Synergetic Growth of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in the Relativistic Jet. Jin Matsumoto RIKEN

Size: px
Start display at page:

Download "Synergetic Growth of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in the Relativistic Jet. Jin Matsumoto RIKEN"

Transcription

1 Synergetic Growth of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in the Relativistic Jet Jin Matsumoto RIKEN

2 Morphological Dichotomy of the Jet 3C 31 Cygnus A FR I (Fanaroff-Riley Class I) FR II (Fanaroff-Riley Class II) Morphology is one of the most fundamental property of the relativistic jet. A morphological dichotomy between FR I and FR II - A complex combination of several intrinsic and external factors Instabilities play an important role in the morphology and stability of the jet through the interaction between the jet and external medium.

3 Hybrid Morphology Radio Sources NGC 612 (5GHz) Morganti et al FR I FR II FR I type on one side and FR II type on the other side of AGN Properties of the ambient medium is responsible for the morphological dichotomy between FR I and FR II jet? similar jets (power, composition, Lorentz factor)

4 (a) Side View z1 z2 z3 Z many numerical works in order to investigate the un-shocked JM& Masada 13 propagation dynamics of ambient medium the relativistic jet shocked (e.g., Komissarov+97, ambient medium Marti+ 97, Aloy+ 00, Zhang+ 03,04, Mizuta+ 06, cocoon Perucho+ 08, Morsony+07, P3 Lazzati+ 09, Lopez- P2 Camara+ 13) Jet P1 reconfinement shock in the collimated jet (Norman et al. 1982; contact Sanders 1983) reconfinement discontinuity (CD) region radial oscillating motion and repeated excitation of the reconfinement region (e.g., (b) Top View Gomez+ 97, JM+ 12, Mizuta+ 14) (b1) Expansion Phase [z=z1] (b2) Contraction Phase (I) [z=z2] (b3) Contraction Phase (II) [z=z3] expanding CD contracting CD contracting CD bow shock P3 adiabatic cooling P2 P1 expanding shock contracting shock expanding shock [P1 < P2 < P3] [P1 < P2 < P3] [P2 < P3 < P1]

5 Motivation of Our Study jet interface radial inertia force reconfinement region < cross section of the jet Rayleigh-Taylor instability grows? To investigate the propagation dynamics and stability of the relativistic jet - using relativistic hydrodynamic simulations focus on the transverse structure of the jet 2D simulations: evolution of the cross section of the relativistic jet 3D simulation: propagation of the relativistic jet

6 Evolution of the cross-section of the relativistic jet

7 Time Evolution of Jet Cross Section The effective inertia is important. relativistically hot plasma: effective inertia: The effective inertia of the jet is lager than the external medium although the density of the jet is smaller than the external medium in our setting. jet cross section JM & Masada 2013 The amplitude of the corrugated jet interface grows as time passes. A finger-like structure is a typical outcome of the Rayleigh-Taylor instability.

8 Time Evolution of Jet Cross Section The effective inertia is important. relativistically hot plasma: effective inertia: The effective inertia of the jet is lager than the external medium although the density of the jet is smaller than the external medium in our setting. JM & Masada 2013 In addition to the growth of the Rayleigh-Taylor instability, the growth of the Richtmyer-Meshkov instability is also contributed to the finger like structures.

9 Richtmyer-Meshkov Instability (RMI) contact discontinuity 0 The Richtmyer-Meshkov instability is induced by impulsive acceleration due to shock passage. The perturbation amplitude grows linearly in time = k 0A v, A

10 Time Evolution of Jet Cross Section JM & Masada 2013 Richtmyer-Meshkov instability is secondary excited between the RTI fingers. Almost all finger-like structures in panel (f) have their origin in the RMI.

11 (a) Side View z1 z2 z3 Z many numerical works in order to investigate the un-shocked JM& Masada 13 propagation dynamics of ambient medium the relativistic jet shocked (e.g., Komissarov+97, ambient medium Marti+ 97, Aloy+ 00, Zhang+ 03,04, Mizuta+ 06, cocoon Perucho+ 08, Morsony+07, P3 Lazzati+ 09, Lopez- P2 Camara+ 13) Jet P1 reconfinement shock in the collimated jet (Norman et al. 1982; contact Sanders 1983) reconfinement discontinuity (CD) region radial oscillating motion and repeated excitation of the reconfinement region (e.g., (b) Top View Gomez+ 97, JM+ 12, Mizuta+ 14) (b1) Expansion Phase [z=z1] (b2) Contraction Phase (I) [z=z2] (b3) Contraction Phase (II) [z=z3] expanding CD contracting CD contracting CD bow shock P3 adiabatic cooling P2 P1 expanding shock contracting shock expanding shock [P1 < P2 < P3] [P1 < P2 < P3] [P2 < P3 < P1]

12 Synergetic Growth of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities Im! = = 0.001% perturbation in the pressure s gk ( 2 h 0 ) jet ( 2 h 0 ) co ( 2 h) jet +( 2 h) co r vφ ave/c JM+ in prep D RTI & RMI exp(0.12t) t g = r jet 2 osci k = 2 = 1 4 = r jet /40 = 40

13 3D Local Simulation for the Jet Since the jet is overpressured initially, at the early evolutional stage the jet starts to expand. Finger-like structure emerges at the jet-external medium interface primally due to the RTI. In 3D case, you can also find the growth of the oscillation-induced RTI and RMI at the jet interface. RMI fingers are excited secondary between the RTI fingers. log ρ 0.5 During the radial oscillating motion of the jet, the two types of finger structures are amplified and repeatedly excited at the jet interface, and finally deform the transverse structure of the jet. unit in time:

14 Synergetic Growth of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities vφ ave/c D RTI & RMI 2D RTI & RMI exp(0.12t) The transverse structure of the jet is dramatically deformed by a synergetic growth of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities once the jet-external medium interface is corrugated in the case with the pressure-mismatched jet. t

15 Onset Condition for the RTI forward shock contact discontinuity reverse shock jet head dispersion relation! = i s gk 2 j jh 0 j 2 j jh j + 2 c c h 0 c c 2 c h c h 0 = P 0 c 2 estimation of the inertia cocoon jet: cocoon: 2 j j h 0 j 2 j P j 2 c c h 0 c P c jet is confined by cocoon P j P c jet 2 j j h 0 j 2 c c h 0 c > 0 contact discontinuity reconfinement shock The onset condition for the Rayleigh-Taylor instability is expected to be always satisfied in the jet-cocoon system.

