Dynamics of a tagged monomer: Effects of elastic pinning and harmonic absorption. Shamik Gupta

Size: px
Start display at page:

Download "Dynamics of a tagged monomer: Effects of elastic pinning and harmonic absorption. Shamik Gupta"

Transcription

1 : Effects of elastic pinning and harmonic absorption Laboratoire de Physique Théorique et Modèles Statistiques, Université Paris-Sud, France Joint work with Alberto Rosso Christophe Texier Ref.: Phys. Rev. Lett. 111, (2013)

2 Bounds on human demeanour.

3 Upper bound: To bring in happiness wherever you go.

4 Upper bound: To bring in happiness wherever you go. Lower bound: To bring in happiness whenever you go.

5 Upper bound: To bring in happiness wherever you go. Lower bound: To bring in happiness whenever you go.

6 Upper bound: To bring in happiness wherever you go. Lower bound: To bring in happiness whenever you go

7 Upper bound: To bring in happiness wherever you go. Lower bound: To bring in happiness whenever you go exchanges and chats since 2009 (and still counting)!!

8 The model 1 Rouse polymer of L monomers immersed in a solvent:

9 The model 1 Rouse polymer of L monomers immersed in a solvent: 2 h i : displacement of the i-th monomer from equilibrium.

10 The model 1 Rouse polymer of L monomers immersed in a solvent: 2 h i : displacement of the i-th monomer from equilibrium. 3 Elastic energy E el = (1/2) i (h i+1 h i ) 2.

11 The model 1 Rouse polymer of L monomers immersed in a solvent: 2 h i : displacement of the i-th monomer from equilibrium. 3 Elastic energy E el = (1/2) i (h i+1 h i ) 2. 4 Langevin Dynamics: h i (t) t = E el h i +η i (t) = j ijh j (t)+η i (t).

12 The model 1 Rouse polymer of L monomers immersed in a solvent: 2 h i : displacement of the i-th monomer from equilibrium. 3 Elastic energy E el = (1/2) i (h i+1 h i ) 2. 4 Langevin Dynamics: h i (t) t = E el h i +η i (t) = j ijh j (t)+η i (t). 5 : discrete Laplacian, {η i (t)} independent Gaussian white noise: η i (t) = 0, η i (t)η j (t ) = 2T δ i,j δ(t t ).

13 The model 1 Rouse polymer of L monomers immersed in a solvent L-dim. discrete Edwards-Wilkinson interface h i i 2 h i : displacement of the i-th monomer from equilibrium. 3 Elastic energy E el = (1/2) i (h i+1 h i ) 2. 4 Langevin Dynamics: h i (t) t = E el h i +η i (t) = j ijh j (t)+η i (t). 5 : discrete Laplacian, {η i (t)} independent Gaussian white noise: η i (t) = 0, η i (t)η j (t ) = 2T δ i,j δ(t t ).

14 The model 1 Rouse polymer of L monomers immersed in a solvent L-dim. discrete Edwards-Wilkinson interface h i 2 h i : displacement of the i-th monomer from equilibrium. 3 Elastic energy E el = (1/2) i (h i+1 h i ) 2. 4 Langevin Dynamics: h i (t) t = E el h i +η i (t) = j ijh j (t)+η i (t). 5 : discrete Laplacian, {η i (t)} independent Gaussian white noise: η i (t) = 0, η i (t)η j (t ) = 2T δ i,j δ(t t ). 6 Set T = 1. i

15 Diffusion and Subdiffusion 1 L-dim. discrete Edwards-Wilkinson interface: h i i

16 Diffusion and Subdiffusion 1 L-dim. discrete Edwards-Wilkinson interface: h i 2 Centre of mass (1/L) L i=1 h i(t) Markovian dynamics, normal diffusion: Mean-squared displacement 2(1/L)t. i

17 Rouse polymer: Diffusion and Subdiffusion 1 L-dim. discrete Edwards-Wilkinson interface: h i 2 Tagged monomer Non-Markovian dynamics, anomalous diffusion: 2 Mean-squared displacement π b 0 t. i

18 Rouse polymer: Diffusion and Subdiffusion 1 Tagged monomer Mean-squared displacement 2 π b 0 t.

19 Rouse polymer: Diffusion and Subdiffusion 1 2 Tagged monomer Mean-squared displacement π b 0 t. b 0 encodes memory of polymer configuration at t = 0. Equilibrium at t = 0 Tagged monomer exhibits fractional Brownian motion (correlated increments), b 0 = 2. Out of equilibrium flat configuration at t = 0 Correlated increments drawn from a Gaussian distribution with a time-dependent variance, b 0 = 1 (Krug et al. (1997)).

20 What we are after... Two specific situations of practical relevance:

21 What we are after... Two specific situations of practical relevance: 1 Elastic pinning of the tagged monomer (cf. optical tweezers). t>0 κ 0 t =0 h i i

22 What we are after... Two specific situations of practical relevance: 1 Elastic pinning of the tagged monomer (cf. optical tweezers). t>0 κ 0 t =0 2 Absorption of the tagged monomer on an interval. Example: Reactant attached to a monomer encounters an external reactive site fixed in space. h i i

23 What we are after... Two specific situations of practical relevance: 1 Elastic pinning of the the tagged monomer. 2 Absorption of the tagged monomer in an interval.

24 What we are after... Two specific situations of practical relevance: 1 Elastic pinning of the the tagged monomer. 2 Absorption of the tagged monomer in an interval. Questions: Dynamics of the tagged monomer, Steady state, Approach to the steady state, Memory of the initial condition.

