Approximate Harten-Lax-Van Leer (HLL) Riemann Solvers for Relativistic hydrodynamics and MHD

Size: px
Start display at page:

Download "Approximate Harten-Lax-Van Leer (HLL) Riemann Solvers for Relativistic hydrodynamics and MHD"

Transcription

1 Approximate Harten-Lax-Van Leer (HLL) Riemann Solvers for Relativistic hydrodynamics and MHD Andrea Mignone Collaborators: G. Bodo, M. Ugliano Dipartimento di Fisica Generale, Universita di Torino (Italy) INAF Osservatorio Astronomico di Torino (Italy)

2 Outline Equations and numerical formalism; Riemann problem for relativistic hydro and MHD HLL / HLLC /HLLD approximate Riemann solvers; Performance and Astrophysical Applications Summary

3 Fundamental Equations Conservation of mass and energy-momentum for an ideal relativistic magnetized fluid in a special relativity 1 : Equations of State (EoS) provides closure w=w(,p); Nonlinear system of 8 hyperbolic conservation laws stating conservation of mass, momentum-energy + Maxwell s equations + B = 0 constraint. allow propagation of 7 waves: fast, slow, Alfvèn, entropy; 1 Lichnerowicz 1967, Anile 1990

4 Numerical approach Hyperbolic Conservation Laws: + Conserved quantities: Flux tensor Conservative discretization: F,G,H: time-averaged fluxes computed from the solution of Riemann problems;

5 1D Flux Computation: Riemann Problem In 1D, integrate over space (Δx) and time (Δt) Computation of the flux requires the (exact or approximate) solution of the Riemann problem at zone edges; Riemann Problem: given left and right states at a zone edge answer: the solution depends on the form of the conservation law.

6 1 st Order Godunov Formalism Solve riemann problem here u(x) Start with zone averaged values: x Solve riemann problem Compute fluxes

7 Riemann Problem in Relativistic Hydro t c entropy L acoustic R acoustic U L left state U R, right state x 3 wave pattern: left, middle and right wave Rankine-Hugoniot jump conditions, for each wave Across the contact wave only density has a jump, [v x ] = [p gas ]=0.

8 Riemann Problem in Relativistic MHD t Alfven slow [S/R] entropy slow [S/R] Alfven fast [S/R] Fast [S/R] U L, left state U R, right state x 7 wave pattern, across the contact wave, for B n 0, only density has a jump; across Alfven waves, [ ] = [p gas ]=0 but normal velocity [v x ] 0 magnetic field elliptically polarized.

9 An example

10 Riemann Solvers: different approaches Exact Riemann solver (nonlinear) Full nonlinear solution: Giacomazzo & Rezzolla, JFM (2006) Impracticable for heavily usage in upwind codes; Linearized Riemann solvers (Roe type) require characteristic decomposition in left and righteigenvectors may be prone to numerical pathologies [Komissarov, MNRAS (1999); Balsara, ApJS (2001); Koldoba MNRAS (2002); Anton et al, ApJS (2010)] HLL-type Riemann solvers (guess-based) based on guess to the signal speeds and on the integral average of the solution over the Riemann Fan; preserve positivity HD/MHD [Harten, Lax, van Leer, SIAM Rev.(1983); Toro (1997); Li, JCP (2005); Miyoshi & Kusano, JCP(2005) ] RHD/RMHD [Del Zanna et al, A&A (2003), Mignone et al, MNRAS (2005,2006,2009); Honkkila & Janhunen, JCP (2007)]

11 Approximate Schemes:HLLE L fast F *, U * R fast HLL (or HLLE): The Harten Laxvan Leer is based on a 2 wave approximation of the Riemann Fan. Remaining structure lumped into a single state. Requires: guess to outermost waves [Del Zanna et al, A&A (2003)] U L U R 2N jump conditions, 2N unknowns,!! F * F(U * )

12 Approximate schemes: HLLC L fast c contact HLLC: restore the middle contact (or tangential mode). F L*, U L * F L*, U L * R fast Riemann fan approximated by 3 waves. Requires: guess to outermost waves, closed form solution. U L U R Mignone & Bodo, MNRAS (2005, 2006); Honkkila & Janhunen, JCP (2007) 2N jump conditions + m additional constraints at middle wave; 4N+1 unknowns undetermined system (not consistent); F* and U* can no longer be considered completely independent; Further assumptions have to be made on the form of the fluxes.

13 HLLC for Relativistic Hydro L fast c contact 1D Relativistic hydro equations: F L*, U L * R fast F L*, U L * U L U R Express U* and F* in terms of a common set of 6 variables 5 PDEs; 10 jumps + 3 constraints at the middle wave: [p]=[v x ]=0, c = v x ; Need 10+3=13 unknowns: 6 (U * L) + 6 (U * R) + c Write down the jump conditions explicitly Solution a 2 + b + c = 0

14 Performance Results HLLC improves over HLL attaining sharper representation of discontinuities 1 1 st order scheme 2 nd order scheme 1 Mignone & Bodo, MNRAS(2005)

15 HLLC for Relativistic MHD L fast F L*, U L * c tangential F L*, U L * R fast HLLC extended to RMHD [Mignone & Bodo, MNRAS (2006), Honkkila & Janhunen, JCP (2007)] Solution vector now has 7 components (B x constant); 14 jumps + 6 constraints at the middle wave: U L U R Express U* and F* in terms of a common set of 10 variables Need 20 unknowns: 10 (U * L) + 10 (U * R) Solution a 2 + b + c = 0

