pearcey Processes Airy and Pearcey Processes Craig A. Tracy UC Davis Probability, Geometry and Integrable Systems MSRI December 2005 1 Probability Space: (Ω, Pr, F): Random Matrix Models Gaussian Orthogonal Ensemble (GOE,

More information

Beyond the Gaussian universality class

Beyond the Gaussian universality class Beyond the Gaussian universality class MSRI/Evans Talk Ivan Corwin (Courant Institute, NYU) September 13, 2010 Outline Part 1: Random growth models Random deposition, ballistic deposition, corner growth

More information

Near extreme eigenvalues and the first gap of Hermitian random matrices

Near extreme eigenvalues and the first gap of Hermitian random matrices Near extreme eigenvalues and the first gap of Hermitian random matrices Grégory Schehr LPTMS, CNRS-Université Paris-Sud XI Sydney Random Matrix Theory Workshop 13-16 January 2014 Anthony Perret, G. S.,

More information

Lecture I: Asymptotics for large GUE random matrices

Lecture I: Asymptotics for large GUE random matrices Lecture I: Asymptotics for large GUE random matrices Steen Thorbjørnsen, University of Aarhus andom Matrices Definition. Let (Ω, F, P) be a probability space and let n be a positive integer. Then a random

More information

References 167. dx n x2 =2

References 167. dx n x2 =2 References 1. G. Akemann, J. Baik, P. Di Francesco (editors), The Oxford Handbook of Random Matrix Theory, Oxford University Press, Oxford, 2011. 2. G. Anderson, A. Guionnet, O. Zeitouni, An Introduction

More information

Triangular matrices and biorthogonal ensembles

Triangular matrices and biorthogonal ensembles /26 Triangular matrices and biorthogonal ensembles Dimitris Cheliotis Department of Mathematics University of Athens UK Easter Probability Meeting April 8, 206 2/26 Special densities on R n Example. n

More information

A determinantal formula for the GOE Tracy-Widom distribution

A determinantal formula for the GOE Tracy-Widom distribution A determinantal formula for the GOE Tracy-Widom distribution Patrik L. Ferrari and Herbert Spohn Technische Universität München Zentrum Mathematik and Physik Department e-mails: ferrari@ma.tum.de, spohn@ma.tum.de

More information

Concentration inequalities: basics and some new challenges

Concentration inequalities: basics and some new challenges Concentration inequalities: basics and some new challenges M. Ledoux University of Toulouse, France & Institut Universitaire de France Measure concentration geometric functional analysis, probability theory,

More information

Extreme eigenvalue fluctutations for GUE

Extreme eigenvalue fluctutations for GUE Extreme eigenvalue fluctutations for GUE C. Donati-Martin 204 Program Women and Mathematics, IAS Introduction andom matrices were introduced in multivariate statistics, in the thirties by Wishart [Wis]

More information

Determinantal point processes and random matrix theory in a nutshell

Determinantal point processes and random matrix theory in a nutshell Determinantal point processes and random matrix theory in a nutshell part II Manuela Girotti based on M. Girotti s PhD thesis, A. Kuijlaars notes from Les Houches Winter School 202 and B. Eynard s notes

More information

JINHO BAIK Department of Mathematics University of Michigan Ann Arbor, MI USA

JINHO BAIK Department of Mathematics University of Michigan Ann Arbor, MI USA LIMITING DISTRIBUTION OF LAST PASSAGE PERCOLATION MODELS JINHO BAIK Department of Mathematics University of Michigan Ann Arbor, MI 48109 USA E-mail: baik@umich.edu We survey some results and applications

More information

Lectures 6 7 : Marchenko-Pastur Law

Lectures 6 7 : Marchenko-Pastur Law Fall 2009 MATH 833 Random Matrices B. Valkó Lectures 6 7 : Marchenko-Pastur Law Notes prepared by: A. Ganguly We will now turn our attention to rectangular matrices. Let X = (X 1, X 2,..., X n ) R p n

More information

Eigenvalue variance bounds for Wigner and covariance random matrices

Eigenvalue variance bounds for Wigner and covariance random matrices Eigenvalue variance bounds for Wigner and covariance random matrices S. Dallaporta University of Toulouse, France Abstract. This work is concerned with finite range bounds on the variance of individual

