Variance of Discrete Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Size: px
Start display at page:

Download "Variance of Discrete Random Variables Class 5, Jeremy Orloff and Jonathan Bloom"

Transcription

1 Variace of Discrete Radom Variables Class 5, Jeremy Orloff ad Joatha Bloom 1 Learig Goals 1. Be able to compute the variace ad stadard deviatio of a radom variable.. Uderstad that stadard deviatio is a measure of scale or spread. 3. Be able to compute variace usig the properties of scalig ad liearity. Spread The expected value (mea) of a radom variable is a measure of locatio or cetral tedecy. If you had to summarize a radom variable with a sigle umber, the mea would be a good choice. Still, the mea leaves out a good deal of iformatio. For example, the radom variables X ad Y below both have mea 0, but their probability mass is spread out about the mea quite differetly. values X values Y -3 3 pmf p(x) 1/10 /10 4/10 /10 1/10 pmf p(y) 1/ 1/ It s probably a little easier to see the differet spreads i plots of the probability mass fuctios. We use bars istead of dots to give a better sese of the mass. 4/10 p(x) pmf for X pmf for Y 1/ p(y) /10 1/ x pmf s for two differet distributios both with mea 0 I the ext sectio, we will lear how to quatify this spread. y 3 Variace ad stadard deviatio Takig the mea as the ceter of a radom variable s probability distributio, the variace is a measure of how much the probability mass is spread out aroud this ceter. We ll start with the formal defiitio of variace ad the upack its meaig. Defiitio: If X is a radom variable with mea E(X) = µ, the the variace of X is defied by Var(X) = E((X µ) ). 1

2 18.05 class 5, Variace of Discrete Radom Variables, Sprig 014 The stadard deviatio σ of X is defied by σ = Var(X). If the relevat radom variable is clear from cotext, the the variace ad stadard deviatio are ofte deoted by σ ad σ ( sigma ), just as the mea is µ ( mu ). What does this mea? First, let s rewrite the defiitio explicitly as a sum. If X takes values x 1, x,..., x with probability mass fuctio p(x i ) the Var(X) = E((X µ) ) = p(x i )(x i µ). I words, the formula for Var(X) says to take a weighted average of the squared distace to the mea. By squarig, we make sure we are averagig oly o-egative values, so that the spread to the right of the mea wo t cacel that to the left. By usig expectatio, we are weightig high probability values more tha low probability values. (See Example below.) Note o uits: 1. σ has the same uits as X.. Var(X) has the same uits as the square of X. So if X is i meters, the Var(X) is i meters squared. Because σ ad X have the same uits, the stadard deviatio is a atural measure of spread. Let s work some examples to make the otio of variace clear. Example 1. Compute the mea, variace ad stadard deviatio of the radom variable X with the followig table of values ad probabilities. value x pmf p(x) 1/4 1/4 1/ aswer: First we compute E(X) = 7/. The we exted the table to iclude (X 7/). value x p(x) 1/4 1/4 1/ (x 7/) 5/4 1/4 9/4 Now the computatio of the variace is similar to that of expectatio: i= Var(X) = + + = Takig the square root we have the stadard deviatio σ = 11/4. Example. For each radom variable X, Y, Z, ad W plot the pmf ad compute the mea ad variace. (i) value x pmf p(x) 1/5 1/5 1/5 1/5 1/5 (ii) value y pmf p(y) 1/10 /10 4/10 /10 1/10

3 18.05 class 5, Variace of Discrete Radom Variables, Sprig (iii) value z pmf p(z) 5/ /10 (iv) value w pmf p(w) aswer: Each radom variable has the same mea 3, but the probability is spread out differetly. I the plots below, we order the pmf s from largest to smallest variace: Z, X, Y, W..5 p(z) pmf for Z p(x) pmf for X 1/ z x 1 p(w).5 p(y) pmf for Y pmf for W y W Next we ll verify our visual ituitio by computig the variace of each of the variables. All of them have mea µ = 3. Sice the variace is defied as a expected value, we ca compute it usig the tables. (i) value x pmf p(x) 1/5 1/5 1/5 1/5 1/5 (X µ) Var(X) = E((X µ) ) = = (ii) value y p(y) 1/10 /10 4/10 /10 1/10 (Y µ) Var(Y ) = E((Y µ) ) = = (iii) value z pmf p(z) 5/ /10 (Z µ) Var(Z) = E((Z µ) ) = =