16 3D jet propagation through the ambient medium

17 Numerical Setting: 3D Toy Model r [pc] jet 150 outflow boundary a c 2 =1 P a /P j =0.1 outflow boundary 300 z [pc] cylindrical coordinate relativistic jet (z-direction) ideal gas numerical scheme: HLLC (Mignone & Bodo 05) uniform grid: r = z =0.1, =2 /160

18 Jet Models two key parameters 2 j - the effective inertia ratio of the jet to the ambient medium: j,a = jh j a Neglecting the multi-dimensional effect, the propagation velocity of the jet head through a cold ambient medium can be evaluated by the balancing the momentum flux of the jet and the ambient medium in the frame of the jet head (Marti+ 97, Mizuta+ 04): v h = p j,a 1+ p j,a v j - dimension less specific enthalpy of the jet: h j

19 Result: Density The amplitude of the corrugated jet interface grows due to the oscillation-induced Rayleigh- Taylor and Richtmyer-Meshkov instabilities. Only the jet component is shown. Since the relativistic jet is continuously injected into the calculation domain, standing reconfinement shocks are formed.

20 Distribution of the Modified Effective Inertia 2 h 0 As predicted analytically, the effective inertia of the jet becomes larger than the cocoon envelope for all the models.

21 3D Rendering of the Tracer passive tracer: f f =1 f =0 : jet material : ambient ( f)+r ( fv) The oscillation-induced Rayleigh- Taylor instability is responsible for the distortion of the cross section at z = 30. Finger-like structures appeared in the cross-section at z = 65 and 90 are outcome of both the Rayleigh- Taylor and Richtmyer-Meshkov instabilities.

22 Inherent Property of Relativistic Jet initial evolution - radial expansion (hot models) - radial contraction (cold models) After initial stage, the cold jet also follows the same evolution path as the hot jet and thus excites the Rayleigh-Taylor and Richtmyer- Meshkov instabilities. Although the relativistic jet shows a rich variety of the propagation dynamics depending on its launching condition, the oscillation-induced Rayleigh-Taylor instability and secondary Richtmyer-Meshkov instability grow commonly at the jet interface and then induce a lot of finger-like structures.

23 Summary forward shock contact discontinuity reverse shock jet head Rayleigh-Taylor instability grows at the relativistic jet interface regardless of the launching condition of the jet when the jet is confined by the cocoon. cocoon jet contact discontinuity pure hydro confined jet unstable for the Rayleigh-Taylor instability reconfinement shock Any stabilization effect is necessary for FR II.

Jin Matsumoto. Relativistic HD/MHD Flow for GRB Jets. RIKEN Astrophysical Big Bang Laboratory

Jin Matsumoto. Relativistic HD/MHD Flow for GRB Jets. RIKEN Astrophysical Big Bang Laboratory Relativistic HD/MHD Flow for GRB Jets Jin Matsumoto RIKEN Astrophysical Big Bang Laboratory Collaborators: Nagataki, Ito, Mizuta, Barkov, Dainotti, Teraki (RIKEN), Masada (Kobe University) What a relativistic

More information

Jin MATSUMOTO. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets. National Astronomical Observatory of Japan

Jin MATSUMOTO. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets. National Astronomical Observatory of Japan Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets Jin MATSUMOTO National Astronomical Observatory of Japan Collaborator: Youhei Masada (Kobe University) Morphological

More information

Jin Matsumoto. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets. RIKEN Astrophysical Big Bang Laboratory

Jin Matsumoto. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets. RIKEN Astrophysical Big Bang Laboratory Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets Jin Matsumoto RIKEN Astrophysical Big Bang Laboratory Collaborator: Youhei Masada (Kobe University) What a relativistic

More information

Jin Matsumoto. Numerical Experiments of GRB Jets. RIKEN Astrophysical Big Bang Laboratory

Jin Matsumoto. Numerical Experiments of GRB Jets. RIKEN Astrophysical Big Bang Laboratory Numerical Experiments of GRB Jets Jin Matsumoto RIKEN Astrophysical Big Bang Laboratory Collaborators: Nagataki, Ito, Mizuta, Barkov, Dainotti, Teraki (RIKEN) Schematic Picture of the GRB Jet Meszaros

More information

Morphologies of extragalactic jets

Morphologies of extragalactic jets MOMENTUM TRANSPORT IN TURBULENT HYDRO JETS AND EXTRAGALACTIC SOURCES MORPHOLOGY Attilio Ferrari University of Torino University of Chicago JETSET - CMSO with G. Bodo, S. Massaglia, A. Mignone, P. Rossi

More information

Observations of jet dissipation. Robert Laing (ESO/Oxford)

Observations of jet dissipation. Robert Laing (ESO/Oxford) Observations of jet dissipation Robert Laing (ESO/Oxford) Overview X-ray radio connections in radio galaxies and quasars: High-energy emission from non-thermal electrons. The interaction of radio galaxies

More information

Numerical Simulations of the Jet in the Crab Nebula

Numerical Simulations of the Jet in the Crab Nebula Numerical Simulations of the Jet in the Crab Nebula A. Mignone 1, A. Ferrari 1, E. Striani 2, M. Tavani 2 1 Dipartimento di Fisica, Università di Torino 2 Iasf/iaps università di tor vergata (roma) 1.