More information

Update on the beta ensembles

Update on the beta ensembles Update on the beta ensembles Brian Rider Temple University with M. Krishnapur IISC, J. Ramírez Universidad Costa Rica, B. Virág University of Toronto The Tracy-Widom laws Consider a random Hermitian n

More information

Universal Fluctuation Formulae for one-cut β-ensembles

Universal Fluctuation Formulae for one-cut β-ensembles Universal Fluctuation Formulae for one-cut β-ensembles with a combinatorial touch Pierpaolo Vivo with F. D. Cunden Phys. Rev. Lett. 113, 070202 (2014) with F.D. Cunden and F. Mezzadri J. Phys. A 48, 315204

More information

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices László Erdős University of Munich Oberwolfach, 2008 Dec Joint work with H.T. Yau (Harvard), B. Schlein (Cambrigde) Goal:

More information

A Note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance Matrices

A Note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance Matrices A Note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance Matrices S. Dallaporta University of Toulouse, France Abstract. This note presents some central limit theorems

More information

Bulk scaling limits, open questions

Bulk scaling limits, open questions Bulk scaling limits, open questions Based on: Continuum limits of random matrices and the Brownian carousel B. Valkó, B. Virág. Inventiones (2009). Eigenvalue statistics for CMV matrices: from Poisson

More information

ORTHOGONAL POLYNOMIALS

ORTHOGONAL POLYNOMIALS ORTHOGONAL POLYNOMIALS 1. PRELUDE: THE VAN DER MONDE DETERMINANT The link between random matrix theory and the classical theory of orthogonal polynomials is van der Monde s determinant: 1 1 1 (1) n :=

More information

A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices

A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices Journal of Statistical Physics, Vol. 18, Nos. 5/6, September ( ) A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices Alexander Soshnikov 1 Received

More information

Large deviations of the top eigenvalue of random matrices and applications in statistical physics

Large deviations of the top eigenvalue of random matrices and applications in statistical physics Large deviations of the top eigenvalue of random matrices and applications in statistical physics Grégory Schehr LPTMS, CNRS-Université Paris-Sud XI Journées de Physique Statistique Paris, January 29-30,

More information

Fluctuations of random tilings and discrete Beta-ensembles

Fluctuations of random tilings and discrete Beta-ensembles Fluctuations of random tilings and discrete Beta-ensembles Alice Guionnet CRS (E S Lyon) Workshop in geometric functional analysis, MSRI, nov. 13 2017 Joint work with A. Borodin, G. Borot, V. Gorin, J.Huang

More information

On the concentration of eigenvalues of random symmetric matrices

On the concentration of eigenvalues of random symmetric matrices On the concentration of eigenvalues of random symmetric matrices Noga Alon Michael Krivelevich Van H. Vu April 23, 2012 Abstract It is shown that for every 1 s n, the probability that the s-th largest

More information

Universality of local spectral statistics of random matrices

Universality of local spectral statistics of random matrices Universality of local spectral statistics of random matrices László Erdős Ludwig-Maximilians-Universität, Munich, Germany CRM, Montreal, Mar 19, 2012 Joint with P. Bourgade, B. Schlein, H.T. Yau, and J.

More information

Differential Equations for Dyson Processes

Differential Equations for Dyson Processes Differential Equations for Dyson Processes Joint work with Harold Widom I. Overview We call Dyson process any invariant process on ensembles of matrices in which the entries undergo diffusion. Dyson Brownian

More information

Random matrices and determinantal processes

Random matrices and determinantal processes Random matrices and determinantal processes Patrik L. Ferrari Zentrum Mathematik Technische Universität München D-85747 Garching 1 Introduction The aim of this work is to explain some connections between

More information

NUMERICAL CALCULATION OF RANDOM MATRIX DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS. Sheehan Olver NA Group, Oxford

NUMERICAL CALCULATION OF RANDOM MATRIX DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS. Sheehan Olver NA Group, Oxford NUMERICAL CALCULATION OF RANDOM MATRIX DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS Sheehan Olver NA Group, Oxford We are interested in numerically computing eigenvalue statistics of the GUE ensembles, i.e.,

More information

Universality for random matrices and log-gases

Universality for random matrices and log-gases Universality for random matrices and log-gases László Erdős IST, Austria Ludwig-Maximilians-Universität, Munich, Germany Encounters Between Discrete and Continuous Mathematics Eötvös Loránd University,

