Probability review (week 2) Solutions

Size: px
Start display at page:

Download "Probability review (week 2) Solutions"

Transcription

1 Probability review (week 2) Solutios A. Biomial distributio. BERNOULLI, BINOMIAL, POISSON AND NORMAL DISTRIBUTIONS. X is a biomial RV with parameters,p. Let u i be a Beroulli RV with probability of success p=. The epected value of u i is E(u i )=(p)+(-p)=p (the summatio of each possible outcome weighted by its probability). The epected value of X is the sum of the epected values of each idividual trial (represeted by the Beroulli RV u i ), so it ca be derived by: X = where u i s are Beroulli r.v. s Now for the variace: i= E(X ) = E( = u i u i ) = i= p = p. i= E(u i ) i= σ 2 X = E[(X E(X )) 2 ] = E(X 2 ) (EX ) 2 = E( = [due to the liearity of Epectatio] u i i= j= u j 2 p 2 ) Eu i u j 2 p 2 = p + ( )p 2 2 p 2 = p( p). i,j= I calculatio of i,j= Eu iu j, ote that Eu i u j = Eu 2 i = p if i = j, which there are of such terms i the summatio, ad is equal to E(u i )E(u j ) = p.p = p 2, where there are ( ) of them i the summatio. The MatLab code follows: % This fuctio returs a vector the same size as u where etries % are the biomial with parameters ad p, calculated % at each elemet of u. This tries to mimic Matlab s % built-i fuctio f=( bio,u,,p) fuctio f=my_biomial_(u,,p) % Note the followig from help o the fuctio "factorial": % Sice double precisio umbers oly have about % 5 digits, the aswer is oly accurate for N <= 2. % For how Matlab itself calculates the biomial, see bio.m f=zeros(size(u)); %iitializatio of f for i=:legth(u) if (u(i)>=)&&(u(i)<=) % sice support of biomial(,p) is,,.., f(i)=pˆu(i)*(-p)ˆ(-u(i))*factorial()/(factorial(-u(i))*factorial(u(i))); % usig the relatio for of biomial with parameters,p

2 Ad ow the mai m file, where we fi E[X ] = 5 ad = 6,, 2, 5. Notice the use of stem for illustratig pmf ad stairs for cmf i discrete radom variables. clear all; close all; clc; _vector=[6,,2,5]; i=; for =_vector p=5/; figure() subplot(2,2,i); % stem(:,( bio,:,,p),. ); % cheat lie! stem(:,my_biomial_(:,,p),. ); title([ =,um2str()]); label( ); ylabel( ); grid o; ais([,5,,.5]); figure(2) subplot(2,2,i); % stem(:,( bio,:,,p),. ); % cheat lie! % stem(:,my_biomial_(:,,p),. ); % see below for my_biomial_ code stairs(:,cumsum(my_biomial_(:,,p)), LieWidth,); % usig cumsum title([ =,um2str()]); label( ); ylabel( ); grid o; ais([,5,,]); i=i+; I case you prefer a separate fuctio for biomial : % fuctio takes vector u, ad scalars ad p, % ad returs a vector of the same size as u, where etries % are the biomial with parameters ad p, calculated % at the poits of elemets of u. tryig to mimic Matlab s % built-i fuctio f=( bio,u,,p) % This fuctio calls my_biomial_ ad calculates a cumulative sum % over possible values up to u(i) for each etry of u. fuctio F=my_biomial_(u,,p) F=zeros(size(u)); %iitializatio of F for i=:legth(u) F(i)=sum(my_biomial_(:u(i),,p)); The correspodig ad plots ca be foud i figures ad 2. B. Biomial ad Poisso distributios. For Poisso RV X p with parameter λ, the epected value is calculated below. E(X P ) = k e λ λ k = λe λ kλ k = λe λ d k! k! dλ ( λ k k! ) = d λe λ dλ (eλ ) == λe λ e λ = λ k= k= The Matlab code to plot the Poisso distributio follows. clear all; close all; clc; k=