More information

OMEGA Laser-Driven Hydrodynamic Jet Experiments with Relevance to Astrophysics

OMEGA Laser-Driven Hydrodynamic Jet Experiments with Relevance to Astrophysics OMEGA Laser-Driven Hydrodynamic Jet Experiments with Relevance to Astrophysics Astronomical jets Experimental jets Instabilities 1.4 light years Ambient shocks Jet/ambient material interface 2.8 mm Collimated

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

Jet Physics: implications for feedback. Robert Laing (ESO)

Jet Physics: implications for feedback. Robert Laing (ESO) Jet Physics: implications for feedback Robert Laing (ESO) Aims Quantify the physics of jets in low-power radio galaxies by fitting 3D models to very deep, high-resolution radio images. Geometry Velocity

More information

Instabilities and Mixing in Supernova Envelopes During Explosion. Xuening Bai AST 541 Seminar Oct.21, 2009

Instabilities and Mixing in Supernova Envelopes During Explosion. Xuening Bai AST 541 Seminar Oct.21, 2009 Instabilities and Mixing in Supernova Envelopes During Explosion Xuening Bai AST 541 Seminar Oct.21, 2009 Outline Overview Evidence of Mixing SN 1987A Evidence in supernova remnants Basic Physics Rayleigh-Taylor

More information

A structure and energy dissipation efficiency of relativistic reconfinement shocks

A structure and energy dissipation efficiency of relativistic reconfinement shocks Mon. Not. R. Astron. Soc. 008) doi:10.1111/j.1365-966.008.1413.x A structure and energy dissipation efficiency of relativistic reconfinement shocks Krzysztof Nalewajko and Marek Sikora Nicolaus Copernicus

More information

The AGN Jet Model of the Fermi Bubbles

The AGN Jet Model of the Fermi Bubbles The AGN Jet Model of the Fermi Bubbles Fulai Guo Shanghai Astronomical Observatory IAU 322 Symposium, Palm Cove, July 18-22, 2016 1 The All-sky Fermi View at E >10 GeV The Fermi bubbles! (NASA image based

More information

arxiv: v2 [astro-ph.he] 2 Aug 2017

arxiv: v2 [astro-ph.he] 2 Aug 2017 Mon. Not. R. Astron. Soc. 000, 1 11 (2017) Printed 19 March 2018 (MN LATEX style file v2.2) Linear Theory of the Rayleigh Taylor Instability at a Discontinuous Surface of a Relativistic Flow arxiv:1707.04706v2

More information

Three Dimensional Models of RR Lyrae Pulsation

Three Dimensional Models of RR Lyrae Pulsation Regional Variable Star Conference: Physics & Astronomy Department, Michigan State University: 40 Years of Variable Stars: A Celebration of Contributions by Horace A. Smith ed. K. Kinemuchi (Sunspot, NM:

More information

Shock Waves. = 0 (momentum conservation)

Shock Waves. = 0 (momentum conservation) PH27: Aug-Dec 2003 Shock Waves A shock wave is a surface of discontinuity moving through a medium at a speed larger than the speed of sound upstream. The change in the fluid properties upon passing the

More information

Los Alamos National Laboratory Hydrodynamic Methods Applications and Research 1 LA-UR

Los Alamos National Laboratory Hydrodynamic Methods Applications and Research 1 LA-UR Rayleigh-Taylor instability is generated when a heavy fluid sits above a lighter fluid in a gravitational field. The flow behavior is described in terms of bubbles of light fluid rising into the heavier

More information

Making Faranoff-Riley I radio sources

Making Faranoff-Riley I radio sources Astronomy & Astrophysics manuscript no. 34512AA c ESO 2019 January 8, 2019 Making Faranoff-Riley I radio sources II. The effects of jet magnetization S. Massaglia 1, G. Bodo 2, P. Rossi 2, S. Capetti 2,

More information

Faranoff-Riley type I jet deceleration at density discontinuities. Relativistic hydrodynamics with a realistic equation of state ABSTRACT

Faranoff-Riley type I jet deceleration at density discontinuities. Relativistic hydrodynamics with a realistic equation of state ABSTRACT A&A 491, 321 337 (2008) DOI: 10.1051/0004-6361:20079185 c ESO 2008 Astronomy & Astrophysics Faranoff-Riley type I jet deceleration at density discontinuities Relativistic hydrodynamics with a realistic

More information

arxiv:astro-ph/ v1 14 Oct 2005

arxiv:astro-ph/ v1 14 Oct 2005 Astronomy & Astrophysics manuscript no. 3115 February 5, 2008 (DOI: will be inserted by hand later) Nonlinear stability of relativistic sheared planar jets M. Perucho 1, J. M. Martí 1, and M. Hanasz 2

More information

PHOTOSPHERIC THERMAL RADIATION FROM GRB COLLAPSAR JETS

PHOTOSPHERIC THERMAL RADIATION FROM GRB COLLAPSAR JETS High Energy Phenomena in Relativistic Outflows III (HEPRO III) International Journal of Modern Physics: Conference Series Vol. 8 (2012) 225 230 c World Scientific Publishing Company DOI: 10.1142/S2010194512004631

More information

Instabilities of relativistic jets

Instabilities of relativistic jets Instabilities of relativistic jets G. Bodo INAF Osservatorio Astrofisico di Torino, Italy A. Mignone, P. Rossi, G. Mamatsashvili, S. Massaglia, A. Ferrari show f Universality of relativistic jet phenomenon

More information

Magne&c Dissipa&on in Rela&vis&c Jets

Magne&c Dissipa&on in Rela&vis&c Jets Magne&c Dissipa&on in Rela&vis&c Jets Yosuke Mizuno Ins$tute for Theore$cal Physics Goethe University Frankfurt In Black Hole Cam collabora$on (Theory Team) Blazars through Sharp Mul$- Frequency Eyes,