More information

Fluctuations of random tilings and discrete Beta-ensembles

Fluctuations of random tilings and discrete Beta-ensembles Fluctuations of random tilings and discrete Beta-ensembles Alice Guionnet CRS (E S Lyon) Advances in Mathematics and Theoretical Physics, Roma, 2017 Joint work with A. Borodin, G. Borot, V. Gorin, J.Huang

More information

1 Tridiagonal matrices

1 Tridiagonal matrices Lecture Notes: β-ensembles Bálint Virág Notes with Diane Holcomb 1 Tridiagonal matrices Definition 1. Suppose you have a symmetric matrix A, we can define its spectral measure (at the first coordinate

More information

Free Meixner distributions and random matrices

Free Meixner distributions and random matrices Free Meixner distributions and random matrices Michael Anshelevich July 13, 2006 Some common distributions first... 1 Gaussian Negative binomial Gamma Pascal chi-square geometric exponential 1 2πt e x2

More information

Statistical Inference and Random Matrices

Statistical Inference and Random Matrices Statistical Inference and Random Matrices N.S. Witte Institute of Fundamental Sciences Massey University New Zealand 5-12-2017 Joint work with Peter Forrester 6 th Wellington Workshop in Probability and

More information

MATRIX INTEGRALS AND MAP ENUMERATION 2

MATRIX INTEGRALS AND MAP ENUMERATION 2 MATRIX ITEGRALS AD MAP EUMERATIO 2 IVA CORWI Abstract. We prove the generating function formula for one face maps and for plane diagrams using techniques from Random Matrix Theory and orthogonal polynomials.

More information

Fluctuations from the Semicircle Law Lecture 4

Fluctuations from the Semicircle Law Lecture 4 Fluctuations from the Semicircle Law Lecture 4 Ioana Dumitriu University of Washington Women and Math, IAS 2014 May 23, 2014 Ioana Dumitriu (UW) Fluctuations from the Semicircle Law Lecture 4 May 23, 2014

More information

The Tracy-Widom distribution is not infinitely divisible.

The Tracy-Widom distribution is not infinitely divisible. The Tracy-Widom distribution is not infinitely divisible. arxiv:1601.02898v1 [math.pr] 12 Jan 2016 J. Armando Domínguez-Molina Facultad de Ciencias Físico-Matemáticas Universidad Autónoma de Sinaloa, México

More information

Maximal height of non-intersecting Brownian motions

Maximal height of non-intersecting Brownian motions Maximal height of non-intersecting Brownian motions G. Schehr Laboratoire de Physique Théorique et Modèles Statistiques CNRS-Université Paris Sud-XI, Orsay Collaborators: A. Comtet (LPTMS, Orsay) P. J.

More information

Second Order Freeness and Random Orthogonal Matrices

Second Order Freeness and Random Orthogonal Matrices Second Order Freeness and Random Orthogonal Matrices Jamie Mingo (Queen s University) (joint work with Mihai Popa and Emily Redelmeier) AMS San Diego Meeting, January 11, 2013 1 / 15 Random Matrices X

More information

Free Probability and Random Matrices: from isomorphisms to universality

Free Probability and Random Matrices: from isomorphisms to universality Free Probability and Random Matrices: from isomorphisms to universality Alice Guionnet MIT TexAMP, November 21, 2014 Joint works with F. Bekerman, Y. Dabrowski, A.Figalli, E. Maurel-Segala, J. Novak, D.

More information

From the mesoscopic to microscopic scale in random matrix theory

From the mesoscopic to microscopic scale in random matrix theory From the mesoscopic to microscopic scale in random matrix theory (fixed energy universality for random spectra) With L. Erdős, H.-T. Yau, J. Yin Introduction A spacially confined quantum mechanical system

More information

Random matrices: Distribution of the least singular value (via Property Testing)

Random matrices: Distribution of the least singular value (via Property Testing) Random matrices: Distribution of the least singular value (via Property Testing) Van H. Vu Department of Mathematics Rutgers vanvu@math.rutgers.edu (joint work with T. Tao, UCLA) 1 Let ξ be a real or complex-valued