16 Performance Results 1D shock tube 2D Shock Cloud Interaction

17 Performance Results Axisymmetric propagation of relativistic jet carrying toroidal field Choice of solver may give slower convergence rate

18 HLLD for Relativistic MHD L fast al Alfven c tangential ar Alfven R fast Riemann fan approximated by 5 waves; restore Alfven + contact modes. 14 jumps + 6 constraints (tangential c ) 12 constraints (Alfven a ) U L U R Express U* and F* in terms of a common set of 8 variables Only total pressure is constant through the Riemann fan. Need 32 unknowns Solution f(p) = 0 root of one nonlinear scalar equation in the the total pressure (no closed form) 1 1- Mignone et al. MNRAS(2009)

19 Performance Results Relativistic Brio-Wu Shock Tube Colliding relativistic stream

20 Applications to Kelvin-Helmholtz flows Linear and nonlinear evolution of a magnetized relativisitc shear layer; Computations at Low(L), Medium(M) and High (H) resolutions shows similar growth rates for HLLD, slower convergence for HLL:

21 Dissipation properties Decay of turbulent magnetic field ( 0.4) in a relativistic ( 4) shear flow; Average magnetic energy vs. time at different resolutions and Riemann solver: HLL requires a factor 2 in resolution to achieve comparable dissipation level

22 Axisymmetric Jet propagation Turbulent Jet Layers

23 CPU Time vs Accuracy HLLD slower than HLL by % (problem dependent); HLLD HLL may need up to twice the resolution to achieve same accuracy / dissipation level; In D dimensions, T CPU (N) N D+1 HLL In 3D, for smooth flows, HLLD can gain up to a factor of 8 More effective in triggering small wavelength modes; More convenient to use expensive solver on fewer grid zones!

24 Relativistic MHD jets: 2D vs 3D 3D simulations confirm that field topology is essential in determining the dynamics 1 ; Jets carrying dominant toroidal field unstable to CD kink modes. Axisymmetric ( 2.5 D) Fully 3-D 1 Mignone et al. (MNRAS, 2010)

25 Application to Astrophysics: 3D Jet HLLD successfully applied to 3D Relativistic MHD simulations of Jets; [Mignone et al, MNRAS(2010)] - 640x1600x640 grid points using the PLUTO code 1 - Current-Driven instabilities lead to jet wiggling and deflection; - Shielding of inner core from interaction with environment prevent loss of momentum transfer.

26 Morphological Comparison Hydro Poloidal Toroidal secondary shocks Morphology of toroidal dominated field more similar to FR II sources

27 Summary Riemann solvers fundamental blocks for shock-capturing Godunov-type schemes; Level of accuracy/dissiption number of waves included in the approximate solutions: HLL: 2 waves, linear system HLLC: 3 waves, quadratic equation HLLD: 5 waves, nonlinear scalar equation Extension to multidimensional computations straightforward; Using more accurate solver with fewer points more efficient than diffusive solver with lots of points: Accuracy, Convergence properties, dissipation and small scale structures All simulations performed with PLUTO Code

28 Thank You

arxiv: v1 [astro-ph] 10 Nov 2008

arxiv: v1 [astro-ph] 10 Nov 2008 Mon. Not. R. Astron. Soc. 000, 1 15 (2007) Printed 10 November 2008 (MN LATEX style file v2.2) A five-wave HLL Riemann solver for relativistic MHD arxiv:0811.1483v1 [astro-ph] 10 Nov 2008 A. Mignone 1,2,

More information

The PLUTO code for astrophysical gasdynamics

The PLUTO code for astrophysical gasdynamics Mem. S.A.It. Suppl. Vol. 13, 67 c SAIt 009 Memorie della Supplementi The PLUTO code for astrophysical gasdynamics A. Mignone 1, 1 Dipartimento di Fisica Generale Amedeo Avogadro, Università degli Studi

More information

The RAMSES code and related techniques 2- MHD solvers

The RAMSES code and related techniques 2- MHD solvers The RAMSES code and related techniques 2- MHD solvers Outline - The ideal MHD equations - Godunov method for 1D MHD equations - Ideal MHD in multiple dimensions - Cell-centered variables: divergence B

More information

arxiv:astro-ph/ v1 28 Nov 2005

arxiv:astro-ph/ v1 28 Nov 2005 Relativistic MHD Simulations of Jets with Toroidal Magnetic Fields. arxiv:astro-ph/0511769v1 8 Nov 005 Andrea Mignone (mignone@to.astro.it), Silvano Massaglia and Gianluigi Bodo Dipartimento di Fisica

More information

HLLC solver for ideal relativistic MHD

HLLC solver for ideal relativistic MHD HLLC solver for ideal relativistic MHD V. Honkkila, P. Janhunen* University of Helsinki, Department of Physical Sciences, P.O.Box 64 FIN- 4, Helsinki, Finland *Also at Finnish Meteorological Institute,

More information

Numerical Simulations of the Jet in the Crab Nebula

Numerical Simulations of the Jet in the Crab Nebula Numerical Simulations of the Jet in the Crab Nebula A. Mignone 1, A. Ferrari 1, E. Striani 2, M. Tavani 2 1 Dipartimento di Fisica, Università di Torino 2 Iasf/iaps università di tor vergata (roma) 1.