3 figure lambda=5; =:5; % stem(,( poiss,,lambda),. ); % cheat lie! my_poisso_=ep(-lambda)*(lambda.ˆ)./factorial(); % Note the use of "dot" for elemet-wise operatio % Thus, my_poisso_ is ow a vector with the same size as. stem(,my_poisso_,. ); title([ Poisso Distributio with \lambda =,um2str(lambda)]); label( ); ylabel( ); grid o; ais([,5,,.5]); Graph ca be foud i figure 3 Now we eed to calculate the MSE. A simple trial ad error, such as the followig code reveals that we oly eed to cosider the first values for calculatio of MSE (Note that Poisso has a decliig tail, which mea that as, P(X P = ). ) clear all; close all; clc; =:2; lambda=5; my posso=ep(-lambda)*lambda.ˆ./factorial(); test=my posso<.5; test I fact, more precisely, we should cosider oly the terms 3 : 9, as show i the below code, which also geerates figure 4. close all; clear all; clc; lambda=5; =3:9; _ide=; _vector=[6 2 5]; my_mse=zeros(,4); for =_vector _ide=_ide+; my_poisso_=ep(-lambda)*(lambda.ˆ)./factorial(); my_mse(,_ide)=sum((my_biomial_(,,lambda/)... -my_poisso_).ˆ2.*my_poisso_); stem(_vector,my_mse, * ); label( ); ylabel( MSE ); grid o; ais([,5,,.2]); The results reported i a table I, below. TABLE I MEAN-SQUARE-ERROR BETWEEN PDF OF A POISSON WITH λ = 5 AND BINOMIALS OF (, λ/) FOR = 6,, 2, 5. THE PROBABILITIES IN THE POISSON LESS THAN.5 ARE NEGLECTED. MSE The table above shows the MSE betwee the biomial ad Poisso distributios for = 6,, 2, 5. As we ca see, as icreases, the MSE falls rapidly to zero, idicatig the distributios become more ad more similar for

4 larger s. C. Biomial ad Poisso distributios agai. The pmf of biomial RV X (, λ/p) coverges to the pmf of Poisso RV X p as as show below. p X () = λ lim! ( )(! ( )!! p ( p)! = ( )!! ( λ ) ( λ ) ( )( 2)... ( + ) ( λ = λ )! ( λ ) = λ! ( )( )... ( + )... ( + ) ( λ ) ( λ λ = )! ) ( λ ) ( λ ) ( λ (... ) lim ) ( λ ) By defiitio: Thus, = λ! lim ( λ ) ( λ ) = e λ lim p X () = λ! e λ = p Xp () Please refer to pp of the slides titled block probability review for more iformatio. D. Biomial ad ormal distributios. If Z is a RV with stadard ormal distributio, i.e. N(, ), the accordig to i= Z := i µ σ, X = i= u i has a Normal distributio with mea p ad variace σ, i.e. N(p, σ ). (Note: σ is equivalet to p( p)). The code follows: close all; clear all; clc; _vector=[ 2 5]; p=.5; _ide=; for =_vector _ide=_ide+; mea_ormal=*p; variace_ormal=sqrt(*p*(-p)); =:; %defiig the mea %defiig the variace subplot(3,,_ide); %plottig graph stairs(,[(my_biomial_(,,p)), orm(,mea_ormal,variace_ormal) ]..., LieWidth,2); title([ =,um2str()]); label( ); ylabel( ); leg( Biomial, Normal ); grid o; ais([,5,,]); The resultig graph ca be foud i fig 5

5 E. Normal ad Poisso approimatios. I provide you with a hit for this part: Poisso limit theorem is about accumulatio of icreasigly improbable evets. I particular, ote that for covergece of the distributio of sum of iid Beroulli RV s (which is a biomial RV) to a Poiso distributio with mea (=rate) λ, we eeded the probability of i the Beroulli RV to be p = λ/, ad as, this probability goes to zero. O the other had, i CLT, p is fied. Hece, CLT ad Poisso limit theorem are addressig basically differet limits. I leave more cotemplatio o this matter to you!

