Asymptotic Pure State Transformations

Size: px
Start display at page:

Download "Asymptotic Pure State Transformations"

Transcription

1 Asymptotic Pure State Transformations PHYS Southern Illinois University April 18, 2017 PHYS Southern Illinois University Asymptotic Pure State Transformations April 18, / 15

2 Entanglement Distillation Definition Recall that a state s distillable entanglement is defined by: { } n E D (ρ = lim lim sup ɛ 0 m m ρ m LOCC ρ n, F (ρ n, Φ + n 1 ɛ. In today s lecture we will compute the distillable entanglement of an arbitrary bipartite pure state Ψ. Theorem: for any bipartite pure state Ψ. E D ( Ψ = E( Ψ = S(tr A Ψ Ψ PHYS Southern Illinois University Asymptotic Pure State Transformations April 18, / 15

3 To compute the distillable entanglement of a pure state, we rely heavily on its Schmidt decomposition: Ψ = r p α β. =1 Our goal is to understand when it becomes possible transformations of the form Ψ m Φ + n by LOCC. The entire problem can be easily solved once the structure of Ψ m is understood. PHYS Southern Illinois University Asymptotic Pure State Transformations April 18, / 15

4 In this lecture, we consider a two-qubit state: Ψ = p p 11. Start taing copies: Ψ 2 = ( p p 11 2 = ( p 00 AB + 1 p 11 AB ( p 00 AB + 1 p 11 AB = p 00 A 00 B + p(1 p 01 A 01 B + p(1 p 10 A 10 B + (1 p 11 A 11 B = p 00 A 00 B + (1 p 11 A 11 B + ( p(1 p 01 A 01 B + 10 A 10 B. PHYS Southern Illinois University Asymptotic Pure State Transformations April 18, / 15

5 In general we have Ψ m = =0 p 2 (1 p m 2 permutation π permutation π of permutation π of 0 s m- 1 s 0 s m- 1 s A B. How many terms are in the second sum? For each fixed value, the number of terms in the second sum is the number of ways to permute 0 s and m- 1 s. This number can be computed by counting the number of ways to place 0 s along the line 1 to m one at a time, and then dividing by! (since the order of placement does not matter and each particular distribution of 0 s will therefore be generated! times. PHYS Southern Illinois University Asymptotic Pure State Transformations April 18, / 15

6 The number of permutations is thus given by m m 1 m + 1! = m! (m!! = ( m. The number ( m is called a binomial coefficient. It is also described as m choose. These are the coefficients on the expansion of (x + y m : (x + y m = =0 ( m x y m. PHYS Southern Illinois University Asymptotic Pure State Transformations April 18, / 15

7 Ψ m = =0 p 2 (1 p m 2 permutation π permutation π of permutation π of 0 s m- 1 s 0 s m- 1 s A B. Each term in the sum is orthogonal (a Schmidt decomposition of Ψ m. For each {0, m}, (ρ A m = tr B Ψ Ψ m has an ( m -dimensional eigenspace associated with eigenvalue p (1 p m and spanned by permutation π of { 0 s m- 1 s } : π is permutation of 0 s and m- 1 s. PHYS Southern Illinois University Asymptotic Pure State Transformations April 18, / 15

8 Let P be a projector onto this subspace; i.e. P = permutation π permutation π of 0 s m- 1 s 0 s permutation π of m- 1 s The P are projectors satisfying (i tr(p = ( m, (ii P P j = δ j P, and (iii P = I. It is easy to see that (ρ A m = (ρ B m = p (1 p m P. =0 PHYS Southern Illinois University Asymptotic Pure State Transformations April 18, / 15

9 We can write Ψ m = (m p 2 (1 p m 2 Ψ =0 where Ψ is an ( m -dimensional maximally entangled state, i.e. it is LU equivalent to the state 1 (m ( m ii, i=1 with P I Ψ j = I P Ψ j = P P Ψ j = δ j Ψ j. PHYS Southern Illinois University Asymptotic Pure State Transformations April 18, / 15

10 The LOCC distillation protocol consists of either Alice or Bob performing the projective measurement {P } m =0 and broadcasting the result. This will collapse the state Ψ m with probability q = ( m p (1 p m. LOCC Ψ The state Ψ has Entanglement entropy log ( m (since Ψ is maximally entangled, and so the average post-measurement entanglement is E = q E( Ψ = =0 =0 ( ( m m p (1 p m log. PHYS Southern Illinois University Asymptotic Pure State Transformations April 18, / 15