More information

A Radio Jet Drives a Molecular & Atomic Gas Outflow in Multiple Regions within 1 kpc 2 of the Nucleus of IC5063

A Radio Jet Drives a Molecular & Atomic Gas Outflow in Multiple Regions within 1 kpc 2 of the Nucleus of IC5063 A Radio Jet Drives a Molecular & Atomic Gas Outflow in Multiple Regions within 1 kpc 2 of the Nucleus of IC5063 K. M. Dasyra (University of Athens) F. Combes (College de France; Observatoire de Paris)

More information

Propagation of Supernova Blast Waves through the ISM

Propagation of Supernova Blast Waves through the ISM Propagation of Supernova Blast Waves through the ISM Nora Elisa Chisari Department of Astrophysical Sciences Princeton University 18 November 2009 E. Chisari (Princeton University) SN Blast Waves Fall

More information

S hw 2 v and hw 2 p D are the relativistic densities

S hw 2 v and hw 2 p D are the relativistic densities THE ASTROPHYSICAL JOURNAL, 448 : L105 L108, 1995 August 1 1995. The American Astronomical Society. All rights reserved. Printed in U.S.A. MORPHOLOGY AND DYNAMICS OF HIGHLY SUPERSONIC RELATIVISTIC JETS

More information

Feedback from growth of supermassive black holes

Feedback from growth of supermassive black holes Research Collection Other Conference Item Feedback from growth of supermassive black holes Author(s): Begelman, Mitchell C.; Ruszkowksi, Mateusz Publication Date: 2003 Permanent Link: https://doi.org/10.3929/ethz-a-004585094

More information

Approximate Harten-Lax-Van Leer (HLL) Riemann Solvers for Relativistic hydrodynamics and MHD

Approximate Harten-Lax-Van Leer (HLL) Riemann Solvers for Relativistic hydrodynamics and MHD Approximate Harten-Lax-Van Leer (HLL) Riemann Solvers for Relativistic hydrodynamics and MHD Andrea Mignone Collaborators: G. Bodo, M. Ugliano Dipartimento di Fisica Generale, Universita di Torino (Italy)

More information

THE VELOCITY OF LARGE-SCALE JETS IN A DECLINING DENSITY MEDIUM

THE VELOCITY OF LARGE-SCALE JETS IN A DECLINING DENSITY MEDIUM RevMexAA (Serie de Conferencias), 27, 192 197 (2007) THE VELOCITY OF LARGE-SCALE JETS IN A DECLINING DENSITY MEDIUM N. Kawakatu 1 and M. Kino 1 RESUMEN Las clases de objetos compactos simétricos son morfológicamente

More information

Mass-loading and non-thermal emission from AGN jets interacting with stellar populations

Mass-loading and non-thermal emission from AGN jets interacting with stellar populations Mass-loading and non-thermal emission from AGN jets interacting with stellar populations NÚRIA TORRES-ALBÀ (1)* *ntorres@fqa.ub.edu IN COLL. W ITH V. BOSCH- RAMON (1) AND F. L. VIEYRO (1,2) 1 Departament

More information

How can jets survive MHD instabilities?

How can jets survive MHD instabilities? How can jets survive MHD instabilities? Hubert Baty Observatoire Astronomique, 11 Rue de l université 67000 Strasbourg, France Rony Keppens FOM-Institute for Plasma Physics Rijnhuizen, Association Euratom/FOM,

More information

Extragalactic Radio Sources. Joanne M. Attridge MIT Haystack Observatory

Extragalactic Radio Sources. Joanne M. Attridge MIT Haystack Observatory Extragalactic Radio Sources Joanne M. Attridge MIT Haystack Observatory It all began in the 1940s... Galaxies=condensations of gas, dust and stars held together by their own gravitational potential M 87

More information

3D simulations of supernova remnants evolution with particle acceleration

3D simulations of supernova remnants evolution with particle acceleration Supernova Remnants and Pulsar Wind Nebulae in the Chandra Era Boston, MA, 09/07/09 3D simulations of supernova remnants evolution with particle acceleration Gilles Ferrand (g.ferrand@cea.fr) and Anne Decourchelle

More information

Simulation of Relativistic Jet-Plasma Interactions

Simulation of Relativistic Jet-Plasma Interactions Simulation of Relativistic Jet-Plasma Interactions Robert Noble and Johnny Ng Stanford Linear Accelerator Center SABER Workshop, Laboratory Astrophysics WG SLAC, March 15-16, 2006 Motivations High energy

More information

Relativistic MHD Jets

Relativistic MHD Jets Formation and Kinematic Properties of Relativistic MHD Jets Nektarios Vlahakis Outline ideal MHD in general semianalytical modeling 12345678901 r-self similarity AGN outflows GRB outflows z-self similarity

More information

Tomoya Takiwaki (RIKEN)

Tomoya Takiwaki (RIKEN) 2014/8/25 GRB-SN Workshop@RIKEN Explosion Mechanism of Core-collapse Supernovae Tomoya Takiwaki (RIKEN) Multi-scale & Multi-physics Hydrodynamics Bar-mode Gravitational Strong General relativity Gravitational

More information

Radio Galaxies High resolution observations of radio galaxies often show highly extended emission. Best known case: Cygnus A. Jet.

