Jet Physics: implications for feedback. Robert Laing (ESO)

Size: px
Start display at page:

Download "Jet Physics: implications for feedback. Robert Laing (ESO)"

Transcription

1 Jet Physics: implications for feedback Robert Laing (ESO)

2 Aims Quantify the physics of jets in low-power radio galaxies by fitting 3D models to very deep, high-resolution radio images. Geometry Velocity field Composition (electron, positron, proton, Poynting flux, thermal plasma,...) Particle energy spectrum Magnetic field structure and strength inside and outside Interactions with the external medium Study kpc scales initially, where we have adequate spatial resolution now. Then work towards the nucleus. This talk: overview + new results on jet propagation in lobed FRI sources + new energy flux estimates feedback

3 Deep, multiconfiguration VLA observations Spectra High-resolution IQU, Faraday rotation corrected for Faraday images rotation Optical/IR (stellar mass loss) Kinematic models of jets Particle acceleration CO line, dust B in IGM (cool gas) Entrainment mechanism Dynamical models Jet images Models of hot gas distribution Chandra/XMM Robert Laing (ESO) Alan Bridle, Bill Cotton (NRAO) James Canvin (ex-oxford) Daria Guidetti (Bologna/ESO) Paola Parma (Bologna) Mark Birkinshaw, Diana Worrall (Bristol) Martin Hardcastle, Judith Croston (Herts)

4 The sources (1) - tails

5 The sources (2) - lobes

6 Spectral variations - 3C270 Jets shielded from contact with the IGM (except close to the nucleus?)

7 Relativistic flows in FRI jets Proper motions in Cen A (0.5c) and M87 (5c) on kpc scales Superluminal motion on pc scales (e.g. NGC 315) Evidence for relativistic flows in BL Lac objects (fast variability; TeV gamma rays; high brightness temperatures). There must be side-on counterparts: FRI radio galaxies are the only candidates. TeV detection of M87 and Cen A (maybe 3C66B) Jet/counter-jet asymmetry decreasing away from the nucleus, correlated with intrinsic polarization, fractional core power. Asymmetry in external Faraday rotation/depolarization correlated with jet sidedness.

8 Relativistic effects in jets Energy spectrum Doppler boosting Doppler factor Jet/counter-jet ratio (isotropic emission) Aberration Superluminal motion vapp = 30c

9 Breaking the β θ degeneracy For isotropic emission in the rest frame, jet/counter-jet ratio depends on βcosθ how to separate? B is not isotropic, so rest-frame emission (IQU) depends on angle to line of sight in that frame θ sin θ = D sin θ and D = [Γ(1± βcosθ)]-1 is different for the main and counter-jets So the polarization is different for the two jets If we knew the field, we could separate β and θ We don t, but we can fit the transverse variation of polarization and determine field component ratios Need good transverse resolution and polarization

10 Making a model Model assumes intrinsic (side-to-side) symmetry, axisymmetry and stationary flow. Symmetry assumption must fail badly at large distances, but seems to be accurate close in. Choose parameterised functional forms for the geometry (angle to line of sight, flow streamlines; velocity field ; ratios of toroidal:longitudinal:radial field; emissivity. Calculate Stokes parameters, taking proper account of relativistic aberration (beaming); convolve and evaluate χ2. Optimise to determine best parameters of the model. Looked at tailed (plumed) sources first: jets propagate in contact with the external medium close to the nucleus, lobed sources are very similar, but trickier to separate jets.

11 Geometry FR1 jets flare and then recollimate Abrupt brightening close to nucleus Complex fine structure in bright region

12 Fits θ = 52o 38o

13 Degree of polarization θ 52o 38o

14 Velocity β = v/c: deceleration and transverse gradients NGC 315 3C 31 B

15 Velocity, spines, shear layers and all that β 0.8 where the jets first brighten All of the jets decelerate abruptly in the flaring region, but at different distances from the nucleus. At larger distances, most have roughly constant velocities in the range β and one or two (3C 31 certainly, NGC 315 maybe) decelerate slowly Evidence for evolution in the velocity profiles from ~top-hat to centrally peaked ( boundary-layer entrainment?) No narrow shear layers

16 Velocity parameters

17 Geometry, velocity and emissivity NGC 315 (Canvin et al. 2005) Emissivity profile flattens with distance Not adiabatic until after recollimation Brightening point is always closer to the nucleus than the start of rapid deceleration, which in turn is complete before recollimation.