4 18.05 class 5, Variace of Discrete Radom Variables, Sprig (iv) value w pmf p(w) (W µ) Var(W ) = 0. Note that W does t vary, so it has variace 0! 3.1 The variace of a Beroulli(p) radom variable. Beroulli radom variables are fudametal, so we should kow their variace. If X Beroulli(p) the Var(X) = p(1 p). Proof: We kow that E(X) = p. We compute Var(X) usig a table. values X 0 1 pmf p(x) 1 p p (X µ) (0 p) (1 p) Var(X) = (1 p)p + p(1 p) = (1 p)p(1 p + p) = (1 p)p. As with all thigs Beroulli, you should remember this formula. Thik: For what value of p does Beroulli(p) have the highest variace? Try to aswer this by plottig the PMF for various p. 3. A word about idepedece So far we have bee usig the otio of idepedet radom variable without ever carefully defiig it. For example, a biomial distributio is the sum of idepedet Beroulli trials. This may (should?) have bothered you. Of course, we have a ituitive sese of what idepedece meas for experimetal trials. We also have the probabilistic sese that radom variables X ad Y are idepedet if kowig the value of X gives you o iformatio about the value of Y. I a few classes we will work with cotiuous radom variables ad joit probability fuctios. After that we will be ready for a full defiitio of idepedece. For ow we ca use the followig defiitio, which is exactly what you expect ad is valid for discrete radom variables. Defiitio: The discrete radom variables X ad Y are idepedet if P (X = a, Y = b) = P (X = a)p (Y = b) for ay values a, b. That is, the probabilities multiply. 3.3 Properties of variace The three most useful properties for computig variace are: 1. If X ad Y are idepedet the Var(X + Y ) = Var(X) + Var(Y ).

5 18.05 class 5, Variace of Discrete Radom Variables, Sprig For costats a ad b, Var(aX + b) = a Var(X). 3. Var(X) = E(X ) E(X). For Property 1, ote carefully the requiremet that X ad Y are idepedet. We will retur to the proof of Property 1 i a later class. Property 3 gives a formula for Var(X) that is ofte easier to use i had calculatios. The computer is happy to use the defiitio! We ll prove Properties ad 3 after some examples. Example 3. Suppose X ad Y are idepedet ad Var(X) = 3 ad Var(Y ) = 5. Fid: (i) Var(X + Y ), (ii) Var(3X + 4), (iii) Var(X + X), (iv) Var(X + 3Y ). aswer: To compute these variaces we make use of Properties 1 ad. (i) Sice X ad Y are idepedet, Var(X + Y ) = Var(X) + Var(Y ) = 8. (ii) Usig Property, Var(3X + 4) = 9 Var(X) = 7. (iii) Do t be fooled! Property 1 fails sice X is certaily ot idepedet of itself. We ca use Property : Var(X + X) = Var(X) = 4 Var(X) = 1. (Note: if we mistakely used Property 1, we would the wrog aswer of 6.) (iv) We use both Properties 1 ad. Var(X + 3Y ) = Var(X) + Var(3Y ) = = 48. Example 4. Use Property 3 to compute the variace of X Beroulli(p). aswer: From the table we have E(X ) = p. So Property 3 gives This agrees with our earlier calculatio. X 0 1 p(x) 1 p p X 0 1 Var(X) = E(X ) E(X) = p p = p(1 p). Example 5. Redo Example 1 usig Property 3. aswer: From the table X p(x) 1/4 1/4 1/ X 1 9 we have E(X) = 7/ ad E(X ) = = = So Var(X) = 15 (7/) = 11/4 as before i Example Variace of biomial(,p) Suppose X biomial(, p). Sice X is the sum of idepedet Beroulli(p) variables ad each Beroulli variable has variace p(1 p) we have X biomial(, p) Var(X) = p(1 p).