11 What is the value of E? Since the Entanglement Entropy is an entanglement monotone, we must have that E E ( Ψ m = mh(p. In deriving this formula, we are using a property of the von Neumann entropy nown as additivity: S(ρ σ = S(ρ + S(σ S(ρ m = ms(ρ. We therefore have the upper bound E = =0 ( ( m m p (1 p m log mh(p. PHYS Southern Illinois University Asymptotic Pure State Transformations April 18, / 15

12 A lower bound can be computed as ( m E = =0 ( m = =0 ( m =0 = H p (1 p m log p (1 p m log p (1 p m log ({( m p (1 p m } m =0 log(m mh(p. ( m (( m p (1 p m (p (1 p m + mh(p PHYS Southern Illinois University Asymptotic Pure State Transformations April 18, / 15

13 The last term follows from the expectation value of detecting (or m of the same outcomes in n independent trials of a binomal distribution: =0 =0 ( m p (1 p m log p = log p and ( m p (1 p m = mp = mp = mp. =1 t=0 ( m p (1 p m, =0 ( m 1 p 1 (1 p (m 1 ( 1 1 n ( n p t (1 p n t t PHYS Southern Illinois University Asymptotic Pure State Transformations April 18, / 15

14 Combining both upper and lower bounds gives the average entanglement rate log(m + 1 h(p 1 E h(p. m m 1 Hence in the limit: m E h(p = E(Ψ. Let us summarize what we have shown thus far. There exists a multi-outcome LOCC transformation Ψ m LOCC {q, Ψ } such that each Ψ is a maximally entangled state of dimension ( m and the average post-measurement entanglement per copy of Ψ, 1 m m =0 q E(Ψ, is arbitrarily close to E(Ψ for sufficiently large m. PHYS Southern Illinois University Asymptotic Pure State Transformations April 18, / 15

15 Our final step will be to show that the ensemble of maximally entangled states {q, Ψ } can be converted into n copies of our standard resource state Φ + n with high fidelity and with m n E(Ψ. That is, in the next lecture we will see how to transform {q, Ψ } LOCC Φ + me(ψ. This will complete the desired transformation Ψ m LOCC Φ + n at the rate given by the entanglement entropy of Ψ. PHYS Southern Illinois University Asymptotic Pure State Transformations April 18, / 15

Entanglement Measures and Monotones Pt. 2

Entanglement Measures and Monotones Pt. 2 Entanglement Measures and Monotones Pt. 2 PHYS 500 - Southern Illinois University April 8, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones Pt. 2 April 8, 2017 1 / 13 Entanglement

More information

Entanglement Measures and Monotones

Entanglement Measures and Monotones Entanglement Measures and Monotones PHYS 500 - Southern Illinois University March 30, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones March 30, 2017 1 / 11 Quantifying

More information

Compression and entanglement, entanglement transformations

Compression and entanglement, entanglement transformations PHYSICS 491: Symmetry and Quantum Information April 27, 2017 Compression and entanglement, entanglement transformations Lecture 8 Michael Walter, Stanford University These lecture notes are not proof-read

More information

Entanglement: concept, measures and open problems

Entanglement: concept, measures and open problems Entanglement: concept, measures and open problems Division of Mathematical Physics Lund University June 2013 Project in Quantum information. Supervisor: Peter Samuelsson Outline 1 Motivation for study

More information

Squashed entanglement

Squashed entanglement Squashed Entanglement based on Squashed Entanglement - An Additive Entanglement Measure (M. Christandl, A. Winter, quant-ph/0308088), and A paradigm for entanglement theory based on quantum communication

More information

MP 472 Quantum Information and Computation

MP 472 Quantum Information and Computation MP 472 Quantum Information and Computation http://www.thphys.may.ie/staff/jvala/mp472.htm Outline Open quantum systems The density operator ensemble of quantum states general properties the reduced density

More information

Quantum Nonlocality Pt. 4: More on the CHSH Inequality

Quantum Nonlocality Pt. 4: More on the CHSH Inequality Quantum Nonlocality Pt. 4: More on the CHSH Inequality PHYS 500 - Southern Illinois University May 4, 2017 PHYS 500 - Southern Illinois University Quantum Nonlocality Pt. 4: More on the CHSH Inequality

More information

Entanglement Manipulation

Entanglement Manipulation Entanglement Manipulation Steven T. Flammia 1 1 Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada (Dated: 22 March 2010) These are notes for my RIT tutorial lecture at the

More information

Quantum Teleportation Pt. 3

Quantum Teleportation Pt. 3 Quantum Teleportation Pt. 3 PHYS 500 - Southern Illinois University March 7, 2017 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 3 March 7, 2017 1 / 9 A Bit of History on Teleportation

More information

Ph 219/CS 219. Exercises Due: Friday 20 October 2006

Ph 219/CS 219. Exercises Due: Friday 20 October 2006 1 Ph 219/CS 219 Exercises Due: Friday 20 October 2006 1.1 How far apart are two quantum states? Consider two quantum states described by density operators ρ and ρ in an N-dimensional Hilbert space, and

More information

Quantum Data Compression

Quantum Data Compression PHYS 476Q: An Introduction to Entanglement Theory (Spring 2018) Eric Chitambar Quantum Data Compression With the basic foundation of quantum mechanics in hand, we can now explore different applications.