More information

State of the Art MHD Methods for Astrophysical Applications p.1/32

State of the Art MHD Methods for Astrophysical Applications p.1/32 State of the Art MHD Methods for Astrophysical Applications Scott C. Noble February 25, 2004 CTA, Physics Dept., UIUC State of the Art MHD Methods for Astrophysical Applications p.1/32 Plan of Attack Is

More information

The RAMSES code and related techniques I. Hydro solvers

The RAMSES code and related techniques I. Hydro solvers The RAMSES code and related techniques I. Hydro solvers Outline - The Euler equations - Systems of conservation laws - The Riemann problem - The Godunov Method - Riemann solvers - 2D Godunov schemes -

More information

The Center for Astrophysical Thermonuclear Flashes. FLASH Hydrodynamics

The Center for Astrophysical Thermonuclear Flashes. FLASH Hydrodynamics The Center for Astrophysical Thermonuclear Flashes FLASH Hydrodynamics Jonathan Dursi (CITA), Alan Calder (FLASH) B. Fryxell, T. Linde, A. Mignone, G. Wiers Many others! Mar 23, 2005 An Advanced Simulation

More information

A Finite Volume Code for 1D Gas Dynamics

A Finite Volume Code for 1D Gas Dynamics A Finite Volume Code for 1D Gas Dynamics Michael Lavell Department of Applied Mathematics and Statistics 1 Introduction A finite volume code is constructed to solve conservative systems, such as Euler

More information

Riemann Solvers and Numerical Methods for Fluid Dynamics

Riemann Solvers and Numerical Methods for Fluid Dynamics Eleuterio R Toro Riemann Solvers and Numerical Methods for Fluid Dynamics A Practical Introduction With 223 Figures Springer Table of Contents Preface V 1. The Equations of Fluid Dynamics 1 1.1 The Euler

More information

Instabilities of relativistic jets

Instabilities of relativistic jets Instabilities of relativistic jets G. Bodo INAF Osservatorio Astrofisico di Torino, Italy A. Mignone, P. Rossi, G. Mamatsashvili, S. Massaglia, A. Ferrari show f Universality of relativistic jet phenomenon

More information

A Comparative Study of Divergence-Cleaning Techniques for Multi-Dimensional MHD Schemes )

A Comparative Study of Divergence-Cleaning Techniques for Multi-Dimensional MHD Schemes ) A Comparative Study of Divergence-Cleaning Techniques for Multi-Dimensional MHD Schemes ) Takahiro MIYOSHI and Kanya KUSANO 1) Hiroshima University, Higashi-Hiroshima 739-856, Japan 1) Nagoya University,

More information

Computational Astrophysics

Computational Astrophysics 16 th Chris Engelbrecht Summer School, January 2005 3: 1 Computational Astrophysics Lecture 3: Magnetic fields Paul Ricker University of Illinois at Urbana-Champaign National Center for Supercomputing

More information

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Romain Teyssier CEA Saclay Romain Teyssier 1 Outline - Euler equations, MHD, waves, hyperbolic

More information

RESEARCH HIGHLIGHTS. WAF: Weighted Average Flux Method

RESEARCH HIGHLIGHTS. WAF: Weighted Average Flux Method RESEARCH HIGHLIGHTS (Last update: 3 rd April 2013) Here I briefly describe my contributions to research on numerical methods for hyperbolic balance laws that, in my view, have made an impact in the scientific

More information

The ECHO code: from classical MHD to GRMHD in dynamical spacetimes

The ECHO code: from classical MHD to GRMHD in dynamical spacetimes The ECHO code: from classical MHD to GRMHD in dynamical spacetimes Luca Del Zanna Dipartimento di Fisica e Astronomia Università di Firenze Main collaborators: N. Bucciantini, O. Zanotti, S. Landi 09/09/2011

More information

arxiv:astro-ph/ v1 17 Jun 2005

arxiv:astro-ph/ v1 17 Jun 2005 Mon. Not. R. Astron. Soc. 000, 1 11 (005) Printed 1 March 008 (MN LATEX style file v.) An HLLC Solver for Relativistic Flows A. Mignone 1 and G. Bodo 1 1 INAF Osservatorio Astronomico di Torino, 1005 Pino

More information

Multi-D MHD and B = 0

Multi-D MHD and B = 0 CapSel DivB - 01 Multi-D MHD and B = 0 keppens@rijnh.nl multi-d MHD and MHD wave anisotropies dimensionality > 1 non-trivial B = 0 constraint even if satisfied exactly t = 0: can numerically generate B

More information

arxiv:astro-ph/ v1 27 Jan 2006

arxiv:astro-ph/ v1 27 Jan 2006 Mon. Not. R. Astron. Soc. 000, 7 005) Printed January 04 MN LATEX style file v.) An HLLC Solver for Relativistic Flows II. Magnetohydrodynamics A. Mignone and G. Bodo INAF Osservatorio Astronomico di Torino,

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Many astrophysical scenarios are modeled using the field equations of fluid dynamics. Fluids are generally challenging systems to describe analytically, as they form a nonlinear

More information

Magnetized Binary Neutron Stars with Whisky

Magnetized Binary Neutron Stars with Whisky Magnetized Binary Neutron Stars with Whisky Bruno Giacomazzo (AEI, Potsdam, Germany) in collaboration with Luca Baiotti (Tokyo) and Luciano Rezzolla (AEI) Plan of the Talk Introduction The Whisky(MHD)

More information

A note on the carbuncle in shallow water simulations

A note on the carbuncle in shallow water simulations A note on the carbuncle in shallow water simulations Friedemann Kemm Institute for Applied Mathematics and Scientific Computing, Brandenburgische Technische Universität Cottbus, Platz der Deutschen Einheit