6 .5 =6.5 = = = Fig.. biomial pmf for = 6,, 2, 5 ad p = 5/. (part A)

7 =6 = = = Fig. 2. biomial cmf for = 6,, 2, 5 ad p = 5/. (part A).5 Poisso Distributio with λ = Fig. 3. Depictig the pmf of Poisso distributio with λ = 5. Note that the support of a Poisso radom variable is the whole set of {,, 2,...} up to, however, the pmf for oly the first 5 poits is show. Note the similarity with figures for large.

8 MSE Fig. 4. Mea-Square-Error betwee of a Poisso with λ = 5 ad Biomials of (, λ/) for = 6,, 2, 5. The probabilities i the Poisso less tha.5 are eglected. As we see, by icreasig, the MSE rapidly vaishes. (part B) = Biomial Normal =2 Biomial Normal =5 Biomial Normal Fig. 5. of the Biomial r.v. Y for differet s: =, 2, 3, ad its approimatio by a ormal. As we ca see, by icreasig, the ormal distributio is providig a improved approimatio of the Biomial distributio, a fact which follows from Cetral Limit Theorem. (part D)

Solutions to Homework 2 - Probability Review

Solutions to Homework 2 - Probability Review Solutios to Homework 2 - Probability Review Beroulli, biomial, Poisso ad ormal distributios. A Biomial distributio. Sice X is a biomial RV with parameters, p), it ca be writte as X = B i ) where B,...,

More information

Week 2: Probability review Bernoulli, binomial, Poisson, and normal distributions Solutions

Week 2: Probability review Bernoulli, binomial, Poisson, and normal distributions Solutions Wee 2: Probability review Beroulli, biomial, Poisso, ad ormal distributios Solutios A Biomial distributio. To evaluate the mea ad variace of a biomial RV B with parameters, p), we will rely o the relatio

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

AMS570 Lecture Notes #2

AMS570 Lecture Notes #2 AMS570 Lecture Notes # Review of Probability (cotiued) Probability distributios. () Biomial distributio Biomial Experimet: ) It cosists of trials ) Each trial results i of possible outcomes, S or F 3)

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

4. Basic probability theory

4. Basic probability theory Cotets Basic cocepts Discrete radom variables Discrete distributios (br distributios) Cotiuous radom variables Cotiuous distributios (time distributios) Other radom variables Lect04.ppt S-38.45 - Itroductio

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information

HOMEWORK I: PREREQUISITES FROM MATH 727

HOMEWORK I: PREREQUISITES FROM MATH 727 HOMEWORK I: PREREQUISITES FROM MATH 727 Questio. Let X, X 2,... be idepedet expoetial radom variables with mea µ. (a) Show that for Z +, we have EX µ!. (b) Show that almost surely, X + + X (c) Fid the

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Stat 400: Georgios Fellouris Homework 5 Due: Friday 24 th, 2017

Stat 400: Georgios Fellouris Homework 5 Due: Friday 24 th, 2017 Stat 400: Georgios Fellouris Homework 5 Due: Friday 4 th, 017 1. A exam has multiple choice questios ad each of them has 4 possible aswers, oly oe of which is correct. A studet will aswer all questios

More information

Simulation. Two Rule For Inverting A Distribution Function

Simulation. Two Rule For Inverting A Distribution Function Simulatio Two Rule For Ivertig A Distributio Fuctio Rule 1. If F(x) = u is costat o a iterval [x 1, x 2 ), the the uiform value u is mapped oto x 2 through the iversio process. Rule 2. If there is a jump

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

Probability and statistics: basic terms

Probability and statistics: basic terms Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample

More information

Variance of Discrete Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Variance of Discrete Random Variables Class 5, Jeremy Orloff and Jonathan Bloom Variace of Discrete Radom Variables Class 5, 18.05 Jeremy Orloff ad Joatha Bloom 1 Learig Goals 1. Be able to compute the variace ad stadard deviatio of a radom variable.. Uderstad that stadard deviatio