More information

The Principles of Quantum Mechanics: Pt. 1

The Principles of Quantum Mechanics: Pt. 1 The Principles of Quantum Mechanics: Pt. 1 PHYS 476Q - Southern Illinois University February 15, 2018 PHYS 476Q - Southern Illinois University The Principles of Quantum Mechanics: Pt. 1 February 15, 2018

More information

Lecture: Quantum Information

Lecture: Quantum Information Lecture: Quantum Information Transcribed by: Crystal Noel and Da An (Chi Chi) November 10, 016 1 Final Proect Information Find an issue related to class you are interested in and either: read some papers

More information

Quantum Entanglement- Fundamental Aspects

Quantum Entanglement- Fundamental Aspects Quantum Entanglement- Fundamental Aspects Debasis Sarkar Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata- 700009, India Abstract Entanglement is one of the most useful

More information

5. Communication resources

5. Communication resources 5. Communication resources Classical channel Quantum channel Entanglement How does the state evolve under LOCC? Properties of maximally entangled states Bell basis Quantum dense coding Quantum teleportation

More information

1. Basic rules of quantum mechanics

1. Basic rules of quantum mechanics 1. Basic rules of quantum mechanics How to describe the states of an ideally controlled system? How to describe changes in an ideally controlled system? How to describe measurements on an ideally controlled

More information

FRAMES IN QUANTUM AND CLASSICAL INFORMATION THEORY

FRAMES IN QUANTUM AND CLASSICAL INFORMATION THEORY FRAMES IN QUANTUM AND CLASSICAL INFORMATION THEORY Emina Soljanin Mathematical Sciences Research Center, Bell Labs April 16, 23 A FRAME 1 A sequence {x i } of vectors in a Hilbert space with the property

More information

Schur-Weyl duality, quantum data compression, tomography

Schur-Weyl duality, quantum data compression, tomography PHYSICS 491: Symmetry and Quantum Information April 25, 2017 Schur-Weyl duality, quantum data compression, tomography Lecture 7 Michael Walter, Stanford University These lecture notes are not proof-read

More information

Transmitting and Hiding Quantum Information

Transmitting and Hiding Quantum Information 2018/12/20 @ 4th KIAS WORKSHOP on Quantum Information and Thermodynamics Transmitting and Hiding Quantum Information Seung-Woo Lee Quantum Universe Center Korea Institute for Advanced Study (KIAS) Contents

More information

Introduction to Quantum Information Hermann Kampermann

Introduction to Quantum Information Hermann Kampermann Introduction to Quantum Information Hermann Kampermann Heinrich-Heine-Universität Düsseldorf Theoretische Physik III Summer school Bleubeuren July 014 Contents 1 Quantum Mechanics...........................

More information

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance.

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance. 9. Distance measures 9.1 Classical information measures How similar/close are two probability distributions? Trace distance Fidelity Example: Flipping two coins, one fair one biased Head Tail Trace distance

More information

Lecture 4: Postulates of quantum mechanics

Lecture 4: Postulates of quantum mechanics Lecture 4: Postulates of quantum mechanics Rajat Mittal IIT Kanpur The postulates of quantum mechanics provide us the mathematical formalism over which the physical theory is developed. For people studying

More information

Lecture 11: Quantum Information III - Source Coding

Lecture 11: Quantum Information III - Source Coding CSCI5370 Quantum Computing November 25, 203 Lecture : Quantum Information III - Source Coding Lecturer: Shengyu Zhang Scribe: Hing Yin Tsang. Holevo s bound Suppose Alice has an information source X that

More information

Entropy in Classical and Quantum Information Theory

Entropy in Classical and Quantum Information Theory Entropy in Classical and Quantum Information Theory William Fedus Physics Department, University of California, San Diego. Entropy is a central concept in both classical and quantum information theory,

More information

Lecture 19 October 28, 2015

Lecture 19 October 28, 2015 PHYS 7895: Quantum Information Theory Fall 2015 Prof. Mark M. Wilde Lecture 19 October 28, 2015 Scribe: Mark M. Wilde This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike

More information

CS286.2 Lecture 13: Quantum de Finetti Theorems

CS286.2 Lecture 13: Quantum de Finetti Theorems CS86. Lecture 13: Quantum de Finetti Theorems Scribe: Thom Bohdanowicz Before stating a quantum de Finetti theorem for density operators, we should define permutation invariance for quantum states. Let

More information

Entanglement: Definition, Purification and measures

Entanglement: Definition, Purification and measures Entanglement: Definition, Purification and measures Seminar in Quantum Information processing 3683 Gili Bisker Physics Department Technion Spring 006 Gili Bisker Physics Department, Technion Introduction

More information

Unitary Process Discrimination with Error Margin

Unitary Process Discrimination with Error Margin Unitary Process Discrimination with Error Margin DEX-SMI Workshop on Quantum Statistical Inference March 2-4, 2009, National Institute of Informatics (NII), Tokyo A. Hayashi (Fukui) T. Hashimoto (Fukui),

More information

Linear Algebra and Dirac Notation, Pt. 2

Linear Algebra and Dirac Notation, Pt. 2 Linear Algebra and Dirac Notation, Pt. 2 PHYS 500 - Southern Illinois University February 1, 2017 PHYS 500 - Southern Illinois University Linear Algebra and Dirac Notation, Pt. 2 February 1, 2017 1 / 14

More information

CS/Ph120 Homework 4 Solutions

CS/Ph120 Homework 4 Solutions CS/Ph10 Homework 4 Solutions November 3, 016 Problem 1: Robustness of GHZ and W states, part Solution: Due to Bolton Bailey a For the GHZ state, we have T r N GHZ N GHZ N = 1 0 N 1 0 N 1 + 1 N 1 1 N 1

More information

to mere bit flips) may affect the transmission.

to mere bit flips) may affect the transmission. 5 VII. QUANTUM INFORMATION THEORY to mere bit flips) may affect the transmission. A. Introduction B. A few bits of classical information theory Information theory has developed over the past five or six

More information

Principles of Quantum Mechanics Pt. 2

Principles of Quantum Mechanics Pt. 2 Principles of Quantum Mechanics Pt. 2 PHYS 500 - Southern Illinois University February 9, 2017 PHYS 500 - Southern Illinois University Principles of Quantum Mechanics Pt. 2 February 9, 2017 1 / 13 The

More information

Linear Algebra using Dirac Notation: Pt. 2

Linear Algebra using Dirac Notation: Pt. 2 Linear Algebra using Dirac Notation: Pt. 2 PHYS 476Q - Southern Illinois University February 6, 2018 PHYS 476Q - Southern Illinois University Linear Algebra using Dirac Notation: Pt. 2 February 6, 2018

More information

Chapter 5. Density matrix formalism

Chapter 5. Density matrix formalism Chapter 5 Density matrix formalism In chap we formulated quantum mechanics for isolated systems. In practice systems interect with their environnement and we need a description that takes this feature

More information

Entanglement in Quantum Field Theory

Entanglement in Quantum Field Theory Entanglement in Quantum Field Theory John Cardy University of Oxford DAMTP, December 2013 Outline Quantum entanglement in general and its quantification Path integral approach Entanglement entropy in 1+1-dimensional

More information

Ph 219/CS 219. Exercises Due: Friday 3 November 2006

Ph 219/CS 219. Exercises Due: Friday 3 November 2006 Ph 9/CS 9 Exercises Due: Friday 3 November 006. Fidelity We saw in Exercise. that the trace norm ρ ρ tr provides a useful measure of the distinguishability of the states ρ and ρ. Another useful measure

More information

Nullity of Measurement-induced Nonlocality. Yu Guo

Nullity of Measurement-induced Nonlocality. Yu Guo Jul. 18-22, 2011, at Taiyuan. Nullity of Measurement-induced Nonlocality Yu Guo (Joint work with Pro. Jinchuan Hou) 1 1 27 Department of Mathematics Shanxi Datong University Datong, China guoyu3@yahoo.com.cn

More information

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Coherence of Assistance and Regularized Coherence of Assistance by Ming-Jing Zhao, Teng Ma, and Shao-Ming Fei Preprint no.: 14 2018

More information

Quantum Mechanics II: Examples

Quantum Mechanics II: Examples Quantum Mechanics II: Examples Michael A. Nielsen University of Queensland Goals: 1. To apply the principles introduced in the last lecture to some illustrative examples: superdense coding, and quantum

More information

Ensembles and incomplete information

Ensembles and incomplete information p. 1/32 Ensembles and incomplete information So far in this course, we have described quantum systems by states that are normalized vectors in a complex Hilbert space. This works so long as (a) the system

More information

Quantum decoherence. Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, Quantum decoherence p. 1/2