Radio Galaxies High resolution observations of radio galaxies often show highly extended emission. Best known case: Cygnus A. Jet. Radio Galaxies High resolution observations of radio galaxies often show highly extended emission. Best known case: Cygnus A Lobe Jet Nucleus Hotspot Emission is synchrotron radiation Physical extent can

More information

arxiv:astro-ph/ v1 15 Feb 2004

arxiv:astro-ph/ v1 15 Feb 2004 Propagation and Dynamics of Relativistic Jets Akira Mizuta 1, Shoichi Yamada 2, and Hideaki Takabe 1 amizuta@ile.oksaka-u.ac.jp arxiv:astro-ph/0402355 v1 15 Feb 2004 ABSTRACT We investigate the dynamics

More information

Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets

Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets Deciphering the Violent Universe, Playa del Carmen, December 11-15, 2017 Accretion disk coronae Star Formation

More information

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT Julian H. Krolik ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT PRINCETON UNIVERSITY PRESS Princeton, New Jersey Preface Guide for Readers xv xix 1. What Are Active Galactic

More information

Target Simulations. Roman Samulyak in collaboration with Y. Prykarpatskyy, T. Lu

Target Simulations. Roman Samulyak in collaboration with Y. Prykarpatskyy, T. Lu Muon Collider/Neutrino Factory Collaboration Meeting May 26 28, CERN, Geneva U.S. Department of Energy Target Simulations Roman Samulyak in collaboration with Y. Prykarpatskyy, T. Lu Center for Data Intensive

More information

AGN Outflows in Dynamic ICMs: Winds and Twists

AGN Outflows in Dynamic ICMs: Winds and Twists AGN Outflows in Dynamic ICMs: Winds and Twists Tom Jones University of Minnesota Pete Mendygral (UMN, Cray Computer) David Porter (UMN) Klaus Dolag (MPA, U Munich) 11/29/2012 Binary Black Holes & Dual

More information

Oblique shock interaction with a cylindrical density interface

Oblique shock interaction with a cylindrical density interface Computational Methods in Multiphase Flow VIII 161 Oblique shock interaction with a cylindrical density interface P. Wayne 1, D. Olmstead 1, P. Vorobieff 1, C. R. Truman 1 & S. Kumar 2 1 Department of Mechanical

More information

On The Collapse of a Gas Cavity by an Imploding Molten Lead Shell and Richtmyer-Meshkov Instability

On The Collapse of a Gas Cavity by an Imploding Molten Lead Shell and Richtmyer-Meshkov Instability On The Collapse of a Gas Cavity by an Imploding Molten Lead Shell and Richtmyer-Meshkov Instability Victoria Suponitsky, Sandra Barsky, and Aaron Froese General Fusion Inc., 8-368 Bonneville Place, Burnaby,

More information

arxiv:astro-ph/ v1 28 Nov 2005

arxiv:astro-ph/ v1 28 Nov 2005 Relativistic MHD Simulations of Jets with Toroidal Magnetic Fields. arxiv:astro-ph/0511769v1 8 Nov 005 Andrea Mignone (mignone@to.astro.it), Silvano Massaglia and Gianluigi Bodo Dipartimento di Fisica

More information

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us?

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Outline Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Work done at the MPA in Garching Dimmelmeier, Font, Müller, Astron.

More information

AGN jet launch scenarios

AGN jet launch scenarios AGN jet launch scenarios Rony Keppens Centre for mathematical Plasma Astrophysics Department of Mathematics, KU Leuven Rony Keppens (KU Leuven) Jet launch Nov. 2013, IAC winter school 1 / 48 Astrophysical

More information

Growing and merging massive black holes

Growing and merging massive black holes Growing and merging massive black holes Marta Volonteri Institut d Astrophysique de Paris S. Cielo (IAP) R. Bieri (MPA) Y. Dubois (IAP) M. Habouzit (Flatiron Institute) T. Hartwig (IAP) H. Pfister (IAP)

More information

Probing Pulsar Winds With X-rays!

Probing Pulsar Winds With X-rays! Probing Pulsar Winds With X-rays! Collaborators:! Bryan Gaensler! Steve Reynolds! David Helfand! Stephen Ng! Anne Lemiere! Okkie de Jager! Stephanie LaMassa! Jack Hughes! PWNe and Their SNRs! PWN Shock

More information

Moving mesh cosmology: The hydrodynamics of galaxy formation

Moving mesh cosmology: The hydrodynamics of galaxy formation Moving mesh cosmology: The hydrodynamics of galaxy formation arxiv:1109.3468 Debora Sijacki, Hubble Fellow, ITC together with: Mark Vogelsberger, Dusan Keres, Paul Torrey Shy Genel, Dylan Nelson Volker

More information

The Collapsar Model for Gamma-Ray Bursts

The Collapsar Model for Gamma-Ray Bursts The Collapsar Model for Gamma-Ray Bursts S. E. Woosley (UCSC) Weiqun Zhang (UCSC) Alex Heger (Univ. Chicago) Andrew MacFadyen (Cal Tech) Harvard CfA Meeting on GRBs, May 21, 2002 Requirements on the Central

More information

Viscous non-linear theory of Richtmyer-Meshkov Instability. Abstract

Viscous non-linear theory of Richtmyer-Meshkov Instability. Abstract Viscous non-linear theory of Richtmyer-Meshkov Instability Pierre Carles and Stéphane Popinet Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie, Case 162, 4 place Jussieu, 75252

More information

Figure 11.1: A fluid jet extruded where we define the dimensionless groups

Figure 11.1: A fluid jet extruded where we define the dimensionless groups 11. Fluid Jets 11.1 The shape of a falling fluid jet Consider a circular orifice of a radius a ejecting a flux Q of fluid density ρ and kinematic viscosity ν (see Fig. 11.1). The resulting jet accelerates

More information

Simulation of mixing of heterogeneous HE components

Simulation of mixing of heterogeneous HE components Chapter Simulation of mixing of heterogeneous HE components The majority on high explosives (HEs) used are blend ones. Properties of components differ that produces interaction on the grain scale (mesoprocesses).