More information

Morphologies of extragalactic jets

Morphologies of extragalactic jets MOMENTUM TRANSPORT IN TURBULENT HYDRO JETS AND EXTRAGALACTIC SOURCES MORPHOLOGY Attilio Ferrari University of Torino University of Chicago JETSET - CMSO with G. Bodo, S. Massaglia, A. Mignone, P. Rossi

More information

Jin MATSUMOTO. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets. National Astronomical Observatory of Japan

Jin MATSUMOTO. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets. National Astronomical Observatory of Japan Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets Jin MATSUMOTO National Astronomical Observatory of Japan Collaborator: Youhei Masada (Kobe University) Morphological

More information

Jet Stability: A computational survey

Jet Stability: A computational survey Jet Stability Galway 2008-1 Jet Stability: A computational survey Rony Keppens Centre for Plasma-Astrophysics, K.U.Leuven (Belgium) & FOM-Institute for Plasma Physics Rijnhuizen & Astronomical Institute,

More information

NUMERICAL SOLUTION OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

NUMERICAL SOLUTION OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS NUMERICAL SOLUTION OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS JOHN A. TRANGENSTEIN Department of Mathematics, Duke University Durham, NC 27708-0320 Ш CAMBRIDGE ЩР UNIVERSITY PRESS Contents 1 Introduction

More information

Godunov methods in GANDALF

Godunov methods in GANDALF Godunov methods in GANDALF Stefan Heigl David Hubber Judith Ngoumou USM, LMU, München 28th October 2015 Why not just stick with SPH? SPH is perfectly adequate in many scenarios but can fail, or at least

More information

MATHEMATICAL ASPECTS OF NUMERICAL SOLUTION OF HYPERBOLIC SYSTEMS

MATHEMATICAL ASPECTS OF NUMERICAL SOLUTION OF HYPERBOLIC SYSTEMS K CHAPMAN & HALL/CRC Monographs and Surveys in Pure and Applied Mathematics I 18 MATHEMATICAL ASPECTS OF NUMERICAL SOLUTION OF HYPERBOLIC SYSTEMS ANDREI G. KULIKOVSKII NIKOLAI V. POGORELOV ANDREI YU. SEMENOV

More information

Attilio Ferrari. CIFS, Università di Torino. 12th Agile Workshop, May 8, 2014

Attilio Ferrari. CIFS, Università di Torino. 12th Agile Workshop, May 8, 2014 Attilio Ferrari CIFS, Università di Torino 12th Agile Workshop, May 8, 2014 Plasma processes of astrophysical relevance Highly nonlinear (relativistic) physics Huge extension of physical parameters Scalability?

More information

International Engineering Research Journal

International Engineering Research Journal Special Edition PGCON-MECH-7 Development of high resolution methods for solving D Euler equation Ms.Dipti A. Bendale, Dr.Prof. Jayant H. Bhangale and Dr.Prof. Milind P. Ray ϯ Mechanical Department, SavitribaiPhule

More information

Part 1: Numerical Modeling for Compressible Plasma Flows

Part 1: Numerical Modeling for Compressible Plasma Flows Part 1: Numerical Modeling for Compressible Plasma Flows Dongwook Lee Applied Mathematics & Statistics University of California, Santa Cruz AMS 280C Seminar October 17, 2014 MIRA, BG/Q, Argonne National

More information

Comparison of Approximate Riemann Solvers

Comparison of Approximate Riemann Solvers Comparison of Approximate Riemann Solvers Charlotte Kong May 0 Department of Mathematics University of Reading Supervisor: Dr P Sweby A dissertation submitted in partial fulfilment of the requirement for

More information

arxiv: v4 [astro-ph.im] 27 Apr 2011

arxiv: v4 [astro-ph.im] 27 Apr 2011 A ROBUST NUMERICAL SCHEME FOR HIGHLY COMPRESSIBLE MAGNETOHYDRODYNAMICS: NONLINEAR STABILITY, IMPLEMENTATION AND TESTS K. WAAGAN, C. FEDERRATH, AND C. KLINGENBERG arxiv:1101.3007v4 [astro-ph.im] 27 Apr

More information

Various Hydro Solvers in FLASH3

Various Hydro Solvers in FLASH3 The Center for Astrophysical Thermonuclear Flashes Various Hydro Solvers in FLASH3 Dongwook Lee FLASH3 Tutorial June 22-23, 2009 An Advanced Simulation and Computing (ASC) Academic Strategic Alliances

More information

Shock Waves. 1 Steepening of sound waves. We have the result that the velocity of a sound wave in an arbitrary reference frame is given by: kˆ.

Shock Waves. 1 Steepening of sound waves. We have the result that the velocity of a sound wave in an arbitrary reference frame is given by: kˆ. Shock Waves Steepening of sound waves We have the result that the velocity of a sound wave in an arbitrary reference frame is given by: v u kˆ c s kˆ where u is the velocity of the fluid and k is the wave

More information

Finite Volume for Fusion Simulations

Finite Volume for Fusion Simulations Finite Volume for Fusion Simulations Elise Estibals, Hervé Guillard, Afeintou Sangam To cite this version: Elise Estibals, Hervé Guillard, Afeintou Sangam. Finite Volume for Fusion Simulations. Jorek Meeting

More information

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow Outline Scalar nonlinear conservation laws Traffic flow Shocks and rarefaction waves Burgers equation Rankine-Hugoniot conditions Importance of conservation form Weak solutions Reading: Chapter, 2 R.J.