6 18.05 class 5, Variace of Discrete Radom Variables, Sprig Proof of properties ad 3 Proof of Property : This follows from the properties of E(X) ad some algebra. Let µ = E(X). The E(aX + b) = aµ + b ad Var(aX+b) = E((aX+b (aµ+b)) ) = E((aX aµ) ) = E(a (X µ) ) = a E((X µ) ) = a Var(X). Proof of Property 3: We use the properties of E(X) ad a bit of algebra. Remember that µ is a costat ad that E(X) = µ. E((X µ) ) = E(X µx + µ ) = E(X ) µe(x) + µ = E(X ) µ + µ = E(X ) µ = E(X ) E(X). QED 4 Tables of Distributios ad Properties Distributio rage X pmf p(x) mea E(X) variace Var(X) Beroulli(p) 0, 1 p(0) = 1 p, p(1) = p p p(1 p) Biomial(, p) 0, 1,..., p(k) = p k (1 p) k k p p(1 p) Uiform() 1,,..., p(k) = Geometric(p) 0, 1,,... p(k) = p(1 p) k 1 p p 1 p p Let X be a discrete radom variable with rage x 1, x,... ad pmf p(x j ). Expected Value: Variace: Syoyms: mea, average Notatio: E(X), µ Var(X), σ Defiitio: E(X) = p(x j )x j E((X µ) ) = p(x j )(x j µ) j Scale ad shift: E(aX + b) = ae(x) + b Var(aX + b) = a Var(X) Liearity: (for ay X, Y ) E(X + Y ) = E(X) + E(Y ) (for X, Y idepedet) Var(X + Y ) = Var(X) + Var(Y ) Fuctios of X: _ E(h(X)) = p(x j ) h(x j ) Alterative formula: Var(X) = E(X ) E(X) = E(X ) µ j

7 MIT OpeCourseWare Itroductio to Probability ad Statistics Sprig 014 For iformatio about citig these materials or our Terms of Use, visit:

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n,

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n, CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 9 Variace Questio: At each time step, I flip a fair coi. If it comes up Heads, I walk oe step to the right; if it comes up Tails, I walk oe

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS Cotets 1. A few useful discrete radom variables 2. Joit, margial, ad

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Statistics ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 018/019 DR. ANTHONY BROWN 8. Statistics 8.1. Measures of Cetre: Mea, Media ad Mode. If we have a series of umbers the

More information

Topic 8: Expected Values

Topic 8: Expected Values Topic 8: Jue 6, 20 The simplest summary of quatitative data is the sample mea. Give a radom variable, the correspodig cocept is called the distributioal mea, the epectatio or the epected value. We begi

More information

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36 Probability Distributios A Example With Dice If X is a radom variable o sample space S, the the probablity that X takes o the value c is Similarly, Pr(X = c) = Pr({s S X(s) = c} Pr(X c) = Pr({s S X(s)

More information

Lecture 18: Sampling distributions

Lecture 18: Sampling distributions Lecture 18: Samplig distributios I may applicatios, the populatio is oe or several ormal distributios (or approximately). We ow study properties of some importat statistics based o a radom sample from

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

2 Definition of Variance and the obvious guess

2 Definition of Variance and the obvious guess 1 Estimatig Variace Statistics - Math 410, 11/7/011 Oe of the mai themes of this course is to estimate the mea µ of some variable X of a populatio. We typically do this by collectig a sample of idividuals

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

Elements of Statistical Methods Lots of Data or Large Samples (Ch 8)

Elements of Statistical Methods Lots of Data or Large Samples (Ch 8) Elemets of Statistical Methods Lots of Data or Large Samples (Ch 8) Fritz Scholz Sprig Quarter 2010 February 26, 2010 x ad X We itroduced the sample mea x as the average of the observed sample values x

More information

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables CSCI-B609: A Theorist s Toolkit, Fall 06 Aug 3 Lecture 0: the Cetral Limit Theorem Lecturer: Yua Zhou Scribe: Yua Xie & Yua Zhou Cetral Limit Theorem for iid radom variables Let us say that we wat to aalyze

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

STAT Homework 2 - Solutions

STAT Homework 2 - Solutions STAT-36700 Homework - Solutios Fall 08 September 4, 08 This cotais solutios for Homework. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better isight.