25 What we are after... Two specific situations of practical relevance: 1 Elastic pinning of the the tagged monomer. 2 Absorption of the tagged monomer in an interval. Questions: Dynamics of the tagged monomer, Steady state, Approach to the steady state, Memory of the initial condition. Our work: Exact analytical results for elastic pinning and harmonic absorption. In particular, strong memory effects in the relaxation to the steady state.

26 Elastic pinning t>0 κ 0 t =0 h i i [ W t[h h 0 ] t = i 2 h 2 i + i,j h i Λ ij h j ]W t [h h 0 ]; Λ ij = ij κδ i,j δ i,0. Langevin approach (Viñales and Despósito (2006,2009), Grebenkov (2011))

27 Elastic pinning t>0 κ 0 t =0 h i i [ W t[h h 0 ] t = i 2 h 2 i + i,j h i Λ ij h j ]W t [h h 0 ]; Λ ij = ij κδ i,j δ i,0. 1 Replace matrix Λ by number λ: 1d Ornstein-Uhlenbeck process.

28 Elastic pinning t>0 κ 0 t =0 h i i [ W t[h h 0 ] t = i 2 h 2 i + i,j h i Λ ij h j ]W t [h h 0 ]; Λ ij = ij κδ i,j δ i,0. 1 Replace matrix Λ by number λ: 1d Ornstein-Uhlenbeck process. ( ) [ ] 2 W t [h h 0 Λ ] = det exp 1 2π(1 e 2Λt ) 2 (h e Λt h 0 ) T Λ (h e Λt h 0 ). 1 e 2Λt

29 Flat initial condition t = 0 : t > 0 : T = 1 + elastic pinning with spring constant κ.

30 Equilibrated initial condition t = 0 : Equilibrated at temp. T 0 t > 0 : T = 1 + elastic pinning with spring constant κ.

31 Elastic pinning: Exact results 6 4 T 0 = 1 T 0 = 4 h 2 0 (t) 2 L = 200 T 0 = 0 κ = h 2 0 (t) 1 κ [ 1+ T 0 1 κ Time t ] 2 πt T 0c 1 +. κ 2 t

32 Absorption in an interval t > 0 : Absorbing boundaries [ W t[h h 0 ] t = i 2 h 2 i i,j ( h i ij h j )]W t [h h 0 ].

33 Absorption in an interval t > 0 : Absorbing boundaries [ W t[h h 0 ] t = i 2 h 2 i ( i,j h i ij h j )]W t [h h 0 ]. Absorbing boundary conds. for the tagged monomer.

34 Harmonic absorption t > 0 : Absorption probability µh 2 0 (t). [ W t[h h 0 ] t = i 2 h 2 i i,j ( h i ij h j +h i A ij h j )]W t [h h 0 ]; A ij = µδ i,j δ i,0.

35 Harmonic absorption: Exact results h 2 0 (t) abs 12 6 T 0 = 1 L = 200 T 0 = 4 4µ = δh Time t 10 4 T 0 = 0 0 T 0 = T 0 = Time t

36 Survival probability 1 S(t): survival probability of an initial configuration h 0.

37 Survival probability 1 S(t): survival probability of an initial configuration h 0. 2 W t[h h 0 ] t = [ i 2 h 2 i i,j ( h i ij h j +h i A ij h j )]W t [h h 0 ].

38 Survival probability 1 S(t): survival probability of an initial configuration h 0. [ W 2 t[h h 0 ] t = i ( i,j h i ij h j +h i A ij h j )]W t [h h 0 ]. 2 h 2 i 3 t S(t) = µ h 2 0 (t) S(t).

39 Survival probability 1 S(t): survival probability of an initial configuration h 0. [ W 2 t[h h 0 ] t = i ( i,j h i ij h j +h i A ij h j )]W t [h h 0 ]. 2 h 2 i 3 t S(t) = µ h ( 0 2(t) S(t). 4 S(t) = exp µ t 0 dτ h2 0 ). (τ) T 0 = 0 L = 200 4µ = S(t) 10-2 T 0 = 4 T 0 = Time t Consistent with simulations (Kantor and Kardar (2004)).

40 Conclusions 1 Tagged monomer dynamics under elastic pinning and harmonic absorption: Exact results.

41 Conclusions 1 Tagged monomer dynamics under elastic pinning and harmonic absorption: Exact results. 2 Strong memory effects:

42 Conclusions 1 Tagged monomer dynamics under elastic pinning and harmonic absorption: Exact results. 2 Strong memory effects: Pinning case: Relaxation as 1/ t, unless evolution at the same temp. as that of the initial eqlbm. when relaxation as 1/t. Non-monotonic relaxation depending on the initial eqlbm. temp.

43 Conclusions 1 Tagged monomer dynamics under elastic pinning and harmonic absorption: Exact results. 2 Strong memory effects: Pinning case: Relaxation as 1/ t, unless evolution at the same temp. as that of the initial eqlbm. when relaxation as 1/t. Non-monotonic relaxation depending on the initial eqlbm. temp. Absorption case: Relaxation always as 1/t. Non-monotonic relaxation, except for T 0 = 0.

44 Conclusions 1 Tagged monomer dynamics under elastic pinning and harmonic absorption: Exact results. 2 Strong memory effects: Pinning case: Relaxation as 1/ t, unless evolution at the same temp. as that of the initial eqlbm. when relaxation as 1/t. Non-monotonic relaxation depending on the initial eqlbm. temp. Absorption case: Relaxation always as 1/t. Non-monotonic relaxation, except for T 0 = 0. 3 Analysis may be generalized to a Rouse chain in d dimensions or a d-dimensional EW interface, by using the corresponding Laplacian matrix in place of.