18 Field component evolution Longitudinal and toroidal components are comparable close to the nucleus Toroidal Toroidal dominates at large distances Ordered toroidal + longitudinal with many reversals or both components disordered? Radial component weak; no obvious regularities Not simple flux freezing Radial Longitudinal

19 Backflow? th Is one jet intrinsically wider? No: we see evidence for narrow structures on both sides of the nucleus but sometimes as minima on the counter-jet side. What if there is mildly relativistic backflow in the material immediately surrounding the jets?

20 Velocity fields in hydrodynamic simulations Fast backflow is expected in lobed FRI sources and is seen in hydrodynamical simulations with appropriate parametersfor FRI, but: - Can be an artefact of axisymmetry or low resolution - real backflows probably become turbulent and slow down - beware of open boundary conditions Simulation by Perucho & Marti (2007)

21 Data-model comparisons ( ) θ = 31o

22 Velocity fields (v/c)

23 Magnetic fields in backflows Dominant field component in backflow is toroidal: reminiscent of: (Begelman, Blandford & Rees 1984)

24 Backflow: conclusions Symmetrical backflow model gives a surprisingly good fit to the brightness and polarization of and Backflow is expected in lobed FRI sources: the surprise is that it can be described by an axisymmetric, fully symmetrical model. The backflow we model must also have enhanced emissivity (with α 0.6) iimmediately around the jet outflow. Typical velocities c, increasing away from axis Why so fast? [Not that well constrained, in fact]. Why does backflow disappear close to the nucleus? Does the backflow magnetic field contribute to collimation? Currents? No counter-examples yet. Clear predictions, so easy to test with more sources.

25 Conservation law analysis 1D version We now know the velocity and area of the jet. The external density and pressure come from X-ray observations (Chandra/XMM-Newton). Solve for conservation of momentum, matter and energy. Include buoyancy Well-constrained solutions exist. Key assumptions: Energy flux = momentum flux x c Pressure balance after recollimation

26 Mass, energy and momentum flux conservation (Bicknell 1994)

27 Pressure and entrainment rate

28 Trends If the internal and external pressures are equal after recollimation, then the flaring region is overpressured at the brightening point. p > pmin (an essential consistency check). Assumption of external pressure confinement is self-consistent. The jets are often close to minimum pressure in the outer region. Densities are low (equivalent to ~1 proton m-3) Mach numbers are 1 3 (transonic) Entrainment rates are comparable with those expected from stars in the jet volume at the start of the expansion, but not at large distances. Continuing deceleration in 3C31 due to larger core radius of hot gas?

29 Comparison with other power estimates Open squares: Birzan et al. (2004) cavities Filled squares: conservation law Lines: Willott et al. (1999) FRII's

30 Direct comparison with cavity estimate XMM (Croston et al. 2008) get 6 x 1035 W Conservation law analysis gives 8 x 1036 W

31 What are the jets in 3C31 made of? ρ = 2.3 x kg m-3 (equivalent to 1.4 protons m-3) at the flaring point. For a power-law energy distribution of radiating electrons, = 60 γmin-1.1 m-3 (~10-28 γmin-1.1 kg m-3). n Possibilities include: Pure e+e- plasma with an excess of particles over a power law at low energies. e+e- plasma with a small amount of thermal plasma. Cold protons in equal numbers with radiating electrons and γmin = (not observable).

32 Mixing-layer model Yang, Kaiser, RL et al. (2009)

33 Mixing-layer model Flaring region Outer region

34 Quasi-1D and Mixing-layer models Mixing-layer model starts with a denser jet. Energy flux and eventual mass flux are similar for the two models.

35 The IGM is magnetised implications for feedback Rotation measure images (Guidetti et al., in prep.)

36 Summary Kinematic models of deceleration from relativistic speeds in FRI jets now 10 examples Model velocity, emissivity, field ordering Backflow? Two flavours of conservation-law model: No variations across the jet (stellar mass input) Mixing layer (boundary-layer entrainment) Entrainment required only in the flaring region (except for 3C31) Jet powers similar to those deduced from X-ray cavities; detailed comparisons needed next On to FRII jets...