More information

School and Conference on Analytical and Computational Astrophysics November, Angular momentum transport in accretion disks

School and Conference on Analytical and Computational Astrophysics November, Angular momentum transport in accretion disks 2292-13 School and Conference on Analytical and Computational Astrophysics 14-25 November, 2011 Angular momentum transport in accretion disks Gianluigi Bodo Osservatorio Astronomico, Torino Italy Angular

More information

Jin Matsumoto. Relativistic HD/MHD Flow for GRB Jets. RIKEN Astrophysical Big Bang Laboratory

Jin Matsumoto. Relativistic HD/MHD Flow for GRB Jets. RIKEN Astrophysical Big Bang Laboratory Relativistic HD/MHD Flow for GRB Jets Jin Matsumoto RIKEN Astrophysical Big Bang Laboratory Collaborators: Nagataki, Ito, Mizuta, Barkov, Dainotti, Teraki (RIKEN), Masada (Kobe University) What a relativistic

More information

Mathematical foundations of relativistic hydrodynamics. José Antonio Font

Mathematical foundations of relativistic hydrodynamics. José Antonio Font Mathematical foundations of relativistic hydrodynamics José Antonio Font University of Valencia NewCompStar School 2017, University of Sofia Outline Lecture 1: Relativistic Hydrodynamics Lecture 2: Numerical

More information

How can jets survive MHD instabilities?

How can jets survive MHD instabilities? How can jets survive MHD instabilities? Hubert Baty Observatoire Astronomique, 11 Rue de l université 67000 Strasbourg, France Rony Keppens FOM-Institute for Plasma Physics Rijnhuizen, Association Euratom/FOM,

More information

An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics

An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics A&A 400, 397 413 (2003) DOI: 10.1051/0004-6361:20021641 c ESO 2003 Astronomy & Astrophysics An efficient shock-capturing central-type scheme for multidimensional relativistic flows II. Magnetohydrodynamics

More information

A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations

A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations Ch. Altmann, G. Gassner, F. Lörcher, C.-D. Munz Numerical Flow Models for Controlled

More information

MAGNETIZED BINARY NEUTRON STAR MERGERS. Bruno Giacomazzo Department of Astronomy, University of Maryland, USA NASA Goddard Space Flight Center, USA

MAGNETIZED BINARY NEUTRON STAR MERGERS. Bruno Giacomazzo Department of Astronomy, University of Maryland, USA NASA Goddard Space Flight Center, USA MAGNETIZED BINARY NEUTRON STAR MERGERS Bruno Giacomazzo Department of Astronomy, University of Maryland, USA NASA Goddard Space Flight Center, USA PLAN OF THE TALK Introduction Magnetized Binary Neutron

More information

Numerical Hydrodynamics in Special Relativity

Numerical Hydrodynamics in Special Relativity Numerical Hydrodynamics in Special Relativity J. M. Martí Departamento de Astronomía y Astrofísica Universidad de Valencia 46100 Burjassot (Valencia), Spain martij@godunov.daa.uv.es E. Müller Max-Planck-Institut

More information

Studies of self-gravitating tori around black holes and of self-gravitating rings

Studies of self-gravitating tori around black holes and of self-gravitating rings Studies of self-gravitating tori around black holes and of self-gravitating rings Pedro Montero Max Planck Institute for Astrophysics Garching (Germany) Collaborators: Jose Antonio Font (U. Valencia) Masaru

More information

Finite Volume Schemes: an introduction

Finite Volume Schemes: an introduction Finite Volume Schemes: an introduction First lecture Annamaria Mazzia Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Università di Padova mazzia@dmsa.unipd.it Scuola di dottorato

More information

MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion EPJ Web of Conferences 64, 05002 (2014) DOI: 10.1051/ epjconf/ 20146405002 C Owned by the authors, published by EDP Sciences, 2014 MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

More information

Chp 4: Non-linear Conservation Laws; the Scalar Case. By Prof. Dinshaw S. Balsara

Chp 4: Non-linear Conservation Laws; the Scalar Case. By Prof. Dinshaw S. Balsara Chp 4: Non-linear Conservation Laws; the Scalar Case By Prof. Dinshaw S. Balsara 1 4.1) Introduction We have seen that monotonicity preserving reconstruction and iemann solvers are essential building blocks

More information

High-resolution finite volume methods for hyperbolic PDEs on manifolds

High-resolution finite volume methods for hyperbolic PDEs on manifolds High-resolution finite volume methods for hyperbolic PDEs on manifolds Randall J. LeVeque Department of Applied Mathematics University of Washington Supported in part by NSF, DOE Overview High-resolution

More information

Jin Matsumoto. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets. RIKEN Astrophysical Big Bang Laboratory

Jin Matsumoto. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets. RIKEN Astrophysical Big Bang Laboratory Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets Jin Matsumoto RIKEN Astrophysical Big Bang Laboratory Collaborator: Youhei Masada (Kobe University) What a relativistic

More information

CapSel Roe Roe solver.

CapSel Roe Roe solver. CapSel Roe - 01 Roe solver keppens@rijnh.nl modern high resolution, shock-capturing schemes for Euler capitalize on known solution of the Riemann problem originally developed by Godunov always use conservative

More information

The one-dimensional equations for the fluid dynamics of a gas can be written in conservation form as follows:

The one-dimensional equations for the fluid dynamics of a gas can be written in conservation form as follows: Topic 7 Fluid Dynamics Lecture The Riemann Problem and Shock Tube Problem A simple one dimensional model of a gas was introduced by G.A. Sod, J. Computational Physics 7, 1 (1978), to test various algorithms

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

Amplification of magnetic fields in core collapse

Amplification of magnetic fields in core collapse Amplification of magnetic fields in core collapse Miguel Àngel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz Universitat de València; Max-Planck-Institut

More information

NUMERICAL STUDY OF NON-THERMAL EMISSION FROM LAGRANGIAN PARTICLES IN AGN ENVIRONMENTS.