45 Conclusions 1 Tagged monomer dynamics under elastic pinning and harmonic absorption: Exact results. 2 Strong memory effects: Pinning case: Relaxation as 1/ t, unless evolution at the same temp. as that of the initial eqlbm. when relaxation as 1/t. Non-monotonic relaxation depending on the initial eqlbm. temp. Absorption case: Relaxation always as 1/t. Non-monotonic relaxation, except for T 0 = 0. 3 Analysis may be generalized to a Rouse chain in d dimensions or a d-dimensional EW interface, by using the corresponding Laplacian matrix in place of. 4 Hydrodynamic effects for the chain or long-range elastic interactions for the interface may be included by replacing with the corresponding fractional Laplacian ( ) z/2.

5 Applying the Fokker-Planck equation

5 Applying the Fokker-Planck equation 5 Applying the Fokker-Planck equation We begin with one-dimensional examples, keeping g = constant. Recall: the FPE for the Langevin equation with η(t 1 )η(t ) = κδ(t 1 t ) is = f(x) + g(x)η(t) t = x [f(x)p

More information

Anomalous diffusion of a tagged monomer with absorbing boundaries

Anomalous diffusion of a tagged monomer with absorbing boundaries Anomalous diffusion of a tagged monomer with absorbing boundaries Thesis submitted as part of the requirements for the degree of Master of Science (M.Sc.) in Physics at Tel Aviv University School of Physics

More information

Part III. Polymer Dynamics molecular models

Part III. Polymer Dynamics molecular models Part III. Polymer Dynamics molecular models I. Unentangled polymer dynamics I.1 Diffusion of a small colloidal particle I.2 Diffusion of an unentangled polymer chain II. Entangled polymer dynamics II.1.

More information

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution.

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution. Course M6 Lecture 5 6//004 Polymer dynamics Diffusion of polymers in melts and dilute solution Dr James Elliott 5. Introduction So far, we have considered the static configurations and morphologies of

More information

Spherical models of interface growth

Spherical models of interface growth Spherical models of interface growth Malte Henkel Groupe de Physique Statistique Institut Jean Lamour, Université de Lorraine Nancy, France co-author: X. Durang (KIAS Seoul) CompPhys 14, Leipzig, 27 th

More information

Interfaces with short-range correlated disorder: what we learn from the Directed Polymer

Interfaces with short-range correlated disorder: what we learn from the Directed Polymer Interfaces with short-range correlated disorder: what we learn from the Directed Polymer Elisabeth Agoritsas (1), Thierry Giamarchi (2) Vincent Démery (3), Alberto Rosso (4) Reinaldo García-García (3),

More information

Real roots of random polynomials and zero crossing properties of diffusion equation

Real roots of random polynomials and zero crossing properties of diffusion equation Real roots of random polynomials and zero crossing properties of diffusion equation Grégory Schehr Laboratoire de Physique Théorique et Modèles Statistiques Orsay, Université Paris XI G. S., S. N. Majumdar,

More information

Anomalous diffusion in biology: fractional Brownian motion, Lévy flights

Anomalous diffusion in biology: fractional Brownian motion, Lévy flights Anomalous diffusion in biology: fractional Brownian motion, Lévy flights Jan Korbel Faculty of Nuclear Sciences and Physical Engineering, CTU, Prague Minisymposium on fundamental aspects behind cell systems

More information

Polymers Dynamics by Dielectric Spectroscopy

Polymers Dynamics by Dielectric Spectroscopy Polymers Dynamics by Dielectric Spectroscopy What s a polymer bulk? A condensed matter system where the structural units are macromolecules Polymers Shape of a Macromolecule in the Bulk Flory's prediction

More information

PERSISTENCE AND SURVIVAL IN EQUILIBRIUM STEP FLUCTUATIONS. Chandan Dasgupta

PERSISTENCE AND SURVIVAL IN EQUILIBRIUM STEP FLUCTUATIONS. Chandan Dasgupta PERSISTENCE AND SURVIVAL IN EQUILIBRIUM STEP FLUCTUATIONS Chandan Dasgupta Centre for Condensed Matter Theory Department of Physics Indian Institute of Science, Bangalore http://www.physics.iisc.ernet.in/~cdgupta

More information

Maximal distance travelled by N vicious walkers till their survival arxiv: v1 [cond-mat.stat-mech] 17 Feb 2014

Maximal distance travelled by N vicious walkers till their survival arxiv: v1 [cond-mat.stat-mech] 17 Feb 2014 Noname manuscript No. will be inserted by the editor Anupam Kundu Satya N. Majumdar Grégory Schehr Maximal distance travelled by N vicious walkers till their survival arxiv:4.3964v [cond-mat.stat-mech]

More information

The Kramers problem and first passage times.