Observations of jet dissipation. Robert Laing (ESO/Oxford)

Observations of jet dissipation. Robert Laing (ESO/Oxford) Observations of jet dissipation Robert Laing (ESO/Oxford) Overview X-ray radio connections in radio galaxies and quasars: High-energy emission from non-thermal electrons. The interaction of radio galaxies

More information

arxiv: v1 [astro-ph] 30 Dec 2007

arxiv: v1 [astro-ph] 30 Dec 2007 Extragalactic Jets: Theory and Observation from Radio to Gamma Ray ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION** T. A. Rector and D. S. De Young (eds.) Jet-environment interactions in

More information

Kinematics of kiloparsec-scale Jets

Kinematics of kiloparsec-scale Jets Extragalactic jets from every angle Proceedings IAU Symposium No. 313, 2014 c 2014 International Astronomical Union F. Massaro, C.C. Cheung, E. Lopez, A. Siemiginowska, eds. DOI: 00.0000/X000000000000000X

More information

Adiabatic relativistic models for the jets in the radio galaxy 3C 31

Adiabatic relativistic models for the jets in the radio galaxy 3C 31 Mon. Not. R. Astron. Soc. 348, 1459 1472 (2004) doi:10.1111/j.1365-2966.2004.07471.x Adiabatic relativistic models for the jets in the radio galaxy 3C 31 R. A. Laing 1,2 and A. H. Bridle 3 1 European Southern

More information

arxiv:astro-ph/ v1 21 Nov 2003

arxiv:astro-ph/ v1 21 Nov 2003 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 23 November 2003 (MN LATEX style file v2.2) Adiabatic relativistic models for the jets in the radio galaxy 3C31 arxiv:astro-ph/0311499 v1 21 Nov 2003

More information

Constraining the energy budget of radio galaxies with LOFAR

Constraining the energy budget of radio galaxies with LOFAR Constraining the energy budget of radio galaxies with LOFAR Judith Croston University of Hertfordshire Thanks to M. Hardcastle, E. Belsole, M. Birkinshaw, D. Harris & D. Worrall Astrophysics in the LOFAR

More information

Radio emission in clusters of galaxies. An observational perspective

Radio emission in clusters of galaxies. An observational perspective Radio emission in clusters of galaxies An observational perspective Tiziana Venturi INAF, IRA, Bologna IV ESTRELA Workshop, Bologna, 19 January 2009 Overview - What are galaxy clusters - Radio emission

More information

Morphologies of extragalactic jets

Morphologies of extragalactic jets MOMENTUM TRANSPORT IN TURBULENT HYDRO JETS AND EXTRAGALACTIC SOURCES MORPHOLOGY Attilio Ferrari University of Torino University of Chicago JETSET - CMSO with G. Bodo, S. Massaglia, A. Mignone, P. Rossi

More information

X-RAY SYNCHROTRON RADIATION AND PARTICLE ACCELERATION

X-RAY SYNCHROTRON RADIATION AND PARTICLE ACCELERATION X-Ray and Radio Connections www.aoc.nrao.edu/events/xraydio Santa Fe NM, 3-6 February 2004 (7.3) 1 X-RAY SYNCHROTRON RADIATION AND PARTICLE ACCELERATION M. J. Hardcastle Department of Physics, University

More information

Radio Loud Black Holes. An observational perspective

Radio Loud Black Holes. An observational perspective Radio Loud Black Holes An observational perspective Tiziana Venturi INAF, Istituto di Radioastronomia, Bologna Overview of the first lesson 1) Synchrotron emission and radio spectra of AGN 2) Classification

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei Optical spectra, distance, line width Varieties of AGN and unified scheme Variability and lifetime Black hole mass and growth Geometry: disk, BLR, NLR Reverberation mapping Jets

More information

Dynamical models for jet deceleration in the radio galaxy 3C 31

Dynamical models for jet deceleration in the radio galaxy 3C 31 Mon. Not. R. Astron. Soc. 336, 1161 1180 (2002) Dynamical models for jet deceleration in the radio galaxy 3C 31 R. A. Laing 1,2 and A. H. Bridle 3 1 Space Science and Technology Department, CLRC, Rutherford

More information

Extragalactic Radio Sources. Joanne M. Attridge MIT Haystack Observatory

Extragalactic Radio Sources. Joanne M. Attridge MIT Haystack Observatory Extragalactic Radio Sources Joanne M. Attridge MIT Haystack Observatory It all began in the 1940s... Galaxies=condensations of gas, dust and stars held together by their own gravitational potential M 87

More information

High-Energy Astrophysics

High-Energy Astrophysics Oxford Physics: Part C Major Option Astrophysics High-Energy Astrophysics Garret Cotter garret@astro.ox.ac.uk Office 756 DWB Michaelmas 2011 Lecture 9 Today s lecture: Black Holes and jets Part I Evidence

More information

Evidence for Highly Relativistic Jet Speeds on Kiloparsec Scales in the Superluminal Quasar 3C 345

Evidence for Highly Relativistic Jet Speeds on Kiloparsec Scales in the Superluminal Quasar 3C 345 Evidence for Highly Relativistic Jet Speeds on Kiloparsec Scales in the Superluminal Quasar 3C 345 David H. Roberts & John F. C. Wardle Brandeis University 1 Question I We know that many AGN jets are highly