More information

Radio Loud Black Holes. An observational perspective

Radio Loud Black Holes. An observational perspective Radio Loud Black Holes An observational perspective Tiziana Venturi INAF, Istituto di Radioastronomia, Bologna Overview of the first lesson 1) Synchrotron emission and radio spectra of AGN 2) Classification

More information

Pulsar Wind INAF

Pulsar Wind INAF Pulsar Wind Nebulae @ INAF Niccolo Bucciantini INAF - Osservatorio di Arcetri INFN - Sezione di Firenze UniFi - Dipartimento di Fisica & Astronomia 1 Pulsar Wind Nebulae PWN PWNe are hot bubbles of relativistic

More information

0.2. CONSERVATION LAW FOR FLUID 9

0.2. CONSERVATION LAW FOR FLUID 9 0.2. CONSERVATION LAW FOR FLUID 9 Consider x-component of Eq. (26), we have D(ρu) + ρu( v) dv t = ρg x dv t S pi ds, (27) where ρg x is the x-component of the bodily force, and the surface integral is

More information

arxiv: v2 [astro-ph.ga] 10 Feb 2014

arxiv: v2 [astro-ph.ga] 10 Feb 2014 Mon. Not. R. Astron. Soc. 0000, 1 17 (2014) Printed 11 February 2014 (MN LATEX style file v2.2) Relativistic AGN jets II. Jet properties and mixing effects for episodic jet activity arxiv:1311.4234v2 [astro-ph.ga]

More information

Attilio Ferrari. CIFS, Università di Torino. 12th Agile Workshop, May 8, 2014

Attilio Ferrari. CIFS, Università di Torino. 12th Agile Workshop, May 8, 2014 Attilio Ferrari CIFS, Università di Torino 12th Agile Workshop, May 8, 2014 Plasma processes of astrophysical relevance Highly nonlinear (relativistic) physics Huge extension of physical parameters Scalability?

More information

arxiv: v1 [astro-ph.sr] 17 Nov 2011

arxiv: v1 [astro-ph.sr] 17 Nov 2011 Proceedings of Magnetic Fields in the Universe: From Laboratory and Stars to Primordial Structures Aug. 21st 27th 2011, Zakopane, Poland Eds. M. Soida, K. Otmianowska-Mazur, E.M. de Gouveia Dal Pino &

More information

Shock and Expansion Waves

Shock and Expansion Waves Chapter For the solution of the Euler equations to represent adequately a given large-reynolds-number flow, we need to consider in general the existence of discontinuity surfaces, across which the fluid

More information

Diffusive shock acceleration: a first order Fermi process. jan.-fév NPAC, rayons cosmiques E. Parizot (APC)

Diffusive shock acceleration: a first order Fermi process. jan.-fév NPAC, rayons cosmiques E. Parizot (APC) 1 Diffusive shock acceleration: a first order Fermi process 2 Shock waves Discontinuity in physical parameters shock front n 2, p 2, T 2 n 1, p 1, T 1 v 2 v 1 downstream medium (immaterial surface) upstream

More information

Toward models of light relativistic jets interacting with an inhomogeneous ISM

Toward models of light relativistic jets interacting with an inhomogeneous ISM Toward models of light relativistic jets interacting with an inhomogeneous ISM Alexander Wagner Geoffrey Bicknell Ralph Sutherland (Research School of Astronomy and Astrophysics) 1 Outline Introduction

More information

Fluid Dynamics. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/14

Fluid Dynamics. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/14 Fluid Dynamics p.1/14 Fluid Dynamics Massimo Ricotti ricotti@astro.umd.edu University of Maryland Fluid Dynamics p.2/14 The equations of fluid dynamics are coupled PDEs that form an IVP (hyperbolic). Use

More information

Diversity of Multi-wavelength Behavior of Relativistic Jet in 3C 279 Discovered During the Fermi Era

Diversity of Multi-wavelength Behavior of Relativistic Jet in 3C 279 Discovered During the Fermi Era Diversity of Multi-wavelength Behavior of Relativistic Jet in 3C 279 Discovered During the Fermi Era Rapid Variability of Blazar 3C 279 during Flaring States in 2013-2014 with Joint Fermi-LAT, NuSTAR,

More information

Jet Stability: A computational survey

Jet Stability: A computational survey Jet Stability Galway 2008-1 Jet Stability: A computational survey Rony Keppens Centre for Plasma-Astrophysics, K.U.Leuven (Belgium) & FOM-Institute for Plasma Physics Rijnhuizen & Astronomical Institute,

More information

Cosmic-ray acceleration by compressive plasma fluctuations in supernova shells

Cosmic-ray acceleration by compressive plasma fluctuations in supernova shells Cosmic-ray acceleration by compressive plasma fluctuations in supernova shells Ming Zhang Florida Institute of Technology E-mail: mzhang@fit.edu We suggest that the production of Galactic cosmic rays in

More information

Impact of relativistic jets on the ISM of their host galaxy

Impact of relativistic jets on the ISM of their host galaxy Impact of relativistic jets on the ISM of their host galaxy Dipanjan Mukherjee Universita di Torino with Geoff Bicknell Alex Wagner Ralph Sutherland AGN feedback and galaxy AGN feedback crucial to match

More information

Politecnico di Torino. Porto Institutional Repository

Politecnico di Torino. Porto Institutional Repository Politecnico di Torino Porto Institutional Repository [Proceeding] An Investigation of the Hydrodynamics of Hypersonic Jets in Astrophysical Conditions Original Citation: M. Belan; S. Massaglia; M. Mirzaei;

More information

Role of ejecta clumping and back-reaction of accelerated cosmic rays in the evolution of supernova remnants

Role of ejecta clumping and back-reaction of accelerated cosmic rays in the evolution of supernova remnants Mem. S.A.It. Vol. 82, 787 c SAIt 2011 Memorie della Role of ejecta clumping and back-reaction of accelerated cosmic rays in the evolution of supernova remnants S. Orlando 1, F. Bocchino 1, M. Miceli 2,1,