The Kramers problem and first passage times. Chapter 8 The Kramers problem and first passage times. The Kramers problem is to find the rate at which a Brownian particle escapes from a potential well over a potential barrier. One method of attack

More information

Statistical Mechanics of Active Matter

Statistical Mechanics of Active Matter Statistical Mechanics of Active Matter Umberto Marini Bettolo Marconi University of Camerino, Italy Naples, 24 May,2017 Umberto Marini Bettolo Marconi (2017) Statistical Mechanics of Active Matter 2017

More information

CHAPTER V. Brownian motion. V.1 Langevin dynamics

CHAPTER V. Brownian motion. V.1 Langevin dynamics CHAPTER V Brownian motion In this chapter, we study the very general paradigm provided by Brownian motion. Originally, this motion is that a heavy particle, called Brownian particle, immersed in a fluid

More information

Sliding Friction in the Frenkel-Kontorova Model

Sliding Friction in the Frenkel-Kontorova Model arxiv:cond-mat/9510058v1 12 Oct 1995 to appear in "The Physics of Sliding Friction", Ed. B.N.J. Persson (Kluwer Academic Publishers), 1995 Sliding Friction in the Frenkel-Kontorova Model E. Granato I.N.P.E.,

More information

Onsager theory: overview

Onsager theory: overview Onsager theory: overview Pearu Peterson December 18, 2006 1 Introduction Our aim is to study matter that consists of large number of molecules. A complete mechanical description of such a system is practically

More information

VIII.B Equilibrium Dynamics of a Field

VIII.B Equilibrium Dynamics of a Field VIII.B Equilibrium Dynamics of a Field The next step is to generalize the Langevin formalism to a collection of degrees of freedom, most conveniently described by a continuous field. Let us consider the

More information

Polymer Dynamics and Rheology

Polymer Dynamics and Rheology Polymer Dynamics and Rheology 1 Polymer Dynamics and Rheology Brownian motion Harmonic Oscillator Damped harmonic oscillator Elastic dumbbell model Boltzmann superposition principle Rubber elasticity and

More information

On the Dynamics and Disentanglement in Thin and Two-Dimensional Polymer Films

On the Dynamics and Disentanglement in Thin and Two-Dimensional Polymer Films J. Phys. IV France 1 (006) Pr1-1 c EDP Sciences, Les Ulis On the Dynamics and Disentanglement in Thin and Two-Dimensional Polymer Films H. Meyer, T. Kreer, A. Cavallo, J. P. Wittmer and J. Baschnagel 1

More information

dynamical zeta functions: what, why and what are the good for?

dynamical zeta functions: what, why and what are the good for? dynamical zeta functions: what, why and what are the good for? Predrag Cvitanović Georgia Institute of Technology November 2 2011 life is intractable in physics, no problem is tractable I accept chaos

More information

Table of Contents [ntc]

Table of Contents [ntc] Table of Contents [ntc] 1. Introduction: Contents and Maps Table of contents [ntc] Equilibrium thermodynamics overview [nln6] Thermal equilibrium and nonequilibrium [nln1] Levels of description in statistical

More information

arxiv: v1 [cond-mat.stat-mech] 31 Oct 2007

arxiv: v1 [cond-mat.stat-mech] 31 Oct 2007 Anomalous Diffusion with Absorbing Boundary Yacov Kantor 1, and Mehran Kardar 2 1 School for Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 6 Mar 2005

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 6 Mar 2005 arxiv:cond-mat/0503133v1 [cond-mat.dis-nn] 6 Mar 2005 Variant Monte Carlo algorithm for driven elastic strings in random media Abstract Alberto Rosso a and Werner Krauth b a Université de Genève 4, DPMC,

More information

08. Brownian Motion. University of Rhode Island. Gerhard Müller University of Rhode Island,

08. Brownian Motion. University of Rhode Island. Gerhard Müller University of Rhode Island, University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 1-19-215 8. Brownian Motion Gerhard Müller University of Rhode Island, gmuller@uri.edu Follow this

More information

Supplementary Information. SI Text 1: Derivation and assumptions of the effective temperature model

Supplementary Information. SI Text 1: Derivation and assumptions of the effective temperature model Supplementary Information SI Text 1: Derivation and assumptions of the effective temperature model We assume that the displacements of intracellular particles are due to passive thermal activity and active

More information

Maximal height of non-intersecting Brownian motions

Maximal height of non-intersecting Brownian motions Maximal height of non-intersecting Brownian motions G. Schehr Laboratoire de Physique Théorique et Modèles Statistiques CNRS-Université Paris Sud-XI, Orsay Collaborators: A. Comtet (LPTMS, Orsay) P. J.

More information

arxiv: v2 [cond-mat.soft] 13 Nov 2007

arxiv: v2 [cond-mat.soft] 13 Nov 2007 Kinetics of Loop Formation in Polymer Chains Ngo Minh Toan (a,b), Greg Morrison (a,c) Changbong Hyeon (d), and D. Thirumalai (a,e) arxiv:0708.2077v2 [cond-mat.soft] 13 Nov 2007 (a): Biophysics Program,

More information

LANGEVIN THEORY OF BROWNIAN MOTION. Contents. 1 Langevin theory. 1 Langevin theory 1. 2 The Ornstein-Uhlenbeck process 8

LANGEVIN THEORY OF BROWNIAN MOTION. Contents. 1 Langevin theory. 1 Langevin theory 1. 2 The Ornstein-Uhlenbeck process 8 Contents LANGEVIN THEORY OF BROWNIAN MOTION 1 Langevin theory 1 2 The Ornstein-Uhlenbeck process 8 1 Langevin theory Einstein (as well as Smoluchowski) was well aware that the theory of Brownian motion

More information

Some Topics in Stochastic Partial Differential Equations

Some Topics in Stochastic Partial Differential Equations Some Topics in Stochastic Partial Differential Equations November 26, 2015 L Héritage de Kiyosi Itô en perspective Franco-Japonaise, Ambassade de France au Japon Plan of talk 1 Itô s SPDE 2 TDGL equation