More information

Lecture 5. Random variable and distribution of probability

Lecture 5. Random variable and distribution of probability Itroductio to theory of probability ad statistics Lecture 5. Radom variable ad distributio of probability prof. dr hab.iż. Katarzya Zarzewsa Katedra Eletroii, AGH e-mail: za@agh.edu.pl http://home.agh.edu.pl/~za

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

More information

(6) Fundamental Sampling Distribution and Data Discription

(6) Fundamental Sampling Distribution and Data Discription 34 Stat Lecture Notes (6) Fudametal Samplig Distributio ad Data Discriptio ( Book*: Chapter 8,pg5) Probability& Statistics for Egieers & Scietists By Walpole, Myers, Myers, Ye 8.1 Radom Samplig: Populatio:

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

Lecture 20: Multivariate convergence and the Central Limit Theorem

Lecture 20: Multivariate convergence and the Central Limit Theorem Lecture 20: Multivariate covergece ad the Cetral Limit Theorem Covergece i distributio for radom vectors Let Z,Z 1,Z 2,... be radom vectors o R k. If the cdf of Z is cotiuous, the we ca defie covergece

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

ECE 6980 An Algorithmic and Information-Theoretic Toolbox for Massive Data

ECE 6980 An Algorithmic and Information-Theoretic Toolbox for Massive Data ECE 6980 A Algorithmic ad Iformatio-Theoretic Toolbo for Massive Data Istructor: Jayadev Acharya Lecture # Scribe: Huayu Zhag 8th August, 017 1 Recap X =, ε is a accuracy parameter, ad δ is a error parameter.

More information

Mathematics 170B Selected HW Solutions.

Mathematics 170B Selected HW Solutions. Mathematics 17B Selected HW Solutios. F 4. Suppose X is B(,p). (a)fidthemometgeeratigfuctiom (s)of(x p)/ p(1 p). Write q = 1 p. The MGF of X is (pe s + q), sice X ca be writte as the sum of idepedet Beroulli

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Discrete probability distributions

Discrete probability distributions Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

STAT 350 Handout 19 Sampling Distribution, Central Limit Theorem (6.6)

STAT 350 Handout 19 Sampling Distribution, Central Limit Theorem (6.6) STAT 350 Hadout 9 Samplig Distributio, Cetral Limit Theorem (6.6) A radom sample is a sequece of radom variables X, X 2,, X that are idepedet ad idetically distributed. o This property is ofte abbreviated

More information

Lecture 4. Random variable and distribution of probability

Lecture 4. Random variable and distribution of probability Itroductio to theory of probability ad statistics Lecture. Radom variable ad distributio of probability dr hab.iż. Katarzya Zarzewsa, prof.agh Katedra Eletroii, AGH e-mail: za@agh.edu.pl http://home.agh.edu.pl/~za

More information

Discrete Random Variables and Probability Distributions. Random Variables. Discrete Models

Discrete Random Variables and Probability Distributions. Random Variables. Discrete Models UCLA STAT 35 Applied Computatioal ad Iteractive Probability Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Chris Barr Uiversity of Califoria, Los Ageles, Witer 006 http://www.stat.ucla.edu/~diov/

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Confidence Level We want to estimate the true mean of a random variable X economically and with confidence.

Confidence Level We want to estimate the true mean of a random variable X economically and with confidence. Cofidece Iterval 700 Samples Sample Mea 03 Cofidece Level 095 Margi of Error 0037 We wat to estimate the true mea of a radom variable X ecoomically ad with cofidece True Mea μ from the Etire Populatio

More information

Lecture 6 Simple alternatives and the Neyman-Pearson lemma

Lecture 6 Simple alternatives and the Neyman-Pearson lemma STATS 00: Itroductio to Statistical Iferece Autum 06 Lecture 6 Simple alteratives ad the Neyma-Pearso lemma Last lecture, we discussed a umber of ways to costruct test statistics for testig a simple ull

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

Discrete Probability Functions

Discrete Probability Functions Discrete Probability Fuctios Daiel B. Rowe, Ph.D. Professor Departmet of Mathematics, Statistics, ad Computer Sciece Copyright 017 by 1 Outlie Discrete RVs, PMFs, CDFs Discrete Expectatios Discrete Momets

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

IE 230 Seat # Name < KEY > Please read these directions. Closed book and notes. 60 minutes.