NUMERICAL STUDY OF NON-THERMAL EMISSION FROM LAGRANGIAN PARTICLES IN AGN ENVIRONMENTS. 13th AGILE Workshop, ASI, Rome May 25, 2015 NUMERICAL STUDY OF NON-THERMAL EMISSION FROM LAGRANGIAN PARTICLES IN AGN ENVIRONMENTS. Dr. Bhargav Vaidya Università degli Studi di Torino, Torino. Collaborators:

More information

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A. A. I. Peer a,, A. Gopaul a, M. Z. Dauhoo a, M. Bhuruth a, a Department of Mathematics, University of Mauritius, Reduit,

More information

Outline of lectures. Adding more physics. Doing Better: source terms in CTU unsplit integrator

Outline of lectures. Adding more physics. Doing Better: source terms in CTU unsplit integrator Grid-based methods for hydrodynamics, MHD, and radiation hydrodynamics. Outline of lectures (Four lectures) Lecture 1. Introduction to physics and numerics Lecture 2. Operator split (ZEUS-like) methods

More information

NUMERICAL METHODS IN ASTROPHYSICS An Introduction

NUMERICAL METHODS IN ASTROPHYSICS An Introduction -1 Series in Astronomy and Astrophysics NUMERICAL METHODS IN ASTROPHYSICS An Introduction Peter Bodenheimer University of California Santa Cruz, USA Gregory P. Laughlin University of California Santa Cruz,

More information

Projection Dynamics in Godunov-Type Schemes

Projection Dynamics in Godunov-Type Schemes JOURNAL OF COMPUTATIONAL PHYSICS 142, 412 427 (1998) ARTICLE NO. CP985923 Projection Dynamics in Godunov-Type Schemes Kun Xu and Jishan Hu Department of Mathematics, Hong Kong University of Science and

More information

Jin Matsumoto. Numerical Experiments of GRB Jets. RIKEN Astrophysical Big Bang Laboratory

Jin Matsumoto. Numerical Experiments of GRB Jets. RIKEN Astrophysical Big Bang Laboratory Numerical Experiments of GRB Jets Jin Matsumoto RIKEN Astrophysical Big Bang Laboratory Collaborators: Nagataki, Ito, Mizuta, Barkov, Dainotti, Teraki (RIKEN) Schematic Picture of the GRB Jet Meszaros

More information

A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS

A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS HASEENA AHMED AND HAILIANG LIU Abstract. High resolution finite difference methods

More information

The importance of including XMHD physics in HED codes

The importance of including XMHD physics in HED codes The importance of including XMHD physics in HED codes Charles E. Seyler, Laboratory of Plasma Studies, School of Electrical and Computer Engineering, Cornell University Collaborators: Nat Hamlin (Cornell)

More information

A Divergence-Free Upwind Code for Multidimensional Magnetohydrodynamic Flows 4

A Divergence-Free Upwind Code for Multidimensional Magnetohydrodynamic Flows 4 draft of August 0, 998 A Divergence-Free Upwind Code for Multidimensional Magnetohydrodynamic Flows 4 Dongsu Ryu, Francesco Miniati,T.W.Jones, and Adam Frank 3 ABSTRACT A description is given for preserving

More information

A PARALLEL ADAPTIVE 3D MHD SCHEME FOR MODELING CORONAL AND SOLAR WIND PLASMA FLOWS

A PARALLEL ADAPTIVE 3D MHD SCHEME FOR MODELING CORONAL AND SOLAR WIND PLASMA FLOWS A PARALLEL ADAPTIVE 3D MHD SCHEME FOR MODELING CORONAL AND SOLAR WIND PLASMA FLOWS C. P. T. GROTH, D. L. DE ZEEUW and T. I. GOMBOSI Space Physics Research Laboratory, Department of Atmospheric, Oceanic

More information

Advection / Hyperbolic PDEs. PHY 604: Computational Methods in Physics and Astrophysics II

Advection / Hyperbolic PDEs. PHY 604: Computational Methods in Physics and Astrophysics II Advection / Hyperbolic PDEs Notes In addition to the slides and code examples, my notes on PDEs with the finite-volume method are up online: https://github.com/open-astrophysics-bookshelf/numerical_exercises

More information

Numerical Analysis of the Ultrarelativistic and Magnetized Bondi Hoyle Problem

Numerical Analysis of the Ultrarelativistic and Magnetized Bondi Hoyle Problem Numerical Analysis of the Ultrarelativistic and Magnetized Bondi Hoyle Problem by Andrew Jason Penner B.Sc., University of Manitoba, 2002 M.Sc., University of Manitoba, 2004 A THESIS SUBMITTED IN PARTIAL

More information

THE RIEMANN FRAMEWORK AND HIGHER ORDER GODUNOV SCHEMES FOR PARALLEL, SELF-ADAPTIVE COMPUTATIONAL ASTROPHYSICS

THE RIEMANN FRAMEWORK AND HIGHER ORDER GODUNOV SCHEMES FOR PARALLEL, SELF-ADAPTIVE COMPUTATIONAL ASTROPHYSICS RevMexAA (Serie de Conferencias), 9, 72 76 (2000) THE RIEMANN FRAMEWORK AND HIGHER ORDER GODUNOV SCHEMES FOR PARALLEL, SELF-ADAPTIVE COMPUTATIONAL ASTROPHYSICS Dinshaw Balsara N.C.S.A., University of Illinois