More information

Theory of fractional Lévy diffusion of cold atoms in optical lattices

Theory of fractional Lévy diffusion of cold atoms in optical lattices Theory of fractional Lévy diffusion of cold atoms in optical lattices, Erez Aghion, David Kessler Bar-Ilan Univ. PRL, 108 230602 (2012) PRX, 4 011022 (2014) Fractional Calculus, Leibniz (1695) L Hospital:

More information

Stochastic Stokes drift of a flexible dumbbell

Stochastic Stokes drift of a flexible dumbbell Stochastic Stokes drift of a flexible dumbbell Kalvis M. Jansons arxiv:math/0607797v4 [math.pr] 22 Mar 2007 Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK January

More information

Laplacian transport towards irregular interfaces: the mathematics

Laplacian transport towards irregular interfaces: the mathematics Laplacian transport towards irregular interfaces: the mathematics Denis S GREBENKOV Laboratoire de Physique de la Matière Condensée CNRS Ecole Polytechnique, France Email: denisgrebenkov@polytechniqueedu

More information

Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes

Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes Term-paper for PHY563 Xianfeng Rui, UIUC Physics Abstract: Three models of surface growth

More information

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Simo Särkkä Aalto University, Finland (visiting at Oxford University, UK) November 13, 2013 Simo Särkkä (Aalto) Lecture 1: Pragmatic

More information

Turbulent Flows. g u

Turbulent Flows. g u .4 g u.3.2.1 t. 6 4 2 2 4 6 Figure 12.1: Effect of diffusion on PDF shape: solution to Eq. (12.29) for Dt =,.2,.2, 1. The dashed line is the Gaussian with the same mean () and variance (3) as the PDF at

More information

Phys 450 Spring 2011 Solution set 6. A bimolecular reaction in which A and B combine to form the product P may be written as:

Phys 450 Spring 2011 Solution set 6. A bimolecular reaction in which A and B combine to form the product P may be written as: Problem Phys 45 Spring Solution set 6 A bimolecular reaction in which A and combine to form the product P may be written as: k d A + A P k d k a where k d is a diffusion-limited, bimolecular rate constant

More information

FRACTAL CONCEPT S IN SURFACE GROWT H

FRACTAL CONCEPT S IN SURFACE GROWT H FRACTAL CONCEPT S IN SURFACE GROWT H Albert-Läszlö Barabäs i H. Eugene Stanley Preface Notation guide x v xi x PART 1 Introduction 1 1 Interfaces in nature 1 1.1 Interface motion in disordered media 3

More information

Fluctuation theorem in systems in contact with different heath baths: theory and experiments.

Fluctuation theorem in systems in contact with different heath baths: theory and experiments. Fluctuation theorem in systems in contact with different heath baths: theory and experiments. Alberto Imparato Institut for Fysik og Astronomi Aarhus Universitet Denmark Workshop Advances in Nonequilibrium

More information

Caustics & collision velocities in turbulent aerosols

Caustics & collision velocities in turbulent aerosols Caustics & collision velocities in turbulent aerosols B. Mehlig, Göteborg University, Sweden Bernhard.Mehlig@physics.gu.se based on joint work with M. Wilkinson and K. Gustavsson. log Ku log St Formulation

More information

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany Langevin Methods Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 1 D 55128 Mainz Germany Motivation Original idea: Fast and slow degrees of freedom Example: Brownian motion Replace

More information

THREE-BODY INTERACTIONS DRIVE THE TRANSITION TO POLAR ORDER IN A SIMPLE FLOCKING MODEL

THREE-BODY INTERACTIONS DRIVE THE TRANSITION TO POLAR ORDER IN A SIMPLE FLOCKING MODEL THREE-BODY INTERACTIONS DRIVE THE TRANSITION TO POLAR ORDER IN A SIMPLE FLOCKING MODEL Purba Chatterjee and Nigel Goldenfeld Department of Physics University of Illinois at Urbana-Champaign Flocking in

More information

Supplementary Information

Supplementary Information Supplementary Information Switching of myosin-v motion between the lever-arm swing and Brownian search-and-catch Keisuke Fujita 1*, Mitsuhiro Iwaki 2,3*, Atsuko H. Iwane 1, Lorenzo Marcucci 1 & Toshio

More information

Long-range Casimir interactions between impurities in nematic liquid crystals and the collapse of polymer chains in such solvents

Long-range Casimir interactions between impurities in nematic liquid crystals and the collapse of polymer chains in such solvents EUROPHYSICS LETTERS 15 March 2000 Europhys. Lett., 49 (6), pp. 729 734 (2000) Long-range Casimir interactions between impurities in nematic liquid crystals and the collapse of polymer chains in such solvents

More information

Brownian Motion and Langevin Equations

Brownian Motion and Langevin Equations 1 Brownian Motion and Langevin Equations 1.1 Langevin Equation and the Fluctuation- Dissipation Theorem The theory of Brownian motion is perhaps the simplest approximate way to treat the dynamics of nonequilibrium

More information

Simulation of Coarse-Grained Equilibrium Polymers

Simulation of Coarse-Grained Equilibrium Polymers Simulation of Coarse-Grained Equilibrium Polymers J. P. Wittmer, Institut Charles Sadron, CNRS, Strasbourg, France Collaboration with: M.E. Cates (Edinburgh), P. van der Schoot (Eindhoven) A. Milchev (Sofia),

More information

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator Research on optomechanical systems is of relevance to gravitational wave detection

More information

arxiv: v3 [cond-mat.stat-mech] 5 Feb 2013

arxiv: v3 [cond-mat.stat-mech] 5 Feb 2013 From Langevin to generalized Langevin equations for the nonequilibrium Rouse model Christian Maes and Simi R. Thomas Instituut voor Theoretische Fysica, KU Leuven, Belgium (Dated: February 6, 213) arxiv:121.568v3