More information

VLBI observations of AGNs

VLBI observations of AGNs VLBI observations of AGNs Gabriele Giovannini Dipartimento di Astronomia, Universita di Bologna Istituto di Radioastronomia - INAF OUTLINE Single sources: Mkn 501 1144+35 Sample: nearby BL-Lacs nearby

More information

Gamma-Rays from Radio Galaxies: Fermi-LAT

Gamma-Rays from Radio Galaxies: Fermi-LAT Gamma-Rays from Radio Galaxies: Fermi-LAT PAOLA GRANDI INAF/IASF BOLOGNA, ITALY on behalf of the FERMI LAT Collaboration Many thanks to : C. Dermer. G. Ghisellini, L. Maraschi, G. Migliori, E. Torresi,

More information

arxiv:astro-ph/ v1 27 Jul 2002

arxiv:astro-ph/ v1 27 Jul 2002 X-ray Detection of the Inner Jet in the Radio Galaxy M84 D. E. Harris Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 harris@cfa.harvard.edu arxiv:astro-ph/0207603 v1 27 Jul

More information

2 R.A. Laing & A.H. Bridle 1 INTRODUCTION The flow parameters of jets in extragalactic radio sources have hitherto proven difficult to determine becau

2 R.A. Laing & A.H. Bridle 1 INTRODUCTION The flow parameters of jets in extragalactic radio sources have hitherto proven difficult to determine becau Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 12 June 2002 (MN LATEX style file v2.2) Relativistic models and the jet velocity field in the radio galaxy 3C 31 R.A. Laing?1;2, A.H. Bridle 3 1 Space

More information

Pulsar Wind Nebulae. Pennsylvania State University. General outlook Chandra results Polarization in radio and optical X-ray polarization

Pulsar Wind Nebulae. Pennsylvania State University. General outlook Chandra results Polarization in radio and optical X-ray polarization Pulsar Wind Nebulae George Pavlov & Oleg Kargaltsev Pennsylvania State University General outlook Chandra results Polarization in radio and optical X-ray polarization Pulsar Wind Nebulae: extended objects

More information

Relativistic jets in AGNs

Relativistic jets in AGNs Mem. S.A.It. Suppl. Vol. 5, 211 c SAIt 2004 Memorie della Supplementi Relativistic jets in AGNs Fabrizio Tavecchio INAF Oss. Astron. di Brera, via Brera 28, 20121 Milano, Italy e-mail: fabrizio@brera.mi.astro.it

More information

Galaxies with radio and optical jets Françoise Combes

Galaxies with radio and optical jets Françoise Combes Chaire Galaxies et Cosmologie Galaxies with radio and optical jets Françoise Combes The jet: component of the standard model Less than 10% of galaxies have an active nucleus. 10% of AGN have Radio jets

More information

Numerical Simulations of the Jet in the Crab Nebula

Numerical Simulations of the Jet in the Crab Nebula Numerical Simulations of the Jet in the Crab Nebula A. Mignone 1, A. Ferrari 1, E. Striani 2, M. Tavani 2 1 Dipartimento di Fisica, Università di Torino 2 Iasf/iaps università di tor vergata (roma) 1.

More information

Chapter 17. Active Galaxies and Supermassive Black Holes

Chapter 17. Active Galaxies and Supermassive Black Holes Chapter 17 Active Galaxies and Supermassive Black Holes Guidepost In the last few chapters, you have explored our own and other galaxies, and you are ready to stretch your scientific imagination and study

More information

VHE emission from radio galaxies

VHE emission from radio galaxies VHE emission from radio galaxies Martin Hardcastle The future of gamma-ray astronomy and the CTA Leicester, October 2010 Outline Recap: radio galaxy physics Inverse-Compton emission Locations of high-energy

More information

Exploring the powering source of the TeV X-ray binary LS 5039

Exploring the powering source of the TeV X-ray binary LS 5039 Exploring the powering source of the TeV X-ray binary LS 5039 Javier Moldón Marc Ribó Josep Maria Paredes Josep Martí (Univ. Jaén) Maria Massi (MPIfR) 9th European VLBI Network Symposium Bologna, Italy

More information

Structure of nuclei of extragalactic radio sources and the link with GAIA

Structure of nuclei of extragalactic radio sources and the link with GAIA Structure of nuclei of extragalactic radio sources and the link with GAIA J Roland, IAP & S Lambert, SYRTE I General properties of extragalactic radio sources Radio galaxies : associated with elliptical