More information

Universal phenomena in random systems

Universal phenomena in random systems Tuesday talk 1 Page 1 Universal phenomena in random systems Ivan Corwin (Clay Mathematics Institute, Columbia University, Institute Henri Poincare) Tuesday talk 1 Page 2 Integrable probabilistic systems

More information

Wigner s semicircle law

Wigner s semicircle law CHAPTER 2 Wigner s semicircle law 1. Wigner matrices Definition 12. A Wigner matrix is a random matrix X =(X i, j ) i, j n where (1) X i, j, i < j are i.i.d (real or complex valued). (2) X i,i, i n are

More information

Fluctuations of the free energy of spherical spin glass

Fluctuations of the free energy of spherical spin glass Fluctuations of the free energy of spherical spin glass Jinho Baik University of Michigan 2015 May, IMS, Singapore Joint work with Ji Oon Lee (KAIST, Korea) Random matrix theory Real N N Wigner matrix

More information

Comparison Method in Random Matrix Theory

Comparison Method in Random Matrix Theory Comparison Method in Random Matrix Theory Jun Yin UW-Madison Valparaíso, Chile, July - 2015 Joint work with A. Knowles. 1 Some random matrices Wigner Matrix: H is N N square matrix, H : H ij = H ji, EH

More information

Stochastic Differential Equations Related to Soft-Edge Scaling Limit

Stochastic Differential Equations Related to Soft-Edge Scaling Limit Stochastic Differential Equations Related to Soft-Edge Scaling Limit Hideki Tanemura Chiba univ. (Japan) joint work with Hirofumi Osada (Kyushu Unv.) 2012 March 29 Hideki Tanemura (Chiba univ.) () SDEs

More information

Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles

Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles Olivia Beckwith 1, Steven J. Miller 2, and Karen Shen 3 1 Harvey Mudd College 2 Williams College 3 Stanford University Joint Meetings

More information

Contraction Principles some applications

Contraction Principles some applications Contraction Principles some applications Fabrice Gamboa (Institut de Mathématiques de Toulouse) 7th of June 2017 Christian and Patrick 59th Birthday Overview Appetizer : Christian and Patrick secret lives

More information

Eigenvalue PDFs. Peter Forrester, M&S, University of Melbourne

Eigenvalue PDFs. Peter Forrester, M&S, University of Melbourne Outline Eigenvalue PDFs Peter Forrester, M&S, University of Melbourne Hermitian matrices with real, complex or real quaternion elements Circular ensembles and classical groups Products of random matrices

More information

Free probabilities and the large N limit, IV. Loop equations and all-order asymptotic expansions... Gaëtan Borot

Free probabilities and the large N limit, IV. Loop equations and all-order asymptotic expansions... Gaëtan Borot Free probabilities and the large N limit, IV March 27th 2014 Loop equations and all-order asymptotic expansions... Gaëtan Borot MPIM Bonn & MIT based on joint works with Alice Guionnet, MIT Karol Kozlowski,

More information

Integrable probability: Beyond the Gaussian universality class

Integrable probability: Beyond the Gaussian universality class SPA Page 1 Integrable probability: Beyond the Gaussian universality class Ivan Corwin (Columbia University, Clay Mathematics Institute, Institute Henri Poincare) SPA Page 2 Integrable probability An integrable

More information

Orthogonal polynomials with respect to generalized Jacobi measures. Tivadar Danka

Orthogonal polynomials with respect to generalized Jacobi measures. Tivadar Danka Orthogonal polynomials with respect to generalized Jacobi measures Tivadar Danka A thesis submitted for the degree of Doctor of Philosophy Supervisor: Vilmos Totik Doctoral School in Mathematics and Computer

More information

ON THE CONVERGENCE OF THE NEAREST NEIGHBOUR EIGENVALUE SPACING DISTRIBUTION FOR ORTHOGONAL AND SYMPLECTIC ENSEMBLES

ON THE CONVERGENCE OF THE NEAREST NEIGHBOUR EIGENVALUE SPACING DISTRIBUTION FOR ORTHOGONAL AND SYMPLECTIC ENSEMBLES O THE COVERGECE OF THE EAREST EIGHBOUR EIGEVALUE SPACIG DISTRIBUTIO FOR ORTHOGOAL AD SYMPLECTIC ESEMBLES Dissertation zur Erlangung des Doktorgrades der aturwissenschaften an der Fakultät für Mathematik