More information

Langevin Dynamics of a Single Particle

Langevin Dynamics of a Single Particle Overview Langevin Dynamics of a Single Particle We consider a spherical particle of radius r immersed in a viscous fluid and suppose that the dynamics of the particle depend on two forces: A drag force

More information

Dynamics of two coupled particles: comparison of Lennard-Jones and spring forces

Dynamics of two coupled particles: comparison of Lennard-Jones and spring forces Dynamics of two coupled particles: comparison of Lennard-Jones and spring forces Renata Retkute a and James P. Gleeson a a Department of Applied Mathematics, UCC, Cork, Ireland; ABSTRACT The motion of

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

A polymer model with long-range interactions: analysis and applications to the chromatin structure

A polymer model with long-range interactions: analysis and applications to the chromatin structure A polymer model with long-range interactions: analysis and applications to the chromatin structure A. Amitai and D. Holcman Group of Computational Biology and Applied Mathematics, Institute of Biology,

More information

Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET. David A. Case Rutgers, Spring 2009

Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET. David A. Case Rutgers, Spring 2009 Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET David A. Case Rutgers, Spring 2009 Techniques based on rotational motion What we studied last time probed translational

More information

Soft Matter and Biological Physics

Soft Matter and Biological Physics Dr. Ulrich F. Keyser - ufk20 (at) cam.ac.uk Soft Matter and Biological Physics Question Sheet Michaelmas 2011 Version: November 2, 2011 Question 0: Sedimentation Initially consider identical small particles

More information

Kinetics of Loop Formation in Polymer Chains

Kinetics of Loop Formation in Polymer Chains 6094 J. Phys. Chem. B 2008, 112, 6094-6106 Kinetics of Loop Formation in Polymer Chains Ngo Minh Toan,, Greg Morrison,, Changbong Hyeon, and D. Thirumalai*,,# Biophysics Program, Institute for Physical

More information

The one-dimensional KPZ equation and its universality

The one-dimensional KPZ equation and its universality The one-dimensional KPZ equation and its universality T. Sasamoto Based on collaborations with A. Borodin, I. Corwin, P. Ferrari, T. Imamura, H. Spohn 28 Jul 2014 @ SPA Buenos Aires 1 Plan of the talk

More information

Supporting Materials

Supporting Materials Supporting Materials Figure S1 Experimental Setup Page Figure S (a) (b) (c) Feynman Diagrams Page 3-6 Figure S3 D IR Spectra Page 7 Figure S4 Kinetic Model Page 8 Figure S5 Van t Hoff Plots Page 9 1 k

More information

Microscopic Hamiltonian dynamics perturbed by a conservative noise

Microscopic Hamiltonian dynamics perturbed by a conservative noise Microscopic Hamiltonian dynamics perturbed by a conservative noise CNRS, Ens Lyon April 2008 Introduction Introduction Fourier s law : Consider a macroscopic system in contact with two heat baths with

More information

3.1 Hydrodynamic interactions in a Gaussian chain

3.1 Hydrodynamic interactions in a Gaussian chain Chapter 3 The Zimm model 3. Hydrodynamic interactions in a Gaussian chain In the previous chapter we have focused on the Rouse chain, which gives a good description of the dynamics of unentangled concentrated

More information

On the (multi)scale nature of fluid turbulence

On the (multi)scale nature of fluid turbulence On the (multi)scale nature of fluid turbulence Kolmogorov axiomatics Laurent Chevillard Laboratoire de Physique, ENS Lyon, CNRS, France Laurent Chevillard, Laboratoire de Physique, ENS Lyon, CNRS, France

More information

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm Anomalous Lévy diffusion: From the flight of an albatross to optical lattices Eric Lutz Abteilung für Quantenphysik, Universität Ulm Outline 1 Lévy distributions Broad distributions Central limit theorem

More information

Stochastic processes for symmetric space-time fractional diffusion

Stochastic processes for symmetric space-time fractional diffusion Stochastic processes for symmetric space-time fractional diffusion Gianni PAGNINI IKERBASQUE Research Fellow BCAM - Basque Center for Applied Mathematics Bilbao, Basque Country - Spain gpagnini@bcamath.org

More information

The Molecular Dynamics Method

The Molecular Dynamics Method The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = d dx U(x) Conformation

More information

Persistence exponents for fluctuating interfaces

Persistence exponents for fluctuating interfaces PHYSICAL REVIEW E VOLUME 56, NUMBER 3 SEPTEMBER 1997 Persistence exponents for fluctuating interfaces J. Krug, 1 H. Kallabis, 2 S. N. Majumdar, 3 S. J. Cornell, 4 A. J. Bray, 4 and C. Sire 5 1 Fachbereich

More information

Explaining and modelling the rheology of polymeric fluids with the kinetic theory

Explaining and modelling the rheology of polymeric fluids with the kinetic theory Explaining and modelling the rheology of polymeric fluids with the kinetic theory Dmitry Shogin University of Stavanger The National IOR Centre of Norway IOR Norway 2016 Workshop April 25, 2016 Overview

More information

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is 1 I. BROWNIAN MOTION The dynamics of small particles whose size is roughly 1 µmt or smaller, in a fluid at room temperature, is extremely erratic, and is called Brownian motion. The velocity of such particles

More information

Gaussian fluctuations in an ideal bose-gas a simple model

Gaussian fluctuations in an ideal bose-gas a simple model Gaussian fluctuations in an ideal bose-gas a simple model A Petrova,, O Nedopekin, D Tayurskii and Q A Wang LUNAM Universite, ISMANS, Laboratoire de Physique Statistique et Systeme Complexes, 44, Avenue