More information

Lecture 20: Multivariate convergence and the Central Limit Theorem

Lecture 20: Multivariate convergence and the Central Limit Theorem Lecture 20: Multivariate covergece ad the Cetral Limit Theorem Covergece i distributio for radom vectors Let Z,Z 1,Z 2,... be radom vectors o R k. If the cdf of Z is cotiuous, the we ca defie covergece

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Lecture 2: Concentration Bounds

Lecture 2: Concentration Bounds CSE 52: Desig ad Aalysis of Algorithms I Sprig 206 Lecture 2: Cocetratio Bouds Lecturer: Shaya Oveis Ghara March 30th Scribe: Syuzaa Sargsya Disclaimer: These otes have ot bee subjected to the usual scrutiy

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Understanding Samples

Understanding Samples 1 Will Moroe CS 109 Samplig ad Bootstrappig Lecture Notes #17 August 2, 2017 Based o a hadout by Chris Piech I this chapter we are goig to talk about statistics calculated o samples from a populatio. We

More information

EE 4TM4: Digital Communications II Probability Theory

EE 4TM4: Digital Communications II Probability Theory 1 EE 4TM4: Digital Commuicatios II Probability Theory I. RANDOM VARIABLES A radom variable is a real-valued fuctio defied o the sample space. Example: Suppose that our experimet cosists of tossig two fair

More information

Math 525: Lecture 5. January 18, 2018

Math 525: Lecture 5. January 18, 2018 Math 525: Lecture 5 Jauary 18, 2018 1 Series (review) Defiitio 1.1. A sequece (a ) R coverges to a poit L R (writte a L or lim a = L) if for each ǫ > 0, we ca fid N such that a L < ǫ for all N. If the

More information

Chapter 18 Summary Sampling Distribution Models

Chapter 18 Summary Sampling Distribution Models Uit 5 Itroductio to Iferece Chapter 18 Summary Samplig Distributio Models What have we leared? Sample proportios ad meas will vary from sample to sample that s samplig error (samplig variability). Samplig

More information

Median and IQR The median is the value which divides the ordered data values in half.

Median and IQR The median is the value which divides the ordered data values in half. STA 666 Fall 2007 Web-based Course Notes 4: Describig Distributios Numerically Numerical summaries for quatitative variables media ad iterquartile rage (IQR) 5-umber summary mea ad stadard deviatio Media

More information

BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13

BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13 BHW # /5 ENGR Probabilistic Aalysis Beautiful Homework # Three differet roads feed ito a particular freeway etrace. Suppose that durig a fixed time period, the umber of cars comig from each road oto the

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

10/31/2018 CentralLimitTheorem

10/31/2018 CentralLimitTheorem 10/31/2018 CetralLimitTheorem http://127.0.0.1:8888/bcovert/html/cs237/web/homeworks%2c%20labs%2c%20ad%20code/cetrallimittheorem.ipyb?dowload=false 1/10 10/31/2018 CetralLimitTheorem Cetral Limit Theorem

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

CH.25 Discrete Random Variables

CH.25 Discrete Random Variables CH.25 Discrete Radom Variables 25B PG.784-785 #1, 3, 4, 6 25C PG.788-789 #1, 3, 5, 8, 10, 11 25D PG.791-792 #1, 3, 6 25E PG.794-795 #1, 2, 3, 7, 10 25F.1 PG.798-799 #2, 3, 5 25F.2 PG. 800-802 #2, 4, 7,

More information

Discrete Probability Functions

Discrete Probability Functions Discrete Probability Fuctios Daiel B. Rowe, Ph.D. Professor Departmet of Mathematics, Statistics, ad Computer Sciece Copyright 017 by 1 Outlie Discrete RVs, PMFs, CDFs Discrete Expectatios Discrete Momets

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Lecture 16

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Lecture 16 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Lecture 16 Variace Questio: Let us retur oce agai to the questio of how may heads i a typical sequece of coi flips. Recall that we

More information

MEASURES OF DISPERSION (VARIABILITY)

MEASURES OF DISPERSION (VARIABILITY) POLI 300 Hadout #7 N. R. Miller MEASURES OF DISPERSION (VARIABILITY) While measures of cetral tedecy idicate what value of a variable is (i oe sese or other, e.g., mode, media, mea), average or cetral

More information

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions CS 70 Discrete Mathematics for CS Sprig 2005 Clacy/Wager Notes 21 Some Importat Distributios Questio: A biased coi with Heads probability p is tossed repeatedly util the first Head appears. What is the

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

Lecture 12: September 27

Lecture 12: September 27 36-705: Itermediate Statistics Fall 207 Lecturer: Siva Balakrisha Lecture 2: September 27 Today we will discuss sufficiecy i more detail ad the begi to discuss some geeral strategies for costructig estimators.