Quantum decoherence. Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, Quantum decoherence p. 1/2 Quantum decoherence p. 1/2 Quantum decoherence Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, 2007 Quantum decoherence p. 2/2 Outline Quantum decoherence: 1. Basics of quantum

More information

1 Traces, Traces Everywhere (5 points)

1 Traces, Traces Everywhere (5 points) Ph15c Spring 017 Prof. Sean Carroll seancarroll@gmail.com Homework - Solutions Assigned TA: Ashmeet Singh ashmeet@caltech.edu 1 Traces, Traces Everywhere (5 points) (a.) Okay, so the time evolved state

More information

4 Entanglement measures initiated in Refs. 8;9;10. In particular, the idea of entanglement measures based on distance from the set of disentangled sta

4 Entanglement measures initiated in Refs. 8;9;10. In particular, the idea of entanglement measures based on distance from the set of disentangled sta Quantum Information and Computation, Vol. 1, No. 1 (2001) 3 26 cfl Rinton Press ENTANGLEMENT MEASURES MICHAψL HORODECKI Λ Institute of Theoretical Physics and Astrophysics, University of Gdańsk, Poland

More information

Local cloning of entangled states

Local cloning of entangled states Local cloning of entangled states Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. March 16, 2010 Vlad Gheorghiu (CMU) Local cloning of entangled states March

More information

The Framework of Quantum Mechanics

The Framework of Quantum Mechanics The Framework of Quantum Mechanics We now use the mathematical formalism covered in the last lecture to describe the theory of quantum mechanics. In the first section we outline four axioms that lie at

More information

AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013

AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013 AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013 Lecturer: Dr. Mark Tame Introduction With the emergence of new types of information, in this case

More information

Concentration of Measure Effects in Quantum Information. Patrick Hayden (McGill University)

Concentration of Measure Effects in Quantum Information. Patrick Hayden (McGill University) Concentration of Measure Effects in Quantum Information Patrick Hayden (McGill University) Overview Superdense coding Random states and random subspaces Superdense coding of quantum states Quantum mechanical

More information

Quantum Entanglement and Geometry

Quantum Entanglement and Geometry Quantum Entanglement and Geometry arxiv:1003.3778v1 [quant-ph] 19 Mar 2010 Diplomarbeit zur Erlangung des akademischen Grades,,Magister der Naturwissenschaften an der Universität Wien eingereicht von Andreas

More information

Quantum Entanglement: Detection, Classification, and Quantification

Quantum Entanglement: Detection, Classification, and Quantification Quantum Entanglement: Detection, Classification, and Quantification Diplomarbeit zur Erlangung des akademischen Grades,,Magister der Naturwissenschaften an der Universität Wien eingereicht von Philipp

More information

The entanglement of indistinguishable particles shared between two parties

The entanglement of indistinguishable particles shared between two parties The entanglement of indistinguishable particles shared between two parties H.M. Wiseman 1, and John. Vaccaro 1,2 1 Centre for Quantum Computer Technology, Centre for Quantum Dynamics, School of Science,

More information

arxiv:quant-ph/ v1 27 Jul 2005

arxiv:quant-ph/ v1 27 Jul 2005 Negativity and Concurrence for two qutrits arxiv:quant-ph/57263v 27 Jul 25 Suranjana Rai and Jagdish R. Luthra ( ) Raitech, Tuscaloosa, AL 3545 ( ) Departamento de Física, Universidad de los Andes, A.A.

More information

Acceleration and Entanglement: a Deteriorating Relationship

Acceleration and Entanglement: a Deteriorating Relationship Acceleration and Entanglement: a Deteriorating Relationship R.B. Mann Phys. Rev. Lett. 95 120404 (2005) Phys. Rev. A74 032326 (2006) Phys. Rev. A79 042333 (2009) Phys. Rev. A80 02230 (2009) D. Ahn P. Alsing

More information

Converse bounds for private communication over quantum channels

Converse bounds for private communication over quantum channels Converse bounds for private communication over quantum channels Mark M. Wilde (LSU) joint work with Mario Berta (Caltech) and Marco Tomamichel ( Univ. Sydney + Univ. of Technology, Sydney ) arxiv:1602.08898

More information

Concentrating partial entanglement by local operations

Concentrating partial entanglement by local operations PHYSICAL REVIEW A VOLUME 53, NUMBER 4 APRIL 1996 Concentrating partial entanglement by local operations Charles H. Bennett IBM Research Division, T. J. Watson Center, Yorktown Heights, New York 10598 Herbert

More information

Lecture 4: Purifications and fidelity

Lecture 4: Purifications and fidelity CS 766/QIC 820 Theory of Quantum Information (Fall 2011) Lecture 4: Purifications and fidelity Throughout this lecture we will be discussing pairs of registers of the form (X, Y), and the relationships