More information

Fredholm determinant with the confluent hypergeometric kernel

Fredholm determinant with the confluent hypergeometric kernel Fredholm determinant with the confluent hypergeometric kernel J. Vasylevska joint work with I. Krasovsky Brunel University Dec 19, 2008 Problem Statement Let K s be the integral operator acting on L 2

More information

Distributions on unbounded moment spaces and random moment sequences

Distributions on unbounded moment spaces and random moment sequences Distributions on unbounded moment spaces and random moment sequences Jan Nagel Ruhr-Universität Bochum Faultät für Mathemati 44780 Bochum, Germany e-mail: jan.nagel@rub.de Holger Dette Ruhr-Universität

More information

Multiple orthogonal polynomials. Bessel weights

Multiple orthogonal polynomials. Bessel weights for modified Bessel weights KU Leuven, Belgium Madison WI, December 7, 2013 Classical orthogonal polynomials The (very) classical orthogonal polynomials are those of Jacobi, Laguerre and Hermite. Classical

More information

Convergence of spectral measures and eigenvalue rigidity

Convergence of spectral measures and eigenvalue rigidity Convergence of spectral measures and eigenvalue rigidity Elizabeth Meckes Case Western Reserve University ICERM, March 1, 2018 Macroscopic scale: the empirical spectral measure Macroscopic scale: the empirical

More information

Random Matrices: Beyond Wigner and Marchenko-Pastur Laws

Random Matrices: Beyond Wigner and Marchenko-Pastur Laws Random Matrices: Beyond Wigner and Marchenko-Pastur Laws Nathan Noiry Modal X, Université Paris Nanterre May 3, 2018 Wigner s Matrices Wishart s Matrices Generalizations Wigner s Matrices ij, (n, i, j

More information

Insights into Large Complex Systems via Random Matrix Theory

Insights into Large Complex Systems via Random Matrix Theory Insights into Large Complex Systems via Random Matrix Theory Lu Wei SEAS, Harvard 06/23/2016 @ UTC Institute for Advanced Systems Engineering University of Connecticut Lu Wei Random Matrix Theory and Large

More information

STAT C206A / MATH C223A : Stein s method and applications 1. Lecture 31

STAT C206A / MATH C223A : Stein s method and applications 1. Lecture 31 STAT C26A / MATH C223A : Stein s method and applications Lecture 3 Lecture date: Nov. 7, 27 Scribe: Anand Sarwate Gaussian concentration recap If W, T ) is a pair of random variables such that for all

More information

On the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance matrices

On the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance matrices On the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance matrices Sandrine Dallaporta To cite this version: Sandrine Dallaporta. On the Central Limit Theorem for the Eigenvalue

More information

Semicircle law on short scales and delocalization for Wigner random matrices

Semicircle law on short scales and delocalization for Wigner random matrices Semicircle law on short scales and delocalization for Wigner random matrices László Erdős University of Munich Weizmann Institute, December 2007 Joint work with H.T. Yau (Harvard), B. Schlein (Munich)

More information

The norm of polynomials in large random matrices

The norm of polynomials in large random matrices The norm of polynomials in large random matrices Camille Mâle, École Normale Supérieure de Lyon, Ph.D. Student under the direction of Alice Guionnet. with a significant contribution by Dimitri Shlyakhtenko.

More information

1 Intro to RMT (Gene)

1 Intro to RMT (Gene) M705 Spring 2013 Summary for Week 2 1 Intro to RMT (Gene) (Also see the Anderson - Guionnet - Zeitouni book, pp.6-11(?) ) We start with two independent families of R.V.s, {Z i,j } 1 i

More information

Measures, orthogonal polynomials, and continued fractions. Michael Anshelevich

Measures, orthogonal polynomials, and continued fractions. Michael Anshelevich Measures, orthogonal polynomials, and continued fractions Michael Anshelevich November 7, 2008 MEASURES AND ORTHOGONAL POLYNOMIALS. µ a positive measure on R. A linear functional µ[p ] = P (x) dµ(x), µ

More information

arxiv: v1 [cond-mat.stat-mech] 18 Aug 2008

arxiv: v1 [cond-mat.stat-mech] 18 Aug 2008 Deformations of the Tracy-Widom distribution arxiv:0808.2434v1 [cond-mat.stat-mech] 18 Aug 2008 O. Bohigas 1, J. X. de Carvalho 2,3 and M. P. Pato 1,2 1 CNRS, Université Paris-Sud, UMR8626, LPTMS, Orsay