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

Lecture 4: Unique-SAT, Parity-SAT, and Approximate Counting

Lecture 4: Unique-SAT, Parity-SAT, and Approximate Counting Advaced Complexity Theory Sprig 206 Lecture 4: Uique-SAT, Parity-SAT, ad Approximate Coutig Prof. Daa Moshkovitz Scribe: Aoymous Studet Scribe Date: Fall 202 Overview I this lecture we begi talkig about

More information

NOTES ON DISTRIBUTIONS

NOTES ON DISTRIBUTIONS NOTES ON DISTRIBUTIONS MICHAEL N KATEHAKIS Radom Variables Radom variables represet outcomes from radom pheomea They are specified by two objects The rage R of possible values ad the frequecy fx with which

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

More information

Lecture 6 Simple alternatives and the Neyman-Pearson lemma

Lecture 6 Simple alternatives and the Neyman-Pearson lemma STATS 00: Itroductio to Statistical Iferece Autum 06 Lecture 6 Simple alteratives ad the Neyma-Pearso lemma Last lecture, we discussed a umber of ways to costruct test statistics for testig a simple ull

More information

18.S096: Homework Problem Set 1 (revised)

18.S096: Homework Problem Set 1 (revised) 8.S096: Homework Problem Set (revised) Topics i Mathematics of Data Sciece (Fall 05) Afoso S. Badeira Due o October 6, 05 Exteded to: October 8, 05 This homework problem set is due o October 6, at the

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

(6) Fundamental Sampling Distribution and Data Discription

(6) Fundamental Sampling Distribution and Data Discription 34 Stat Lecture Notes (6) Fudametal Samplig Distributio ad Data Discriptio ( Book*: Chapter 8,pg5) Probability& Statistics for Egieers & Scietists By Walpole, Myers, Myers, Ye 8.1 Radom Samplig: Populatio:

More information

Discrete Random Variables and Probability Distributions. Random Variables. Discrete Models

Discrete Random Variables and Probability Distributions. Random Variables. Discrete Models UCLA STAT 35 Applied Computatioal ad Iteractive Probability Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Chris Barr Uiversity of Califoria, Los Ageles, Witer 006 http://www.stat.ucla.edu/~diov/

More information

6. Sufficient, Complete, and Ancillary Statistics

6. Sufficient, Complete, and Ancillary Statistics Sufficiet, Complete ad Acillary Statistics http://www.math.uah.edu/stat/poit/sufficiet.xhtml 1 of 7 7/16/2009 6:13 AM Virtual Laboratories > 7. Poit Estimatio > 1 2 3 4 5 6 6. Sufficiet, Complete, ad Acillary

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

Stat 400: Georgios Fellouris Homework 5 Due: Friday 24 th, 2017

Stat 400: Georgios Fellouris Homework 5 Due: Friday 24 th, 2017 Stat 400: Georgios Fellouris Homework 5 Due: Friday 4 th, 017 1. A exam has multiple choice questios ad each of them has 4 possible aswers, oly oe of which is correct. A studet will aswer all questios

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Solutios to Quiz : Sprig 006 Problem : Each of the followig statemets is either True or False. There will be o partial credit give for the True False questios, thus ay explaatios will ot be graded. Please

More information

HOMEWORK I: PREREQUISITES FROM MATH 727

HOMEWORK I: PREREQUISITES FROM MATH 727 HOMEWORK I: PREREQUISITES FROM MATH 727 Questio. Let X, X 2,... be idepedet expoetial radom variables with mea µ. (a) Show that for Z +, we have EX µ!. (b) Show that almost surely, X + + X (c) Fid the

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Itroductio to Probability ad Statistics Lecture 23: Cotiuous radom variables- Iequalities, CLT Puramrita Sarkar Departmet of Statistics ad Data Sciece The Uiversity of Texas at Austi www.cs.cmu.edu/

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Eco 35: Itroductio to Empirical Ecoomics Lecture 3 Discrete Radom Variables ad Probability Distributios Copyright 010 Pearso Educatio, Ic. Publishig as Pretice Hall Ch. 4-1 4.1 Itroductio to Probability

More information

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities Chapter 5 Iequalities 5.1 The Markov ad Chebyshev iequalities As you have probably see o today s frot page: every perso i the upper teth percetile ears at least 1 times more tha the average salary. I other

More information

STATS 200: Introduction to Statistical Inference. Lecture 1: Course introduction and polling

STATS 200: Introduction to Statistical Inference. Lecture 1: Course introduction and polling STATS 200: Itroductio to Statistical Iferece Lecture 1: Course itroductio ad pollig U.S. presidetial electio projectios by state (Source: fivethirtyeight.com, 25 September 2016) Pollig Let s try to uderstad

More information

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance Hypothesis Testig Empirically evaluatig accuracy of hypotheses: importat activity i ML. Three questios: Give observed accuracy over a sample set, how well does this estimate apply over additioal samples?