IE 230 Seat # Name < KEY > Please read these directions. Closed book and notes. 60 minutes. IE 230 Seat # Name < KEY > Please read these directios. Closed book ad otes. 60 miutes. Covers through the ormal distributio, Sectio 4.7 of Motgomery ad Ruger, fourth editio. Cover page ad four pages of

More information

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals 7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett

Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett Lecture Note 8 Poit Estimators ad Poit Estimatio Methods MIT 14.30 Sprig 2006 Herma Beett Give a parameter with ukow value, the goal of poit estimatio is to use a sample to compute a umber that represets

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Sampling Distributions, Z-Tests, Power

Sampling Distributions, Z-Tests, Power Samplig Distributios, Z-Tests, Power We draw ifereces about populatio parameters from sample statistics Sample proportio approximates populatio proportio Sample mea approximates populatio mea Sample variace

More information

Sampling Error. Chapter 6 Student Lecture Notes 6-1. Business Statistics: A Decision-Making Approach, 6e. Chapter Goals

Sampling Error. Chapter 6 Student Lecture Notes 6-1. Business Statistics: A Decision-Making Approach, 6e. Chapter Goals Chapter 6 Studet Lecture Notes 6-1 Busiess Statistics: A Decisio-Makig Approach 6 th Editio Chapter 6 Itroductio to Samplig Distributios Chap 6-1 Chapter Goals After completig this chapter, you should

More information

Lecture 2: Concentration Bounds

Lecture 2: Concentration Bounds CSE 52: Desig ad Aalysis of Algorithms I Sprig 206 Lecture 2: Cocetratio Bouds Lecturer: Shaya Oveis Ghara March 30th Scribe: Syuzaa Sargsya Disclaimer: These otes have ot bee subjected to the usual scrutiy

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

Department of Civil Engineering-I.I.T. Delhi CEL 899: Environmental Risk Assessment HW5 Solution

Department of Civil Engineering-I.I.T. Delhi CEL 899: Environmental Risk Assessment HW5 Solution Departmet of Civil Egieerig-I.I.T. Delhi CEL 899: Evirometal Risk Assessmet HW5 Solutio Note: Assume missig data (if ay) ad metio the same. Q. Suppose X has a ormal distributio defied as N (mea=5, variace=

More information

Tests of Hypotheses Based on a Single Sample (Devore Chapter Eight)

Tests of Hypotheses Based on a Single Sample (Devore Chapter Eight) Tests of Hypotheses Based o a Sigle Sample Devore Chapter Eight MATH-252-01: Probability ad Statistics II Sprig 2018 Cotets 1 Hypothesis Tests illustrated with z-tests 1 1.1 Overview of Hypothesis Testig..........

More information

Empirical Distributions

Empirical Distributions Empirical Distributios A empirical distributio is oe for which each possible evet is assiged a probability derived from experimetal observatio. It is assumed that the evets are idepedet ad the sum of the

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Handout #5. Discrete Random Variables and Probability Distributions

Handout #5. Discrete Random Variables and Probability Distributions Hadout #5 Title: Foudatios of Ecoometrics Course: Eco 367 Fall/015 Istructor: Dr. I-Mig Chiu Discrete Radom Variables ad Probability Distributios Radom Variable (RV) Cosider the followig experimet: Toss

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series.