More information

Synergetic Growth of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in the Relativistic Jet. Jin Matsumoto RIKEN

Synergetic Growth of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in the Relativistic Jet. Jin Matsumoto RIKEN Synergetic Growth of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in the Relativistic Jet Jin Matsumoto RIKEN Morphological Dichotomy of the Jet 3C 31 Cygnus A FR I (Fanaroff-Riley Class I)

More information

arxiv: v1 [astro-ph.ep] 30 Jun 2009

arxiv: v1 [astro-ph.ep] 30 Jun 2009 Astronomy & Astrophysics manuscript no. MS c ESO 2018 September 21, 2018 arxiv:0906.5516v1 [astro-ph.ep] 30 Jun 2009 A high-order Godunov scheme for global 3D MHD accretion disks simulations. I. The linear

More information

Recapitulation: Questions on Chaps. 1 and 2 #A

Recapitulation: Questions on Chaps. 1 and 2 #A Recapitulation: Questions on Chaps. 1 and 2 #A Chapter 1. Introduction What is the importance of plasma physics? How are plasmas confined in the laboratory and in nature? Why are plasmas important in astrophysics?

More information

Initial Stages of Planet Formation in Protoplanetary Disks: Origin of Vortices

Initial Stages of Planet Formation in Protoplanetary Disks: Origin of Vortices Collaboration Initial Stages of Planet Formation in Protoplanetary Disks: Origin of Vortices A. G. Tevzadze Abastumani Astrophysical Observatory, Georgia Tbilisi State University, Georgia Abastumani Astrophysical

More information

A 5-wave relaxation solver for the shallow water MHD system

A 5-wave relaxation solver for the shallow water MHD system A 5-wave relaxation solver for the shallow water MHD system François Bouchut, Xavier Lhébrard Abstract The shallow water magnetohydrodynamic system describes the thin layer evolution of the solar tachocline.

More information

Radiative MHD. in Massive Star Formation and Accretion Disks. Rolf Kuiper, Hubert Klahr, Mario Flock, Henrik Beuther, Thomas Henning

Radiative MHD. in Massive Star Formation and Accretion Disks. Rolf Kuiper, Hubert Klahr, Mario Flock, Henrik Beuther, Thomas Henning Radiative MHD in Massive Star Formation and Accretion Disks, Hubert Klahr, Mario Flock, Henrik Beuther, Thomas Henning, Radiative MHD with Makemake and Pluto : We developed a fast 3D frequency-dependent

More information

A Central Rankine Hugoniot Solver for Hyperbolic Conservation Laws

A Central Rankine Hugoniot Solver for Hyperbolic Conservation Laws A Central Rankine Hugoniot Solver for Hyperbolic Conservation Laws S. Jaisankar, S. V. Raghurama Rao CFD Centre, Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India-56 Abstract

More information

Physical Diffusion Cures the Carbuncle Phenomenon

Physical Diffusion Cures the Carbuncle Phenomenon Physical Diffusion Cures the Carbuncle Phenomenon J. M. Powers 1, J. Bruns 1, A. Jemcov 1 1 Department of Aerospace and Mechanical Engineering University of Notre Dame, USA Fifty-Third AIAA Aerospace Sciences

More information

Info. No lecture on Thursday in a week (March 17) PSet back tonight

Info. No lecture on Thursday in a week (March 17) PSet back tonight Lecture 0 8.086 Info No lecture on Thursday in a week (March 7) PSet back tonight Nonlinear transport & conservation laws What if transport becomes nonlinear? Remember: Nonlinear transport A first attempt

More information

Part 1 : solar dynamo models [Paul] Part 2 : Fluctuations and intermittency [Dario] Part 3 : From dynamo to interplanetary magnetic field [Paul]

Part 1 : solar dynamo models [Paul] Part 2 : Fluctuations and intermittency [Dario] Part 3 : From dynamo to interplanetary magnetic field [Paul] Dynamo tutorial Part 1 : solar dynamo models [Paul] Part 2 : Fluctuations and intermittency [Dario] Part 3 : From dynamo to interplanetary magnetic field [Paul] ISSI Dynamo tutorial 1 1 Dynamo tutorial

More information

Introduction to Magnetohydrodynamics (MHD)

Introduction to Magnetohydrodynamics (MHD) Introduction to Magnetohydrodynamics (MHD) Tony Arber University of Warwick 4th SOLARNET Summer School on Solar MHD and Reconnection Aim Derivation of MHD equations from conservation laws Quasi-neutrality

More information

Notes: Outline. Diffusive flux. Notes: Notes: Advection-diffusion

Notes: Outline. Diffusive flux. Notes: Notes: Advection-diffusion Outline This lecture Diffusion and advection-diffusion Riemann problem for advection Diagonalization of hyperbolic system, reduction to advection equations Characteristics and Riemann problem for acoustics

More information

Simulations of magnetic fields in core collapse on small and large scales

Simulations of magnetic fields in core collapse on small and large scales Simulations of magnetic fields in core collapse on small and large scales Miguel Ángel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz CAMAP, Departament

More information

Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, II: Minimization of B Numerical Error

Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, II: Minimization of B Numerical Error University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln NASA Publications National Aeronautics and Space Administration 10-2006 Efficient Low Dissipative High Order Schemes for