More information

Radiation-hydrodynamic Models for ULXs and ULX-pulsars

Radiation-hydrodynamic Models for ULXs and ULX-pulsars Radiation-hydrodynamic Models for ULXs and ULX-pulsars Tomohisa KAWASHIMA Division of Theoretical Astrophysics, NAOJ in collaboration with Ken OHSUGA, Hiroyuki TAKAHASHI (NAOJ) Shin MINESHIGE, Takumi OGAWA

More information

arxiv: v1 [astro-ph.ga] 1 Oct 2018

arxiv: v1 [astro-ph.ga] 1 Oct 2018 Draft version October 2, 2018 Typeset using L A TEX default style in AASTeX61 RADIO-LOUD AGN VARIABILITY FROM THREE-DIMENSIONAL PROPAGATING RELATIVISTIC JETS Yutong Li, 1, 2, Paul J. Wiita, 2, Terance

More information

THEORY OF JET DISSIPATION

THEORY OF JET DISSIPATION X-Ray and Radio Connections www.aoc.nrao.edu/events/xraydio Santa Fe NM, 3-6 February 2004 (7.1) 1 THEORY OF JET DISSIPATION D. S. De Young National Optical Astronomy Observatory P.O. Box 26732, Tucson,

More information

NUMERICAL STUDY OF NON-THERMAL EMISSION FROM LAGRANGIAN PARTICLES IN AGN ENVIRONMENTS.

NUMERICAL STUDY OF NON-THERMAL EMISSION FROM LAGRANGIAN PARTICLES IN AGN ENVIRONMENTS. 13th AGILE Workshop, ASI, Rome May 25, 2015 NUMERICAL STUDY OF NON-THERMAL EMISSION FROM LAGRANGIAN PARTICLES IN AGN ENVIRONMENTS. Dr. Bhargav Vaidya Università degli Studi di Torino, Torino. Collaborators:

More information

arxiv: v1 [astro-ph.he] 9 May April 2018

arxiv: v1 [astro-ph.he] 9 May April 2018 Mon. Not. R. Astron. Soc. 0000, 1 27 (2013) Printed 27 April 2018 (MN LATEX style file v2.2) Relativistic AGN jets I. The delicate interplay between jet structure, cocoon morphology and jet-head propagation

More information

ブラックホール磁気圏での 磁気リコネクションの数値計算 熊本大学 小出眞路 RKKコンピュー 森野了悟 ターサービス(株) BHmag2012,名古屋大学,

ブラックホール磁気圏での 磁気リコネクションの数値計算 熊本大学 小出眞路 RKKコンピュー 森野了悟 ターサービス(株) BHmag2012,名古屋大学, RKK ( ) BHmag2012,, 2012.2.29 Outline Motivation and basis: Magnetic reconnection around astrophysical black holes Standard equations of resistive GRMHD Test calculations of resistive GRMHD A simulation

More information

Kinematics of kiloparsec-scale Jets

Kinematics of kiloparsec-scale Jets Extragalactic jets from every angle Proceedings IAU Symposium No. 313, 2014 c 2014 International Astronomical Union F. Massaro, C.C. Cheung, E. Lopez, A. Siemiginowska, eds. DOI: 00.0000/X000000000000000X

More information

Ambient magnetic field amplification in shock fronts of relativistic jets: an application to GRB afterglows

Ambient magnetic field amplification in shock fronts of relativistic jets: an application to GRB afterglows doi:10.1093/mnras/stu2104 Ambient magnetic field amplification in shock fronts of relativistic jets: an application to GRB afterglows G. Rocha da Silva, 1 D. Falceta-Gonçalves, 2,3 G. Kowal 3 and E. M.

More information

arxiv: v1 [astro-ph.ga] 30 Apr 2009

arxiv: v1 [astro-ph.ga] 30 Apr 2009 Draft version October 15, 2018 Preprint typeset using L A TEX style emulateapj v. 11/12/01 ON THE ORIGIN OF FANAROFF-RILEY CLASSIFICATION OF RADIO GALAXIES: DECELERATION OF SUPERSONIC RADIO LOBES Nozomu

More information

Understanding the pulsar magnetosphere through first-principle simulations

Understanding the pulsar magnetosphere through first-principle simulations Understanding the pulsar magnetosphere through first-principle simulations Alexander Y. Chen In collaboration with: Andrei Beloborodov Rui Hu The Many Faces of Neutron Stars August 25, 2015 Pulsars: Rotating

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 07

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 07 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 07 Analysis of Wave-Model of Light Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of

More information

AGN and Radio Galaxy Studies with LOFAR and SKA

AGN and Radio Galaxy Studies with LOFAR and SKA AGN and Radio Galaxy Studies with LOFAR and SKA Andrei Lobanov MPIfR, Bonn AGN/RG Science AGN/RG drivers for LOFAR and SKA: astrophysical masers, nuclear regions of AGN, physics of relativistic and mildly

More information

Gamma Ray Burst Jets: Predictions and Observations. James E. Rhoads Space Telescope Science Institute

Gamma Ray Burst Jets: Predictions and Observations. James E. Rhoads Space Telescope Science Institute Gamma Ray Burst Jets: Predictions and Observations James E. Rhoads Space Telescope Science Institute Motivation Burst energy requirements and event rates scale linearly with collimation solid angle. With

More information

Effects of inclination angle on a shock-accelerated heavy gas column

Effects of inclination angle on a shock-accelerated heavy gas column Computational Methods in Multiphase Flow VIII 171 Effects of inclination angle on a shock-accelerated heavy gas column D. Olmstead, C. R. Truman, P. Wayne & P. Vorobieff Department of Mechanical Engineering,

More information

High-energy emission from Gamma-Ray Bursts. Frédéric Daigne Institut d Astrophysique de Paris, Université Pierre et Marie Curie