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series. .3 Covergece Theorems of Fourier Series I this sectio, we preset the covergece of Fourier series. A ifiite sum is, by defiitio, a limit of partial sums, that is, a cos( kx) b si( kx) lim a cos( kx) b si(

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS Cotets 1. A few useful discrete radom variables 2. Joit, margial, ad

More information

Last time: Moments of the Poisson distribution from its generating function. Example: Using telescope to measure intensity of an object

Last time: Moments of the Poisson distribution from its generating function. Example: Using telescope to measure intensity of an object 6.3 Stochastic Estimatio ad Cotrol, Fall 004 Lecture 7 Last time: Momets of the Poisso distributio from its geeratig fuctio. Gs () e dg µ e ds dg µ ( s) µ ( s) µ ( s) µ e ds dg X µ ds X s dg dg + ds ds

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

Physics 116A Solutions to Homework Set #1 Winter Boas, problem Use equation 1.8 to find a fraction describing

Physics 116A Solutions to Homework Set #1 Winter Boas, problem Use equation 1.8 to find a fraction describing Physics 6A Solutios to Homework Set # Witer 0. Boas, problem. 8 Use equatio.8 to fid a fractio describig 0.694444444... Start with the formula S = a, ad otice that we ca remove ay umber of r fiite decimals

More information

Solution to Chapter 2 Analytical Exercises

Solution to Chapter 2 Analytical Exercises Nov. 25, 23, Revised Dec. 27, 23 Hayashi Ecoometrics Solutio to Chapter 2 Aalytical Exercises. For ay ε >, So, plim z =. O the other had, which meas that lim E(z =. 2. As show i the hit, Prob( z > ε =

More information

Probability and Statistics

Probability and Statistics robability ad Statistics rof. Zheg Zheg Radom Variable A fiite sigle valued fuctio.) that maps the set of all eperimetal outcomes ito the set of real umbers R is a r.v., if the set ) is a evet F ) for

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

STAT 515 fa 2016 Lec Sampling distribution of the mean, part 2 (central limit theorem)

STAT 515 fa 2016 Lec Sampling distribution of the mean, part 2 (central limit theorem) STAT 515 fa 2016 Lec 15-16 Samplig distributio of the mea, part 2 cetral limit theorem Karl B. Gregory Moday, Sep 26th Cotets 1 The cetral limit theorem 1 1.1 The most importat theorem i statistics.............

More information

( ) = p and P( i = b) = q.

( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

EE 4TM4: Digital Communications II Probability Theory

EE 4TM4: Digital Communications II Probability Theory 1 EE 4TM4: Digital Commuicatios II Probability Theory I. RANDOM VARIABLES A radom variable is a real-valued fuctio defied o the sample space. Example: Suppose that our experimet cosists of tossig two fair

More information

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

More information

Modeling and Performance Analysis with Discrete-Event Simulation

Modeling and Performance Analysis with Discrete-Event Simulation Simulatio Modelig ad Performace Aalysis with Discrete-Evet Simulatio Chapter 5 Statistical Models i Simulatio Cotets Basic Probability Theory Cocepts Useful Statistical Models Discrete Distributios Cotiuous

More information

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables CSCI-B609: A Theorist s Toolkit, Fall 06 Aug 3 Lecture 0: the Cetral Limit Theorem Lecturer: Yua Zhou Scribe: Yua Xie & Yua Zhou Cetral Limit Theorem for iid radom variables Let us say that we wat to aalyze

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Chapter 2 Transformations and Expectations

Chapter 2 Transformations and Expectations Chapter Trasformatios a Epectatios Chapter Distributios of Fuctios of a Raom Variable Problem: Let be a raom variable with cf F ( ) If we efie ay fuctio of, say g( ) g( ) is also a raom variable whose

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

CS / MCS 401 Homework 3 grader solutions

CS / MCS 401 Homework 3 grader solutions CS / MCS 401 Homework 3 grader solutios assigmet due July 6, 016 writte by Jāis Lazovskis maximum poits: 33 Some questios from CLRS. Questios marked with a asterisk were ot graded. 1 Use the defiitio of

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 Fuctioal Law of Large Numbers. Costructio of the Wieer Measure Cotet. 1. Additioal techical results o weak covergece

More information

1. ARITHMETIC OPERATIONS IN OBSERVER'S MATHEMATICS

1. ARITHMETIC OPERATIONS IN OBSERVER'S MATHEMATICS 1. ARITHMETIC OPERATIONS IN OBSERVER'S MATHEMATICS We cosider a ite well-ordered system of observers, where each observer sees the real umbers as the set of all iite decimal fractios. The observers are