More information

arxiv: v2 [astro-ph] 8 Jun 2018

arxiv: v2 [astro-ph] 8 Jun 2018 Astronomy and Astrophysics Review manuscript No. (will be inserted by the editor) D.M. Worrall The X-ray Jets of Active Galaxies arxiv:0812.3401v2 [astro-ph] 8 Jun 2018 The Astronomy and Astrophysics Review,

More information

Instabilities of relativistic jets

Instabilities of relativistic jets Instabilities of relativistic jets G. Bodo INAF Osservatorio Astrofisico di Torino, Italy A. Mignone, P. Rossi, G. Mamatsashvili, S. Massaglia, A. Ferrari show f Universality of relativistic jet phenomenon

More information

Active galaxies. Some History Classification scheme Building blocks Some important results

Active galaxies. Some History Classification scheme Building blocks Some important results Active galaxies Some History Classification scheme Building blocks Some important results p. 1 Litirature: Peter Schneider, Extragalactic astronomy and cosmology: an introduction p. 175-176, 5.1.1, 5.1.2,

More information

Radio AGN feedback on galaxy scales: What can Athena show us?

Radio AGN feedback on galaxy scales: What can Athena show us? Radio AGN feedback on galaxy scales: What can Athena show us? Beatriz Mingo 1st Athena Scientific Conference ESAC, 2015 University of Leicester Collaborators: Mike Watson (Leicester) Martin Hardcastle

More information

Multi-frequency imaging of Cygnus A with LOFAR

Multi-frequency imaging of Cygnus A with LOFAR Netherlands Institute for Radio Astronomy Multi-frequency imaging of Cygnus A with LOFAR John McKean (ASTRON) and all the imaging busy week team! ASTRON is part of the Netherlands Organisation for Scientific

More information

A Detailed Study of. the Pulsar Wind Nebula 3C 58

A Detailed Study of. the Pulsar Wind Nebula 3C 58 A Detailed Study of Collaborators: D. J. Helfand S. S. Murray S. Ransom F. D. Seward B. M. Gaensler E. V. Gotthelf E. van der Swaluw the Pulsar Wind Nebula 3C 58 Pulsar Wind Nebulae Young NS powers a particle/magnetic

More information

The Radio/X-ray Interaction in Abell 2029

The Radio/X-ray Interaction in Abell 2029 The Radio/X-ray Interaction in Abell 2029 Tracy Clarke (Univ. of Virginia) Collaborators: Craig Sarazin (UVa), Elizabeth Blanton (UVa) Abell 2029: Background z = 0.0767, D=320 Mpc, scale = 1.44 kpc/ typically

More information

Centaurus A: Some. Core Physics. Geoff Bicknell 1 Jackie Cooper 1 Cuttis Saxton 1 Ralph Sutherland 1 Stefan Wagner 2

Centaurus A: Some. Core Physics. Geoff Bicknell 1 Jackie Cooper 1 Cuttis Saxton 1 Ralph Sutherland 1 Stefan Wagner 2 Movies available at: http://www.mso.anu.edu.au/~geoff/centaurusa and http://www.mso.anu.edu.au/~geoff/pgn09 Centaurus A: Some Credit: Helmut Steinle http://www.mpe.mpg.de/~hcs/cen-a/ Core Physics Geoff

More information

Feedback from growth of supermassive black holes

Feedback from growth of supermassive black holes Research Collection Other Conference Item Feedback from growth of supermassive black holes Author(s): Begelman, Mitchell C.; Ruszkowksi, Mateusz Publication Date: 2003 Permanent Link: https://doi.org/10.3929/ethz-a-004585094

More information

NUMERICAL STUDY OF NON-THERMAL EMISSION FROM LAGRANGIAN PARTICLES IN AGN ENVIRONMENTS.

NUMERICAL STUDY OF NON-THERMAL EMISSION FROM LAGRANGIAN PARTICLES IN AGN ENVIRONMENTS. 13th AGILE Workshop, ASI, Rome May 25, 2015 NUMERICAL STUDY OF NON-THERMAL EMISSION FROM LAGRANGIAN PARTICLES IN AGN ENVIRONMENTS. Dr. Bhargav Vaidya Università degli Studi di Torino, Torino. Collaborators:

More information

A zoo of transient sources. (c)2017 van Putten 1

A zoo of transient sources. (c)2017 van Putten 1 A zoo of transient sources (c)2017 van Putten 1 First transient @ first light UDFj-39546284, z~10.3 Bouwens, R.J., et al., Nature, 469, 504 Cuchiara, A. et al., 2011, ApJ, 736, 7 z=9.4: GRB 090429B, z~9.4