More information

1 More on the Bloch Sphere (10 points)

1 More on the Bloch Sphere (10 points) Ph15c Spring 017 Prof. Sean Carroll seancarroll@gmail.com Homework - 1 Solutions Assigned TA: Ashmeet Singh ashmeet@caltech.edu 1 More on the Bloch Sphere 10 points a. The state Ψ is parametrized on the

More information

Mutual Information in Conformal Field Theories in Higher Dimensions

Mutual Information in Conformal Field Theories in Higher Dimensions Mutual Information in Conformal Field Theories in Higher Dimensions John Cardy University of Oxford Conference on Mathematical Statistical Physics Kyoto 2013 arxiv:1304.7985; J. Phys. : Math. Theor. 46

More information

Quantum Teleportation Pt. 1

Quantum Teleportation Pt. 1 Quantum Teleportation Pt. 1 PHYS 500 - Southern Illinois University April 17, 2018 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 1 April 17, 2018 1 / 13 Types of Communication In the

More information

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36 QUANTUM INFORMATION - THE NO-HIDING THEOREM Arun K Pati akpati@iopb.res.in Instititute of Physics, Bhubaneswar-751005, Orissa, INDIA and Th. P. D, BARC, Mumbai-400085, India QUANTUM INFORMATION -THE NO-HIDING

More information

Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2

Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2 Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2 arxiv:quant-ph/0410063v1 8 Oct 2004 Nilanjana Datta Statistical Laboratory Centre for Mathematical Sciences University of Cambridge

More information

CS286.2 Lecture 15: Tsirelson s characterization of XOR games

CS286.2 Lecture 15: Tsirelson s characterization of XOR games CS86. Lecture 5: Tsirelson s characterization of XOR games Scribe: Zeyu Guo We first recall the notion of quantum multi-player games: a quantum k-player game involves a verifier V and k players P,...,

More information

Gilles Brassard. Université de Montréal

Gilles Brassard. Université de Montréal Gilles Brassard Université de Montréal Gilles Brassard Université de Montréal VOLUME 76, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 29 JANUARY 1996 Purification of Noisy Entanglement and Faithful

More information

Quantum Information and Quantum Many-body Systems

Quantum Information and Quantum Many-body Systems Quantum Information and Quantum Many-body Systems Lecture 1 Norbert Schuch California Institute of Technology Institute for Quantum Information Quantum Information and Quantum Many-Body Systems Aim: Understand

More information

arxiv: v1 [quant-ph] 3 Jan 2008

arxiv: v1 [quant-ph] 3 Jan 2008 A paradigm for entanglement theory based on quantum communication Jonathan Oppenheim 1 1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge U.K. arxiv:0801.0458v1 [quant-ph]

More information

arxiv: v2 [quant-ph] 21 Oct 2013

arxiv: v2 [quant-ph] 21 Oct 2013 Genuine hidden quantum nonlocality Flavien Hirsch, 1 Marco Túlio Quintino, 1 Joseph Bowles, 1 and Nicolas Brunner 1, 1 Département de Physique Théorique, Université de Genève, 111 Genève, Switzerland H.H.

More information

arxiv: v2 [quant-ph] 26 Mar 2012

arxiv: v2 [quant-ph] 26 Mar 2012 Optimal Probabilistic Simulation of Quantum Channels from the Future to the Past Dina Genkina, Giulio Chiribella, and Lucien Hardy Perimeter Institute for Theoretical Physics, 31 Caroline Street North,

More information

Application of Structural Physical Approximation to Partial Transpose in Teleportation. Satyabrata Adhikari Delhi Technological University (DTU)

Application of Structural Physical Approximation to Partial Transpose in Teleportation. Satyabrata Adhikari Delhi Technological University (DTU) Application of Structural Physical Approximation to Partial Transpose in Teleportation Satyabrata Adhikari Delhi Technological University (DTU) Singlet fraction and its usefulness in Teleportation Singlet

More information

Quantum state discrimination with post-measurement information!