More information

IE 230 Seat # Name < KEY > Please read these directions. Closed book and notes. 60 minutes.

IE 230 Seat # Name < KEY > Please read these directions. Closed book and notes. 60 minutes. IE 230 Seat # Name < KEY > Please read these directios. Closed book ad otes. 60 miutes. Covers through the ormal distributio, Sectio 4.7 of Motgomery ad Ruger, fourth editio. Cover page ad four pages of

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learig Theory: Lecture Notes Kamalika Chaudhuri October 4, 0 Cocetratio of Averages Cocetratio of measure is very useful i showig bouds o the errors of machie-learig algorithms. We will begi with a basic

More information

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15 CS 70 Discrete Mathematics ad Probability Theory Sprig 2012 Alistair Siclair Note 15 Some Importat Distributios The first importat distributio we leared about i the last Lecture Note is the biomial distributio

More information

AMS570 Lecture Notes #2

AMS570 Lecture Notes #2 AMS570 Lecture Notes # Review of Probability (cotiued) Probability distributios. () Biomial distributio Biomial Experimet: ) It cosists of trials ) Each trial results i of possible outcomes, S or F 3)

More information

Basics of Probability Theory (for Theory of Computation courses)

Basics of Probability Theory (for Theory of Computation courses) Basics of Probability Theory (for Theory of Computatio courses) Oded Goldreich Departmet of Computer Sciece Weizma Istitute of Sciece Rehovot, Israel. oded.goldreich@weizma.ac.il November 24, 2008 Preface.

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

Unbiased Estimation. February 7-12, 2008

Unbiased Estimation. February 7-12, 2008 Ubiased Estimatio February 7-2, 2008 We begi with a sample X = (X,..., X ) of radom variables chose accordig to oe of a family of probabilities P θ where θ is elemet from the parameter space Θ. For radom

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19 CS 70 Discrete Mathematics ad Probability Theory Sprig 2016 Rao ad Walrad Note 19 Some Importat Distributios Recall our basic probabilistic experimet of tossig a biased coi times. This is a very simple

More information

Law of the sum of Bernoulli random variables

Law of the sum of Bernoulli random variables Law of the sum of Beroulli radom variables Nicolas Chevallier Uiversité de Haute Alsace, 4, rue des frères Lumière 68093 Mulhouse icolas.chevallier@uha.fr December 006 Abstract Let be the set of all possible

More information

Stat 421-SP2012 Interval Estimation Section

Stat 421-SP2012 Interval Estimation Section Stat 41-SP01 Iterval Estimatio Sectio 11.1-11. We ow uderstad (Chapter 10) how to fid poit estimators of a ukow parameter. o However, a poit estimate does ot provide ay iformatio about the ucertaity (possible

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Final Review for MATH 3510

Final Review for MATH 3510 Fial Review for MATH 50 Calculatio 5 Give a fairly simple probability mass fuctio or probability desity fuctio of a radom variable, you should be able to compute the expected value ad variace of the variable

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 6 9/23/2013. Brownian motion. Introduction

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 6 9/23/2013. Brownian motion. Introduction MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 6 9/23/203 Browia motio. Itroductio Cotet.. A heuristic costructio of a Browia motio from a radom walk. 2. Defiitio ad basic properties

More information

Last time, we talked about how Equation (1) can simulate Equation (2). We asserted that Equation (2) can also simulate Equation (1).