More information

Shear Thinning Near the Rough Boundary in a Viscoelastic Flow

Shear Thinning Near the Rough Boundary in a Viscoelastic Flow Advanced Studies in Theoretical Physics Vol. 10, 2016, no. 8, 351-359 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2016.6624 Shear Thinning Near the Rough Boundary in a Viscoelastic Flow

More information

The Polymers Tug Back

The Polymers Tug Back Tugging at Polymers in Turbulent Flow The Polymers Tug Back Jean-Luc Thiffeault http://plasma.ap.columbia.edu/ jeanluc Department of Applied Physics and Applied Mathematics Columbia University Tugging

More information

(Polymer rheology Analyzer with Sliplink. Tatsuya Shoji JCII, Doi Project

(Polymer rheology Analyzer with Sliplink. Tatsuya Shoji JCII, Doi Project Rheology Simulator PASTA (Polymer rheology Analyzer with Sliplink model of entanglement) Tatsuya Shoji JCII, Doi Project 0 sec -3 msec -6 sec -9 nsec -12 psec -15 fsec GOURMET SUSHI PASTA COGNAC MUFFIN

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 9 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

Thermoelectricity with cold atoms?

Thermoelectricity with cold atoms? Thermoelectricity with cold atoms? Ch. Grenier, C. Kollath & A. Georges Centre de physique Théorique - Université de Genève - Collège de France Université de Lorraine Séminaire du groupe de physique statistique

More information

Entropic forces in Brownian motion

Entropic forces in Brownian motion Entropic forces in Brownian motion Nico Roos* Leiden Observatory, PO Box 9513, NL-2300 RA Leiden, The Netherlands Interest in the concept of entropic forces has risen considerably since E. Verlinde proposed

More information

Low-Resistant Band-Passing Noise and Its Dynamical Effects

Low-Resistant Band-Passing Noise and Its Dynamical Effects Commun. Theor. Phys. (Beijing, China) 48 (7) pp. 11 116 c International Academic Publishers Vol. 48, No. 1, July 15, 7 Low-Resistant Band-Passing Noise and Its Dynamical Effects BAI Zhan-Wu Department

More information

Quality Factor Thickness (nm) Quality Factor Thickness (nm) Quality Factor 10

Quality Factor Thickness (nm) Quality Factor Thickness (nm) Quality Factor 10 Oxygen-Terminated Fluorine-Terminated Length = 24 mm Length = 2 mm Length = 1 mm Length = 12 mm Length = 8 mm 8 mm Width, K 12 mm Width, K 1 mm Width, K 8 mm Width, K 12 mm Width, K 1 mm Width, K Supplementary

More information

Anomalous self-diffusion in the ferromagnetic Ising chain with Kawasaki dynamics

Anomalous self-diffusion in the ferromagnetic Ising chain with Kawasaki dynamics Anomalous self-diffusion in the ferromagnetic Ising chain with Kawasaki dynamics C. Godrèche, J.M. Luck To cite this version: C. Godrèche, J.M. Luck. Anomalous self-diffusion in the ferromagnetic Ising

More information

Chapter 7. Entanglements

Chapter 7. Entanglements Chapter 7. Entanglements The upturn in zero shear rate viscosity versus molecular weight that is prominent on a log-log plot is attributed to the onset of entanglements between chains since it usually

More information

Thermodynamic time asymmetry in nonequilibrium fluctuations

Thermodynamic time asymmetry in nonequilibrium fluctuations Journal of Statistical Mechanics: Theory and Experiment (8) P (4 pages) Thermodynamic time asymmetry in nonequilibrium fluctuations D. Andrieux and P. Gaspard Center for Nonlinear Phenomena and Complex

More information

Linear Theory of Evolution to an Unstable State

Linear Theory of Evolution to an Unstable State Chapter 2 Linear Theory of Evolution to an Unstable State c 2012 by William Klein, Harvey Gould, and Jan Tobochnik 1 October 2012 2.1 Introduction The simple theory of nucleation that we introduced in

More information

How can x-ray intensity fluctuation spectroscopy push the frontiers of Materials Science. Mark Sutton McGill University

How can x-ray intensity fluctuation spectroscopy push the frontiers of Materials Science. Mark Sutton McGill University How can x-ray intensity fluctuation spectroscopy push the frontiers of Materials Science Mark Sutton McGill University Coherent diffraction (001) Cu 3 Au peak Sutton et al., The Observation of Speckle

More information

First-Principles Calculations of Internal Friction of a Gaussian Chain

First-Principles Calculations of Internal Friction of a Gaussian Chain Advanced Studies in Theoretical Physics Vol 9, 05, no, - HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/0988/astp05448 First-Principles Calculations of Internal Friction of a Gaussian Chain Sayed Hasan Department

More information

C. points X and Y only. D. points O, X and Y only. (Total 1 mark)

C. points X and Y only. D. points O, X and Y only. (Total 1 mark) Grade 11 Physics -- Homework 16 -- Answers on a separate sheet of paper, please 1. A cart, connected to two identical springs, is oscillating with simple harmonic motion between two points X and Y that

More information

Non-trivial pinning threshold for an evolution equation involving long range interactions

Non-trivial pinning threshold for an evolution equation involving long range interactions Non-trivial pinning threshold for an evolution equation involving long range interactions Martin Jesenko joint work with Patrick Dondl Workshop: New trends in the variational modeling of failure phenomena

More information

Normalized kernel-weighted random measures

Normalized kernel-weighted random measures Normalized kernel-weighted random measures Jim Griffin University of Kent 1 August 27 Outline 1 Introduction 2 Ornstein-Uhlenbeck DP 3 Generalisations Bayesian Density Regression We observe data (x 1,

More information

Inverse Langevin approach to time-series data analysis

Inverse Langevin approach to time-series data analysis Inverse Langevin approach to time-series data analysis Fábio Macêdo Mendes Anníbal Dias Figueiredo Neto Universidade de Brasília Saratoga Springs, MaxEnt 2007 Outline 1 Motivation 2 Outline 1 Motivation

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

{σ x >t}p x. (σ x >t)=e at.