More information

The sub-parsec-scale structure and evolution of Dunlop 482. Prof. Steven Tingay ICRAR - Curtin University of Technology

The sub-parsec-scale structure and evolution of Dunlop 482. Prof. Steven Tingay ICRAR - Curtin University of Technology The sub-parsec-scale structure and evolution of Dunlop 482 Prof. Steven Tingay ICRAR - Curtin University of Technology The Many Faces of Centaurus A 30 June 2009 Collaborators Tingay, S. J. (ATNF, JPL,

More information

The Jet/ISM Interaction in Three Nearby Radio Galaxies as seen with Chandra

The Jet/ISM Interaction in Three Nearby Radio Galaxies as seen with Chandra The Jet/ISM Interaction in Three Nearby Radio Galaxies as seen with Chandra R. P. Kraft, W. R. Forman, E. Churazov, J. Eilek, M. J. Hardcastle, S. Heinz, C. Jones, M. Markevitch, S. S. Murray, P. A. J.

More information

arxiv:astro-ph/ v1 7 Feb November 2018

arxiv:astro-ph/ v1 7 Feb November 2018 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 5 November 2018 (MN LATEX style file v2.2) Jet speeds in wide angle tailed radio galaxies Nazirah N. Jetha 1, Martin J. Hardcastle 2, and Irini Sakelliou

More information

* What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made?

* What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made? * What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made? 1 * Galaxies contain massive black holes which power AGN * Gas accretes through a magnetized disk * Blazars are relativistically

More information

Synergetic Growth of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in the Relativistic Jet. Jin Matsumoto RIKEN

Synergetic Growth of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in the Relativistic Jet. Jin Matsumoto RIKEN Synergetic Growth of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in the Relativistic Jet Jin Matsumoto RIKEN Morphological Dichotomy of the Jet 3C 31 Cygnus A FR I (Fanaroff-Riley Class I)

More information

Physical Properties of Jets in AGN. Dan Homan Denison University

Physical Properties of Jets in AGN. Dan Homan Denison University Physical Properties of Jets in AGN Dan Homan Denison University Probes of Physical Properties (Part 1) Long Time Baseline Kinematics Distribution of Apparent Speeds in Blazar Population Lorentz Factor/Viewing

More information

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT Julian H. Krolik ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT PRINCETON UNIVERSITY PRESS Princeton, New Jersey Preface Guide for Readers xv xix 1. What Are Active Galactic

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

Jin Matsumoto. Numerical Experiments of GRB Jets. RIKEN Astrophysical Big Bang Laboratory

Jin Matsumoto. Numerical Experiments of GRB Jets. RIKEN Astrophysical Big Bang Laboratory Numerical Experiments of GRB Jets Jin Matsumoto RIKEN Astrophysical Big Bang Laboratory Collaborators: Nagataki, Ito, Mizuta, Barkov, Dainotti, Teraki (RIKEN) Schematic Picture of the GRB Jet Meszaros

More information

Multiwavelength evidence of the physical processes in radio jets

Multiwavelength evidence of the physical processes in radio jets Multiwavelength evidence of the physical processes in radio jets D.M. Worrall & M. Birkinshaw Dept of Physics, University of Bristol, Tyndall Ave, Bristol BS8 1TL, UK d.worrall@bristol.ac.uk, mark.birkinshaw@bris.ac.uk

More information

Today in Astronomy 142: supermassive black holes in active-galaxy nuclei

Today in Astronomy 142: supermassive black holes in active-galaxy nuclei Today in Astronomy 142: supermassive black holes in active-galaxy nuclei Active-galaxy nuclei (AGNs) Relativistic and superluminal motion in quasar jets Radio galaxies, quasars and blazars: the same objects

More information

Magnetic Fields in Blazar Jets

Magnetic Fields in Blazar Jets Magnetic Fields in Blazar Jets Bidzina Z. Kapanadze Ilia State University, Tbilisi, Georgia MFPO 2010- Cracow, May 17-21 Blazars are defined as a AGN class with following features: featureless spectra;

More information

Misaligned AGN with Fermi-Lat:

Misaligned AGN with Fermi-Lat: Misaligned AGN with Fermi-Lat: a different perspective on relativistic jets PAOLA GRANDI INAF/IASF BOLOGNA, ITALY on behalf of the FERMI LAT Collaboration Many thanks to : Torresi E., Migliori G., P. Malaguti,

More information

Evidence for BH: Active Galaxies

Evidence for BH: Active Galaxies Evidence for BH: Active Galaxies This is the second lecture in which we ll talk about evidence for the existence of black holes in the universe. Here we focus on active galactic nuclei, or AGN. Black holes