Last time, we talked about how Equation (1) can simulate Equation (2). We asserted that Equation (2) can also simulate Equation (1). 6896 Quatum Complexity Theory Sept 23, 2008 Lecturer: Scott Aaroso Lecture 6 Last Time: Quatum Error-Correctio Quatum Query Model Deutsch-Jozsa Algorithm (Computes x y i oe query) Today: Berstei-Vazirii

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

MATH 472 / SPRING 2013 ASSIGNMENT 2: DUE FEBRUARY 4 FINALIZED

MATH 472 / SPRING 2013 ASSIGNMENT 2: DUE FEBRUARY 4 FINALIZED MATH 47 / SPRING 013 ASSIGNMENT : DUE FEBRUARY 4 FINALIZED Please iclude a cover sheet that provides a complete setece aswer to each the followig three questios: (a) I your opiio, what were the mai ideas

More information

Tests of Hypotheses Based on a Single Sample (Devore Chapter Eight)

Tests of Hypotheses Based on a Single Sample (Devore Chapter Eight) Tests of Hypotheses Based o a Sigle Sample Devore Chapter Eight MATH-252-01: Probability ad Statistics II Sprig 2018 Cotets 1 Hypothesis Tests illustrated with z-tests 1 1.1 Overview of Hypothesis Testig..........

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013 Large Deviatios for i.i.d. Radom Variables Cotet. Cheroff boud usig expoetial momet geeratig fuctios. Properties of a momet

More information

Discrete probability distributions

Discrete probability distributions Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop

More information

0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) =

0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) = PROBABILITY MODELS 35 10. Discrete probability distributios I this sectio, we discuss several well-ow discrete probability distributios ad study some of their properties. Some of these distributios, lie

More information

Probability review (week 2) Solutions

Probability review (week 2) Solutions Probability review (week 2) Solutios A. Biomial distributio. BERNOULLI, BINOMIAL, POISSON AND NORMAL DISTRIBUTIONS. X is a biomial RV with parameters,p. Let u i be a Beroulli RV with probability of success

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

Number of fatalities X Sunday 4 Monday 6 Tuesday 2 Wednesday 0 Thursday 3 Friday 5 Saturday 8 Total 28. Day

Number of fatalities X Sunday 4 Monday 6 Tuesday 2 Wednesday 0 Thursday 3 Friday 5 Saturday 8 Total 28. Day LECTURE # 8 Mea Deviatio, Stadard Deviatio ad Variace & Coefficiet of variatio Mea Deviatio Stadard Deviatio ad Variace Coefficiet of variatio First, we will discuss it for the case of raw data, ad the

More information

Lecture 3: August 31

Lecture 3: August 31 36-705: Itermediate Statistics Fall 018 Lecturer: Siva Balakrisha Lecture 3: August 31 This lecture will be mostly a summary of other useful expoetial tail bouds We will ot prove ay of these i lecture,

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

Spring Information Theory Midterm (take home) Due: Tue, Mar 29, 2016 (in class) Prof. Y. Polyanskiy. P XY (i, j) = α 2 i 2j

Spring Information Theory Midterm (take home) Due: Tue, Mar 29, 2016 (in class) Prof. Y. Polyanskiy. P XY (i, j) = α 2 i 2j Sprig 206 6.44 - Iformatio Theory Midterm (take home) Due: Tue, Mar 29, 206 (i class) Prof. Y. Polyaskiy Rules. Collaboratio strictly prohibited. 2. Write rigorously, prove all claims. 3. You ca use otes

More information

Probability and statistics: basic terms

Probability and statistics: basic terms Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample

More information

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2. SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

More information

AMS 216 Stochastic Differential Equations Lecture 02 Copyright by Hongyun Wang, UCSC ( ( )) 2 = E X 2 ( ( )) 2

AMS 216 Stochastic Differential Equations Lecture 02 Copyright by Hongyun Wang, UCSC ( ( )) 2 = E X 2 ( ( )) 2 AMS 216 Stochastic Differetial Equatios Lecture 02 Copyright by Hogyu Wag, UCSC Review of probability theory (Cotiued) Variace: var X We obtai: = E X E( X ) 2 = E( X 2 ) 2E ( X )E X var( X ) = E X 2 Stadard

More information

The Binomial Theorem

The Binomial Theorem The Biomial Theorem Robert Marti Itroductio The Biomial Theorem is used to expad biomials, that is, brackets cosistig of two distict terms The formula for the Biomial Theorem is as follows: (a + b ( k

More information

AAEC/ECON 5126 FINAL EXAM: SOLUTIONS

AAEC/ECON 5126 FINAL EXAM: SOLUTIONS AAEC/ECON 5126 FINAL EXAM: SOLUTIONS SPRING 2015 / INSTRUCTOR: KLAUS MOELTNER This exam is ope-book, ope-otes, but please work strictly o your ow. Please make sure your ame is o every sheet you re hadig

More information