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

MATH 472 / SPRING 2013 ASSIGNMENT 2: DUE FEBRUARY 4 FINALIZED

MATH 472 / SPRING 2013 ASSIGNMENT 2: DUE FEBRUARY 4 FINALIZED MATH 47 / SPRING 013 ASSIGNMENT : DUE FEBRUARY 4 FINALIZED Please iclude a cover sheet that provides a complete setece aswer to each the followig three questios: (a) I your opiio, what were the mai ideas

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learig Theory: Lecture Notes Kamalika Chaudhuri October 4, 0 Cocetratio of Averages Cocetratio of measure is very useful i showig bouds o the errors of machie-learig algorithms. We will begi with a basic

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute Math, Calculus II Fial Eam Solutios. 5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute 4 d. The check your aswer usig the Evaluatio Theorem. ) ) Solutio: I this itegral,

More information

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2. SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

More information

MIT Spring 2016

MIT Spring 2016 MIT 18.655 Dr. Kempthore Sprig 2016 1 MIT 18.655 Outlie 1 2 MIT 18.655 Beroulli s Weak Law of Large Numbers X 1, X 2,... iid Beroulli(θ). S i=1 = X i Biomial(, θ). S P θ. Proof: Apply Chebychev s Iequality,

More information

Homework for 2/3. 1. Determine the values of the following quantities: a. t 0.1,15 b. t 0.05,15 c. t 0.1,25 d. t 0.05,40 e. t 0.

Homework for 2/3. 1. Determine the values of the following quantities: a. t 0.1,15 b. t 0.05,15 c. t 0.1,25 d. t 0.05,40 e. t 0. Name: ID: Homework for /3. Determie the values of the followig quatities: a. t 0.5 b. t 0.055 c. t 0.5 d. t 0.0540 e. t 0.00540 f. χ 0.0 g. χ 0.0 h. χ 0.00 i. χ 0.0050 j. χ 0.990 a. t 0.5.34 b. t 0.055.753

More information

CH5. Discrete Probability Distributions

CH5. Discrete Probability Distributions CH5. Discrete Probabilit Distributios Radom Variables A radom variable is a fuctio or rule that assigs a umerical value to each outcome i the sample space of a radom eperimet. Nomeclature: - Capital letters:

More information

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim Math 3, Sectio 2. (25 poits) Why we defie f(x) dx as we do. (a) Show that the improper itegral diverges. Hece the improper itegral x 2 + x 2 + b also diverges. Solutio: We compute x 2 + = lim b x 2 + =

More information

Unbiased Estimation. February 7-12, 2008

Unbiased Estimation. February 7-12, 2008 Ubiased Estimatio February 7-2, 2008 We begi with a sample X = (X,..., X ) of radom variables chose accordig to oe of a family of probabilities P θ where θ is elemet from the parameter space Θ. For radom

More information

Interval Estimation (Confidence Interval = C.I.): An interval estimate of some population parameter is an interval of the form (, ),

Interval Estimation (Confidence Interval = C.I.): An interval estimate of some population parameter is an interval of the form (, ), Cofidece Iterval Estimatio Problems Suppose we have a populatio with some ukow parameter(s). Example: Normal(,) ad are parameters. We eed to draw coclusios (make ifereces) about the ukow parameters. We

More information

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002 ECE 330:541, Stochastic Sigals ad Systems Lecture Notes o Limit Theorems from robability Fall 00 I practice, there are two ways we ca costruct a ew sequece of radom variables from a old sequece of radom

More information

Direction: This test is worth 150 points. You are required to complete this test within 55 minutes.

Direction: This test is worth 150 points. You are required to complete this test within 55 minutes. Term Test 3 (Part A) November 1, 004 Name Math 6 Studet Number Directio: This test is worth 10 poits. You are required to complete this test withi miutes. I order to receive full credit, aswer each problem

More information

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15 17. Joit distributios of extreme order statistics Lehma 5.1; Ferguso 15 I Example 10., we derived the asymptotic distributio of the maximum from a radom sample from a uiform distributio. We did this usig

More information