More information

A Very Brief Introduction to Conservation Laws

A Very Brief Introduction to Conservation Laws A Very Brief Introduction to Wen Shen Department of Mathematics, Penn State University Summer REU Tutorial, May 2013 Summer REU Tutorial, May 2013 1 / The derivation of conservation laws A conservation

More information

AMath 574 February 11, 2011

AMath 574 February 11, 2011 AMath 574 February 11, 2011 Today: Entropy conditions and functions Lax-Wendroff theorem Wednesday February 23: Nonlinear systems Reading: Chapter 13 R.J. LeVeque, University of Washington AMath 574, February

More information

Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization

Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization Hirschegg 2006 Supernova core collapse M. Liebendörfer University of Basel U.-L. Pen & C. Thompson Canadian Institut for Theoretical Astrophysics dynamics of core collapse simple and efficient parameterization

More information

Parma Workshop on Numerical Relativity and Gravitational Waves Book of Abstracts

Parma Workshop on Numerical Relativity and Gravitational Waves Book of Abstracts Parma Workshop on Numerical Relativity and Gravitational Waves 2011 Book of Abstracts Parma, 7-9 Sept. 2011 Parma Workshop on Numerical Relativity and Gravitational Waves 2011 3 4 Book of Abstracts Parma

More information

arxiv:astro-ph/ v1 7 Oct 2003

arxiv:astro-ph/ v1 7 Oct 2003 1 On the Divergence-Free Condition in Godunov-Type Schemes for Ideal Magnetohydrodynamics: the Upwind Constrained Transport Method arxiv:astro-ph/0310183v1 7 Oct 2003 P. Londrillo INAF - Osservatorio di

More information

A Multi-Dimensional Limiter for Hybrid Grid

A Multi-Dimensional Limiter for Hybrid Grid APCOM & ISCM 11-14 th December, 2013, Singapore A Multi-Dimensional Limiter for Hybrid Grid * H. W. Zheng ¹ 1 State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy

More information

Gas Dynamics Equations: Computation

Gas Dynamics Equations: Computation Title: Name: Affil./Addr.: Gas Dynamics Equations: Computation Gui-Qiang G. Chen Mathematical Institute, University of Oxford 24 29 St Giles, Oxford, OX1 3LB, United Kingdom Homepage: http://people.maths.ox.ac.uk/chengq/

More information

Heuristical and numerical considerations for the carbuncle phenomenon

Heuristical and numerical considerations for the carbuncle phenomenon Heuristical and numerical considerations for the carbuncle phenomenon arxiv:57.666v2 [physics.comp-ph] 6 Mar 27 Friedemann Kemm March 7, 27 Keywords: Carbuncle phenomenon, High speed flow, Shock instability,

More information

DEVELOPMENT AND APPLICATION OF GENERALIZED MUSTA SCHEMES

DEVELOPMENT AND APPLICATION OF GENERALIZED MUSTA SCHEMES European Conference on Computational Fluid Dynamics ECCOMAS CFD 26 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 26 DEVELOPMENT AND APPLICATION OF GENERALIZED MUSTA SCHEMES V.

More information

High-order Godunov schemes for global 3D MHD simulations of accretion disks. I. Testing the linear growth of the magneto-rotational instability

High-order Godunov schemes for global 3D MHD simulations of accretion disks. I. Testing the linear growth of the magneto-rotational instability A&A 516, A26 (2010) DOI: 10.1051/0004-6361/200912443 c ESO 2010 Astronomy & Astrophysics High-order Godunov schemes for global 3D MHD simulations of accretion disks I. Testing the linear growth of the

More information

A recovery-assisted DG code for the compressible Navier-Stokes equations

A recovery-assisted DG code for the compressible Navier-Stokes equations A recovery-assisted DG code for the compressible Navier-Stokes equations January 6 th, 217 5 th International Workshop on High-Order CFD Methods Kissimmee, Florida Philip E. Johnson & Eric Johnsen Scientific

More information

Computational Fluid Dynamics. PHY 688: Numerical Methods for (Astro)Physics

Computational Fluid Dynamics. PHY 688: Numerical Methods for (Astro)Physics Computational Fluid Dynamics Hydrodynamics When we discussed PDEs, we focused so far on scalar PDEs Often we wish to study systems of PDEs. Here we'll look at the equations of hydrodynamics Nonlinear system

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Partial differential equations arise in a number of physical problems, such as fluid flow, heat transfer, solid mechanics and biological processes. These

More information

PLUTO: A NUMERICAL CODE FOR COMPUTATIONAL ASTROPHYSICS

PLUTO: A NUMERICAL CODE FOR COMPUTATIONAL ASTROPHYSICS The Astrophysical Journal Supplement Series, 170:228Y242, 2007 May # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. A PLUTO: A NUMERICAL CODE FOR COMPUTATIONAL ASTROPHYSICS

More information

Anomalous wave structure in magnetized materials described by non-convex equations of state

Anomalous wave structure in magnetized materials described by non-convex equations of state This is a preprint of: Anomalous wave structure in magnetized materials described by non-convex equations of state, Susana Serna, Antonio Marquina, Phys. Fluids, vol. 6, 6, 4. DOI: [.63/.48545] Anomalous

More information

Two-scale numerical solution of the electromagnetic two-fluid plasma-maxwell equations: Shock and soliton simulation

Two-scale numerical solution of the electromagnetic two-fluid plasma-maxwell equations: Shock and soliton simulation Mathematics and Computers in Simulation 76 (2007) 3 7 Two-scale numerical solution of the electromagnetic two-fluid plasma-maxwell equations: Shock and soliton simulation S. Baboolal a,, R. Bharuthram

More information