More information

X-ray Jets with AXIS

X-ray Jets with AXIS X-ray Jets with AXIS AGN jets may contribute to feedback in massive systems from z>6 to z=0, but we do not know How jets are formed What jets are made of Where jets deposit their energy When jets are active

More information

Galaxies and Cosmology

Galaxies and Cosmology F. Combes P. Boisse A. Mazure A. Blanchard Galaxies and Cosmology Translated by M. Seymour With 192 Figures Springer Contents General Introduction 1 1 The Classification and Morphology of Galaxies 5 1.1

More information

AGN Outflows in Dynamic ICMs: Winds and Twists

AGN Outflows in Dynamic ICMs: Winds and Twists AGN Outflows in Dynamic ICMs: Winds and Twists Tom Jones University of Minnesota Pete Mendygral (UMN, Cray Computer) David Porter (UMN) Klaus Dolag (MPA, U Munich) 11/29/2012 Binary Black Holes & Dual

More information

The Jet Recollimation Shock: A Dramatic Altering of Jet Magnetic and Kinematic Structure On Difficult-to-Observe Scales

The Jet Recollimation Shock: A Dramatic Altering of Jet Magnetic and Kinematic Structure On Difficult-to-Observe Scales The Jet Recollimation Shock: A Dramatic Altering of Jet Magnetic and Kinematic Structure On Difficult-to-Observe Scales David L. Meier & Marshall H. Cohen California Institute of Technology Relativistic

More information

Recurrent Radio Activity in Active Galactic Nuclei

Recurrent Radio Activity in Active Galactic Nuclei Recurrent Radio Activity in Active Galactic Nuclei Marek Jamrozy Jagiellonian University, Kraków, Poland Tidal Disruption Events and AGN Outbursts 25-27 June 2012 European Space Astronomy Centre, Madrid,

More information

Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling

Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling Wataru Ishizaki ( Department of Physics, Graduate School of Science, The University of Tokyo ) Abstract The pulsar

More information

Jet Spectrum. At low ν: synchrotron emitting electrons can absorb synchrotron log ν. photons: synchrotron

Jet Spectrum. At low ν: synchrotron emitting electrons can absorb synchrotron log ν. photons: synchrotron D D D S D X Synchrotron Self-bsorption 10 21 log ν (p 1)/2 ν 5/2 t low ν: synchrotron emitting electrons can absorb synchrotron log ν photons: synchrotron after Shu, ig. 18.6 self-absorption. or a power

More information

Not only typical flaring blazars in the Fermi gamma-ray sky. The strange cases of SBS and PKS

Not only typical flaring blazars in the Fermi gamma-ray sky. The strange cases of SBS and PKS Not only typical flaring blazars in the Fermi gamma-ray sky. The strange cases of SBS 0846+513 and PKS 0521-36 Filippo D Ammando (University of Perugia and INFN) and M. Orienti (Univ. of Bologna and INAF-IRA)

More information

arxiv: v1 [astro-ph.he] 5 Mar 2013

arxiv: v1 [astro-ph.he] 5 Mar 2013 Mon. Not. R. Astron. Soc. 000, 1 13 (2012) Printed 7 March 2013 (MN LATEX style file v2.2) and inverse-compton emission from blazar jets - III. Compton-dominant blazars William J. Potter and Garret Cotter

More information

Connections between Radio and High Energy Emission in AGN

Connections between Radio and High Energy Emission in AGN Connections between Radio and High Energy Emission in AGN Geoff Bicknell Research School of Astronomy & Astrophysics Australian National University 1 Collaborators: Loredana Bassani, INAF, Bologna Nadine

More information

Black Hole Accretion and Wind

Black Hole Accretion and Wind Black Hole Accretion and Wind Feng Yuan Shanghai Astronomical Observatory, Chinese Academy of Sciences Accretion Regimes Hyper-accretion, slim disk, ADAF (Abramowicz et al. 1988) TDEs, ULXs, SS433 Thin

More information

Relativistic MHD Jets

Relativistic MHD Jets Formation and Kinematic Properties of Relativistic MHD Jets Nektarios Vlahakis Outline ideal MHD in general semianalytical modeling 12345678901 r-self similarity AGN outflows GRB outflows z-self similarity

More information

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes Galaxies with Active Nuclei Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes Active Galactic Nuclei About 20 25% of galaxies do not fit well into Hubble categories

More information

TEMA 6. Continuum Emission

TEMA 6. Continuum Emission TEMA 6. Continuum Emission AGN Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

More information

High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation. Timetable. Reading. Overview. What is high-energy astrophysics?