{σ x >t}p x. (σ x >t)=e at. 3.11. EXERCISES 121 3.11 Exercises Exercise 3.1 Consider the Ornstein Uhlenbeck process in example 3.1.7(B). Show that the defined process is a Markov process which converges in distribution to an N(0,σ

More information

Smoluchowski Diffusion Equation

Smoluchowski Diffusion Equation Chapter 4 Smoluchowski Diffusion Equation Contents 4. Derivation of the Smoluchoswki Diffusion Equation for Potential Fields 64 4.2 One-DimensionalDiffusoninaLinearPotential... 67 4.2. Diffusion in an

More information

A Short Introduction to Diffusion Processes and Ito Calculus

A Short Introduction to Diffusion Processes and Ito Calculus A Short Introduction to Diffusion Processes and Ito Calculus Cédric Archambeau University College, London Center for Computational Statistics and Machine Learning c.archambeau@cs.ucl.ac.uk January 24,

More information

Non-Equilibrium Fluctuations in Expansion/Compression Processes of a Single-Particle Gas

Non-Equilibrium Fluctuations in Expansion/Compression Processes of a Single-Particle Gas Non-Equilibrium Fluctuations in Expansion/Compression Processes o a Single-Particle Gas Hyu Kyu Pa Department o Physics, UNIST IBS Center or Sot and Living Matter Page 1 November 8, 015, Busan Nonequilibrium

More information

Brownian Motion: Fokker-Planck Equation

Brownian Motion: Fokker-Planck Equation Chapter 7 Brownian Motion: Fokker-Planck Equation The Fokker-Planck equation is the equation governing the time evolution of the probability density of the Brownian particla. It is a second order differential

More information

arxiv: v3 [cond-mat.soft] 10 Nov 2008

arxiv: v3 [cond-mat.soft] 10 Nov 2008 Scaling exponents of Forced Polymer Translocation through a nano-pore arxiv:88.1868v3 [cond-mat.soft] 1 Nov 28 Aniket Bhattacharya, 1, William H. Morrison, 1 Kaifu Luo, 2 Tapio Ala-Nissila, 2,3 See-Chen

More information

Stable One-Dimensional Dissipative Solitons in Complex Cubic-Quintic Ginzburg Landau Equation

Stable One-Dimensional Dissipative Solitons in Complex Cubic-Quintic Ginzburg Landau Equation Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the International School and Conference on Optics and Optical Materials, ISCOM07, Belgrade, Serbia, September 3 7, 2007 Stable One-Dimensional

More information

Critical Phenomena under Shear Flow

Critical Phenomena under Shear Flow Critical Phenomena under Shear Flow Pavlik Lettinga, Hao Wang, Jan K.G. Dhont Close to a gas-liquid critical point, effective interactions between particles become very long ranged, and the dynamics of

More information

Outline of the talk How to describe restricted diffusion? How to monitor restricted diffusion? Laplacian eigenfunctions in NMR Other applications Loca

Outline of the talk How to describe restricted diffusion? How to monitor restricted diffusion? Laplacian eigenfunctions in NMR Other applications Loca Laplacian Eigenfunctions in NMR Denis S. Grebenkov Laboratoire de Physique de la Matière Condensée CNRS Ecole Polytechnique, Palaiseau, France IPAM Workshop «Laplacian Eigenvalues and Eigenfunctions» February

More information

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4.

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4. Entanglements Zero-shear viscosity vs. M (note change of slope) M < M e Rouse slope 3.4 M > M e Edwards degennes Doi slope 1 Berry + Fox, 1968 Question: Which factors affect the Me: T, P, M, flexibility,

More information

Stochastic thermodynamics

Stochastic thermodynamics University of Ljubljana Faculty of Mathematics and Physics Seminar 1b Stochastic thermodynamics Author: Luka Pusovnik Supervisor: prof. dr. Primož Ziherl Abstract The formulation of thermodynamics at a

More information

Elementary Applications of Probability Theory

Elementary Applications of Probability Theory Elementary Applications of Probability Theory With an introduction to stochastic differential equations Second edition Henry C. Tuckwell Senior Research Fellow Stochastic Analysis Group of the Centre for

More information

arxiv: v2 [cond-mat.stat-mech] 17 Feb 2014

arxiv: v2 [cond-mat.stat-mech] 17 Feb 2014 arxiv:1309.1634v2 [cond-mat.stat-mech] 17 Feb 2014 Boundary crossover in semi-infinite non-equilibrium growth processes Nicolas Allegra, Jean-Yves Fortin and Malte Henkel Groupe de Physique Statistique,

More information

Statistical mechanics of random billiard systems

Statistical mechanics of random billiard systems Statistical mechanics of random billiard systems Renato Feres Washington University, St. Louis Banff, August 2014 1 / 39 Acknowledgements Collaborators: Timothy Chumley, U. of Iowa Scott Cook, Swarthmore

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information