Quantum state discrimination with post-measurement information! Quantum state discrimination with post-measurement information! DEEPTHI GOPAL, CALTECH! STEPHANIE WEHNER, NATIONAL UNIVERSITY OF SINGAPORE! Quantum states! A state is a mathematical object describing the

More information

Multi-partite entanglement

Multi-partite entanglement Multi-partite entanglement Michael Walter 1, David Gross 2,3, and Jens Eisert 4 1 Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA 2 Institute for Theoretical Physics,

More information

Lecture 18: Quantum Information Theory and Holevo s Bound

Lecture 18: Quantum Information Theory and Holevo s Bound Quantum Computation (CMU 1-59BB, Fall 2015) Lecture 1: Quantum Information Theory and Holevo s Bound November 10, 2015 Lecturer: John Wright Scribe: Nicolas Resch 1 Question In today s lecture, we will

More information

Estimation of Optimal Singlet Fraction (OSF) and Entanglement Negativity (EN)

Estimation of Optimal Singlet Fraction (OSF) and Entanglement Negativity (EN) Estimation of Optimal Singlet Fraction (OSF) and Entanglement Negativity (EN) Satyabrata Adhikari Delhi Technological University satyabrata@dtu.ac.in December 4, 2018 Satyabrata Adhikari (DTU) Estimation

More information

Quantum Information Types

Quantum Information Types qitd181 Quantum Information Types Robert B. Griffiths Version of 6 February 2012 References: R. B. Griffiths, Types of Quantum Information, Phys. Rev. A 76 (2007) 062320; arxiv:0707.3752 Contents 1 Introduction

More information

Information measures, entanglement and quantum evolution

Information measures, entanglement and quantum evolution Information measures, entanglement and quantum evolution Claudia Zander Faculty of Natural & Agricultural Sciences University of Pretoria Pretoria Submitted in partial fulfilment of the requirements for

More information

Linear Algebra and Dirac Notation, Pt. 3

Linear Algebra and Dirac Notation, Pt. 3 Linear Algebra and Dirac Notation, Pt. 3 PHYS 500 - Southern Illinois University February 1, 2017 PHYS 500 - Southern Illinois University Linear Algebra and Dirac Notation, Pt. 3 February 1, 2017 1 / 16

More information

arxiv: v4 [quant-ph] 28 Oct 2009

arxiv: v4 [quant-ph] 28 Oct 2009 Max- Relative Entropy of Entanglement, alias Log Robustness arxiv:0807.2536v4 [quant-ph] 28 Oct 2009 Nilanjana Datta, Statistical Laboratory, DPMMS, University of Cambridge, Cambridge CB3 0WB, UK (Dated:

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Petros Wallden Lecture 3: Basic Quantum Mechanics 26th September 2016 School of Informatics, University of Edinburgh Resources 1. Quantum Computation and Quantum Information

More information

Valerio Cappellini. References

Valerio Cappellini. References CETER FOR THEORETICAL PHYSICS OF THE POLISH ACADEMY OF SCIECES WARSAW, POLAD RADOM DESITY MATRICES AD THEIR DETERMIATS 4 30 SEPTEMBER 5 TH SFB TR 1 MEETIG OF 006 I PRZEGORZAłY KRAKÓW Valerio Cappellini

More information

Lecture 21: Quantum communication complexity

Lecture 21: Quantum communication complexity CPSC 519/619: Quantum Computation John Watrous, University of Calgary Lecture 21: Quantum communication complexity April 6, 2006 In this lecture we will discuss how quantum information can allow for a

More information

entanglement and cryptography

entanglement and cryptography More about Entanglement and Cryptography More about entanglement and cryptography Charles H. Bennett Windsor Summer School 13 August 2007 1. A linear vector space with complex coefficients and inner product

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 6: Quantum query complexity of the HSP

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 6: Quantum query complexity of the HSP Quantum algorithms (CO 78, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 6: Quantum query complexity of the HSP So far, we have considered the hidden subgroup problem in abelian groups.

More information

Quantum Entanglement and the Bell Matrix

Quantum Entanglement and the Bell Matrix Quantum Entanglement and the Bell Matrix Marco Pedicini (Roma Tre University) in collaboration with Anna Chiara Lai and Silvia Rognone (La Sapienza University of Rome) SIMAI2018 - MS27: Discrete Mathematics,

More information

Quantum Computing 1. Multi-Qubit System. Goutam Biswas. Lect 2

Quantum Computing 1. Multi-Qubit System. Goutam Biswas. Lect 2 Quantum Computing 1 Multi-Qubit System Quantum Computing State Space of Bits The state space of a single bit is {0,1}. n-bit state space is {0,1} n. These are the vertices of the n-dimensional hypercube.