More information

Double contour integral formulas for the sum of GUE and one matrix model

Double contour integral formulas for the sum of GUE and one matrix model Double contour integral formulas for the sum of GUE and one matrix model Based on arxiv:1608.05870 with Tom Claeys, Arno Kuijlaars, and Karl Liechty Dong Wang National University of Singapore Workshop

More information

Meixner matrix ensembles

Meixner matrix ensembles Meixner matrix ensembles W lodek Bryc 1 Cincinnati April 12, 2011 1 Based on joint work with Gerard Letac W lodek Bryc (Cincinnati) Meixner matrix ensembles April 12, 2011 1 / 29 Outline of talk Random

More information

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case The largest eigenvalues of the sample covariance matrix 1 in the heavy-tail case Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia NY), Johannes Heiny (Aarhus University)

More information

Measures, orthogonal polynomials, and continued fractions. Michael Anshelevich

Measures, orthogonal polynomials, and continued fractions. Michael Anshelevich Measures, orthogonal polynomials, and continued fractions Michael Anshelevich November 7, 2008 MEASURES AND ORTHOGONAL POLYNOMIALS. MEASURES AND ORTHOGONAL POLYNOMIALS. µ a positive measure on R. 2 MEASURES

More information

Orthogonal Polynomials, Perturbed Hankel Determinants. and. Random Matrix Models

Orthogonal Polynomials, Perturbed Hankel Determinants. and. Random Matrix Models Orthogonal Polynomials, Perturbed Hankel Determinants and Random Matrix Models A thesis presented for the degree of Doctor of Philosophy of Imperial College London and the Diploma of Imperial College by

More information

Density of States for Random Band Matrices in d = 2

Density of States for Random Band Matrices in d = 2 Density of States for Random Band Matrices in d = 2 via the supersymmetric approach Mareike Lager Institute for applied mathematics University of Bonn Joint work with Margherita Disertori ZiF Summer School

More information

Rectangular Young tableaux and the Jacobi ensemble

Rectangular Young tableaux and the Jacobi ensemble Rectangular Young tableaux and the Jacobi ensemble Philippe Marchal October 20, 2015 Abstract It has been shown by Pittel and Romik that the random surface associated with a large rectangular Young tableau

More information

Uniformly Random Lozenge Tilings of Polygons on the Triangular Lattice

Uniformly Random Lozenge Tilings of Polygons on the Triangular Lattice Interacting Particle Systems, Growth Models and Random Matrices Workshop Uniformly Random Lozenge Tilings of Polygons on the Triangular Lattice Leonid Petrov Department of Mathematics, Northeastern University,

More information

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction Random Matrix Theory and its applications to Statistics and Wireless Communications Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction Sergio Verdú Princeton University National

More information

Painlevé equations and orthogonal polynomials

Painlevé equations and orthogonal polynomials KU Leuven, Belgium Kapaev workshop, Ann Arbor MI, 28 August 2017 Contents Painlevé equations (discrete and continuous) appear at various places in the theory of orthogonal polynomials: Discrete Painlevé

More information

Random walks in Beta random environment

Random walks in Beta random environment Random walks in Beta random environment Guillaume Barraquand 22 mai 2015 (Based on joint works with Ivan Corwin) Consider the simple random walk X t on Z, starting from 0. We note P ( X t+1 = X t + 1 )

More information

Random Matrix Theory for the Wilson-Dirac operator

Random Matrix Theory for the Wilson-Dirac operator Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of Physics and Astronomy SUNY Stony Brook (NY, USA) Bielefeld, December 14th, 2011 Outline Introduction in Lattice QCD and in

More information

Valerio Cappellini. References

Valerio Cappellini. References CETER FOR THEORETICAL PHYSICS OF THE POLISH ACADEMY OF SCIECES WARSAW, POLAD RADOM DESITY MATRICES AD THEIR DETERMIATS 4 30 SEPTEMBER 5 TH SFB TR 1 MEETIG OF 006 I PRZEGORZAłY KRAKÓW Valerio Cappellini