High-energy emission from Gamma-Ray Bursts. Frédéric Daigne Institut d Astrophysique de Paris, Université Pierre et Marie Curie High-energy emission from Gamma-Ray Bursts Frédéric Daigne Institut d Astrophysique de Paris, Université Pierre et Marie Curie HEPRO III High Energy Phenomena in Relativistic Outflows Barcelona, June 27

More information

9 Fluid Instabilities

9 Fluid Instabilities 9. Stability of a shear flow In many situations, gaseous flows can be subject to fluid instabilities in which small perturbations can rapidly flow, thereby tapping a source of free energy. An important

More information

PoS(GRB 2012)103. Constraints to the GRB central engine from jet penetrability to massive stars

PoS(GRB 2012)103. Constraints to the GRB central engine from jet penetrability to massive stars from jet penetrability to massive stars, Yudai Suwa a and Kunihito Ioka c,d a Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan b Department of Science and Engineering,

More information

Heliophysics Shocks. Merav Opher, George Mason University,

Heliophysics Shocks. Merav Opher, George Mason University, Heliophysics Shocks QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Merav Opher, George Mason University, mopher@gmu.edu Heliophysics Summer School, July 25, 2008 Outline

More information

MODELING ON THE BREAKUP OF VISCO-ELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION

MODELING ON THE BREAKUP OF VISCO-ELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION 1446 THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1446-1450 MODELING ON THE BREAKUP OF VISCO-ELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION by Li-Juan QIAN * China Jiliang University, Hangzhou, China Short

More information

propagation of relativistic jets Manel Perucho-Pla

propagation of relativistic jets Manel Perucho-Pla propagation of relativistic jets Manel Perucho-Pla Dublin Summer School on High Energy Astrophysics Dublin, July 6th 2011 Outline of the first part (magneto-)hydrodynamics of jets Introduction. Basic equations.

More information

Gamma-rays from black-hole binaries (?)

Gamma-rays from black-hole binaries (?) Gamma-rays from black-hole binaries (?) Valentí Bosch-Ramon Dublin Institute for Advanced Studies Accretion and Outflow in Black Hole Systems IAU Symposium 275: Jets at all Scales Kathmandu, Nepal 13/10/2010

More information

Sistemas Hiperbólicos no Lineales: Un Nuevo Método para Calcular Flujos Relativistas

Sistemas Hiperbólicos no Lineales: Un Nuevo Método para Calcular Flujos Relativistas Sistemas Hiperbólicos no Lineales: Un Nuevo Método para Calcular Flujos Relativistas Pedro González-Casanova Henríquez Unidad de Investigación en Cómputo Aplicado DGSCA, UNAM Elvira Torondel y Ricard Garrido

More information

The Radio/X-ray Interaction in Abell 2029

The Radio/X-ray Interaction in Abell 2029 The Radio/X-ray Interaction in Abell 2029 Tracy Clarke (Univ. of Virginia) Collaborators: Craig Sarazin (UVa), Elizabeth Blanton (UVa) Abell 2029: Background z = 0.0767, D=320 Mpc, scale = 1.44 kpc/ typically

More information

The Fragmentation of expanding shells. Kazunari Iwasaki (Nagoya Univ.) Collaborate with S. Inutsuka (Nagoya Univ.) T. Tsuribe (Osaka Univ.

The Fragmentation of expanding shells. Kazunari Iwasaki (Nagoya Univ.) Collaborate with S. Inutsuka (Nagoya Univ.) T. Tsuribe (Osaka Univ. .... The Fragmentation of expanding shells Kazunari Iwasaki (Nagoya Univ.) Collaborate with S. Inutsuka (Nagoya Univ.) T. Tsuribe (Osaka Univ.) 1 / 23 Outline Introduction Three Dimensional SPH Simulations

More information

Causality and stability of cosmic jets

Causality and stability of cosmic jets Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 15 August 2014 (MN LATEX style file v2.2) Causality and stability of cosmic jets Oliver Porth 1,2, Serguei S. Komissarov 1,3 1 Department of Applied

More information

AGN Winds, Black Holes, and Galaxies

AGN Winds, Black Holes, and Galaxies AGN Winds, Black Holes, and Galaxies Andrew King Charleston, October 2011 three points 1. brightest AGN should have X-ray or UV outflows with Ṁv L Edd c,v ηc 0.1c 2. outflow shock against host ISM cools

More information

X-ray Radiation, Absorption, and Scattering

X-ray Radiation, Absorption, and Scattering X-ray Radiation, Absorption, and Scattering What we can learn from data depend on our understanding of various X-ray emission, scattering, and absorption processes. We will discuss some basic processes:

More information

A Vortex Model for Studying the Effect of Shock Proximity on Richtmyer-Meshkov Instability at High Mach Number

A Vortex Model for Studying the Effect of Shock Proximity on Richtmyer-Meshkov Instability at High Mach Number A Vortex Model for Studying the Effect of Shock Proximity on Richtmyer-Meshkov Instability at High Mach Number H. F. Robey, S. G. Glendinning, J. A. Greenough, & S. V. Weber Lawrence Livermore National

More information

Relativistic Solar Electrons - where and how are they formed?

Relativistic Solar Electrons - where and how are they formed? Relativistic Solar Electrons - where and how are they formed? Ilan Roth Space Sciences, UC Berkeley Nonlinear Processes in Astrophysical Plasmas Kavli Institute for Theoretical Physics Santa Barbara September

More information

On the dynamic efficiency of internal shocks in magnetized relativistic outflows

On the dynamic efficiency of internal shocks in magnetized relativistic outflows Mon. Not. R. Astron. Soc. 401, 525 532 (2010) doi:10.1111/j.1365-2966.2009.15669.x On the dynamic efficiency of internal shocks in magnetized relativistic outflows P. Mimica and M. A. Aloy Departamento

More information