More information

Entanglement in bipartite and tripartite quantum systems

Entanglement in bipartite and tripartite quantum systems Gradu Amaierako Lana/Trabajo Fin de Grado Fisikako Gradua/Grado en Física Entanglement in bipartite and tripartite quantum systems Hodei Eneriz Director: Prof. Enrique Solano Codirector: Dr. Mikel Sanz

More information

Introduction to quantum information processing

Introduction to quantum information processing Introduction to quantum information processing Measurements and quantum probability Brad Lackey 25 October 2016 MEASUREMENTS AND QUANTUM PROBABILITY 1 of 22 OUTLINE 1 Probability 2 Density Operators 3

More information

Coherence, Discord, and Entanglement: Activating one resource into another and beyond

Coherence, Discord, and Entanglement: Activating one resource into another and beyond 586. WE-Heraeus-Seminar Quantum Correlations beyond Entanglement Coherence, Discord, and Entanglement: Activating one resource into another and beyond Gerardo School of Mathematical Sciences The University

More information

Majorization-preserving quantum channels

Majorization-preserving quantum channels Majorization-preserving quantum channels arxiv:1209.5233v2 [quant-ph] 15 Dec 2012 Lin Zhang Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, PR China Abstract In this report, we give

More information

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar Quantum Computing Lecture 3 Principles of Quantum Mechanics Anuj Dawar What is Quantum Mechanics? Quantum Mechanics is a framework for the development of physical theories. It is not itself a physical

More information

Characterization of Bipartite Entanglement

Characterization of Bipartite Entanglement Characterization of Bipartite Entanglement Werner Vogel and Jan Sperling University of Rostock Germany Paraty, September 2009 Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 1 Table of Contents

More information

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding.

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding. CS 94- Bell States Bell Inequalities 9//04 Fall 004 Lecture Hilbert Space Entanglement Quantum Gates Bell States Superdense Coding 1 One qubit: Recall that the state of a single qubit can be written as

More information

Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable,

Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable, Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable, A qubit: a sphere of values, which is spanned in projective sense by two quantum

More information

Strong converse theorems using Rényi entropies

Strong converse theorems using Rényi entropies Strong converse theorems using Rényi entropies Felix Leditzky joint work with Mark M. Wilde and Nilanjana Datta arxiv:1506.02635 5 January 2016 Table of Contents 1 Weak vs. strong converse 2 Rényi entropies

More information

Simulation of n-qubit quantum systems. II. Separability and entanglement

Simulation of n-qubit quantum systems. II. Separability and entanglement Computer Physics Communications 175 (2006 145 166 www.elsevier.com/locate/cpc Simulation of n-qubit quantum systems. II. Separability and entanglement T. Radtke,S.Fritzsche Institut für Physik, Universität

More information

On the Relation between Quantum Discord and Purified Entanglement

On the Relation between Quantum Discord and Purified Entanglement On the Relation between Quantum Discord and Purified Entanglement by Eric Webster A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics

More information

Supplementary Information

Supplementary Information Supplementary Information a 1.0 b 1.0 Bits per channel use 0.8 0.6 0.4 0. LB UB 0.0 0.0 0. 0.4 0.6 0.8 1.0 Damping probability p Bits per channel use 0.8 0.6 0.4 0. LB UB 0.0 0.0 0. 0.4 0.6 0.8 1.0 Damping

More information

Single-shot Quantum State Merging

Single-shot Quantum State Merging ETH ZICH arxiv:0912.4495v1 [quant-ph] 22 Dec 2009 Single-shot Quantum State Merging by Mario Berta A Diploma thesis submitted to the Institute for Theorectical Physics Department of Physics Supervisor

More information

Some Bipartite States Do Not Arise from Channels

Some Bipartite States Do Not Arise from Channels Some Bipartite States Do Not Arise from Channels arxiv:quant-ph/0303141v3 16 Apr 003 Mary Beth Ruskai Department of Mathematics, Tufts University Medford, Massachusetts 0155 USA marybeth.ruskai@tufts.edu

More information

6.1 Main properties of Shannon entropy. Let X be a random variable taking values x in some alphabet with probabilities.

6.1 Main properties of Shannon entropy. Let X be a random variable taking values x in some alphabet with probabilities. Chapter 6 Quantum entropy There is a notion of entropy which quantifies the amount of uncertainty contained in an ensemble of Qbits. This is the von Neumann entropy that we introduce in this chapter. In

More information

Multipartite entangled quantum states: Transformation, Entanglement monotones and Application. Wei Cui

Multipartite entangled quantum states: Transformation, Entanglement monotones and Application. Wei Cui Multipartite entangled quantum states: Transformation, Entanglement monotones and Application by Wei Cui A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate

More information

1. Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal

1. Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal . Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal 3 9 matrix D such that A = P DP, for A =. 3 4 3 (a) P = 4, D =. 3 (b) P = 4, D =. (c) P = 4 8 4, D =. 3 (d) P

More information

Bound entangled states with secret key and their classical counterpart

Bound entangled states with secret key and their classical counterpart Bound entangled states with secret key and their classical counterpart Māris Ozols Graeme Smith John Smolin February 6, 2014 A brief summary Main result A new construction of bound entangled states with

More information