More information

The circular law. Lewis Memorial Lecture / DIMACS minicourse March 19, Terence Tao (UCLA)

The circular law. Lewis Memorial Lecture / DIMACS minicourse March 19, Terence Tao (UCLA) The circular law Lewis Memorial Lecture / DIMACS minicourse March 19, 2008 Terence Tao (UCLA) 1 Eigenvalue distributions Let M = (a ij ) 1 i n;1 j n be a square matrix. Then one has n (generalised) eigenvalues

More information

Duality, Statistical Mechanics and Random Matrices. Bielefeld Lectures

Duality, Statistical Mechanics and Random Matrices. Bielefeld Lectures Duality, Statistical Mechanics and Random Matrices Bielefeld Lectures Tom Spencer Institute for Advanced Study Princeton, NJ August 16, 2016 Overview Statistical mechanics motivated by Random Matrix theory

More information

ORTHOGONAL POLYNOMIALS IN PROBABILITY THEORY ABSTRACTS MINI-COURSES

ORTHOGONAL POLYNOMIALS IN PROBABILITY THEORY ABSTRACTS MINI-COURSES ORTHOGONAL POLYNOMIALS IN PROBABILITY THEORY ABSTRACTS Jinho Baik (University of Michigan) ORTHOGONAL POLYNOMIAL ENSEMBLES MINI-COURSES TALK 1: ORTHOGONAL POLYNOMIAL ENSEMBLES We introduce a certain joint

More information

Geometric Dyson Brownian motion and May Wigner stability

Geometric Dyson Brownian motion and May Wigner stability Geometric Dyson Brownian motion and May Wigner stability Jesper R. Ipsen University of Melbourne Summer school: Randomness in Physics and Mathematics 2 Bielefeld 2016 joint work with Henning Schomerus

More information

DLR equations for the Sineβ process and applications

DLR equations for the Sineβ process and applications DLR equations for the Sineβ process and applications Thomas Leble (Courant Institute - NYU) Columbia University - 09/28/2018 Joint work with D. Dereudre, A. Hardy, M. Maı da (Universite Lille 1) Log-gases

More information

Numerical Methods for Random Matrices

Numerical Methods for Random Matrices Numerical Methods for Random Matrices MIT 18.95 IAP Lecture Series Per-Olof Persson (persson@mit.edu) January 23, 26 1.9.8.7 Random Matrix Eigenvalue Distribution.7.6.5 β=1 β=2 β=4 Probability.6.5.4.4

More information

Assessing the dependence of high-dimensional time series via sample autocovariances and correlations

Assessing the dependence of high-dimensional time series via sample autocovariances and correlations Assessing the dependence of high-dimensional time series via sample autocovariances and correlations Johannes Heiny University of Aarhus Joint work with Thomas Mikosch (Copenhagen), Richard Davis (Columbia),

More information

Distributions on matrix moment spaces

Distributions on matrix moment spaces Distributions on matrix moment spaces Holger Dette, Matthias Guhlich Ruhr-Universität Bochum Fakultät für Mathematik 44780 Bochum, Germany e-mail: holger.dette@rub.de Jan Nagel Technische Universität München

More information

MATRIX KERNELS FOR THE GAUSSIAN ORTHOGONAL AND SYMPLECTIC ENSEMBLES

MATRIX KERNELS FOR THE GAUSSIAN ORTHOGONAL AND SYMPLECTIC ENSEMBLES Ann. Inst. Fourier, Grenoble 55, 6 (5), 197 7 MATRIX KERNELS FOR THE GAUSSIAN ORTHOGONAL AND SYMPLECTIC ENSEMBLES b Craig A. TRACY & Harold WIDOM I. Introduction. For a large class of finite N determinantal

More information

arxiv: v3 [math-ph] 23 May 2017

arxiv: v3 [math-ph] 23 May 2017 arxiv:161.8561v3 [math-ph] 3 May 17 On the probability of positive-definiteness in the ggue via semi-classical Laguerre polynomials Alfredo Deaño and icholas J. Simm May 5, 17 Abstract In this paper, we

More information

FREE PROBABILITY THEORY

FREE PROBABILITY THEORY FREE PROBABILITY THEORY ROLAND SPEICHER Lecture 3 Freeness and Random Matrices Now we come to one of the most important and inspiring realizations of freeness. Up to now we have realized free random variables

More information