High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation. Timetable. Reading. Overview. What is high-energy astrophysics? High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation Robert Laing Lectures: Week 1: M 10, T 9 Timetable Week 2: M 10, T 9, W 10 Week 3: M 10, T 9, W 10 Week 4: M 10, T 9,

More information

Binary systems with accretion onto compact object

Binary systems with accretion onto compact object Micro-quasars 1 Binary systems with accretion onto compact object Cataclysmic variables X binaries White dwarf Neutron star Black hole Classification based on the mass of the donor star: LOW-MASS X-RAY

More information

The 2006 Giant Flare in PKS and Unidentified TeV Sources. Justin Finke Naval Research Laboratory 5 June 2008

The 2006 Giant Flare in PKS and Unidentified TeV Sources. Justin Finke Naval Research Laboratory 5 June 2008 The 2006 Giant Flare in PKS 2155-304 and Unidentified TeV Sources Justin Finke Naval Research Laboratory 5 June 2008 Outline Part I: The SSC Model Part II: The giant flare in PKS 2155-304 Part III: Blazars

More information

Radio Afterglows. What Good are They? Dale A. Frail. National Radio Astronomy Observatory. Gamma Ray Bursts: The Brightest Explosions in the Universe

Radio Afterglows. What Good are They? Dale A. Frail. National Radio Astronomy Observatory. Gamma Ray Bursts: The Brightest Explosions in the Universe Radio Afterglows What Good are They? Dale A. Frail National Radio Astronomy Observatory Gamma Ray Bursts: The Brightest Explosions in the Universe The 2 nd Harvard-Smithsonian Conference on Theoretical

More information

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars Astr 2320 Thurs. April 27, 2017 Today s Topics Chapter 21: Active Galaxies and Quasars Emission Mechanisms Synchrotron Radiation Starburst Galaxies Active Galactic Nuclei Seyfert Galaxies BL Lac Galaxies

More information

VLBA Observations of the Jet Collimation Region in M87

VLBA Observations of the Jet Collimation Region in M87 VLBA Observations of the Jet Collimation Region in M87 R. Craig Walker Collaborators: Radio: P. E. Hardee (U. Alabama), W. Junor (UC/LANL), F. Davies (UCLA), C. Ly (STScI) TeV, γ-ray, X-ray connection:

More information

Recent Advances in our Understanding of GRB emission mechanism. Pawan Kumar. Constraints on radiation mechanisms

Recent Advances in our Understanding of GRB emission mechanism. Pawan Kumar. Constraints on radiation mechanisms Recent Advances in our Understanding of GRB emission mechanism Outline Pawan Kumar Constraints on radiation mechanisms High energy emission from GRBs and our understanding of Fermi data. My goal is to

More information

Proper motion and apparent contraction in the J

Proper motion and apparent contraction in the J Mem. S.A.It. Vol. 82, 51 c SAIt 2011 Memorie della Proper motion and apparent contraction in the CSO J0650+6001 M. Orienti 1,2 and D. Dallacasa 1,2 1 Dipartimento di Astronomia Università di Bologna, Via

More information

Two types of radio galaxies: a new approach

Two types of radio galaxies: a new approach Particles and Fields in Radio Galaxies ASP Conference Series, Vol., 2001 Robert A. Laing and Katherine M. Blundell Two types of radio galaxies: a new approach Jean Eilek New Mexico Tech, Socorro, NM, USA

More information

Pulsar Winds. John Kirk. Max-Planck-Institut für Kernphysik Heidelberg, Germany. < > p.1/18

Pulsar Winds. John Kirk. Max-Planck-Institut für Kernphysik Heidelberg, Germany. < > p.1/18 Pulsar Winds John Kirk Max-Planck-Institut für Kernphysik Heidelberg, Germany < > p.1/18 About 50 years after... The Crab Nebula Central star is source of particles and magnetic field (Piddington 1957)

More information

Active galactic nuclei (AGN)

Active galactic nuclei (AGN) Active galactic nuclei (AGN) General characteristics and types Supermassive blackholes (SMBHs) Accretion disks around SMBHs X-ray emission processes Jets and their interaction with ambient medium Radio

More information

Outflows & Jets: Theory & Observations

Outflows & Jets: Theory & Observations Outflows & Jets: Theory & Observations Lecture winter term 008/009 Henrik Beuther & Christian Fendt 10.10 17.10 4.10 31.10 07.11 14.11 1.11 8.11 05.1 1.1 19.1 6.1 09.01 16.01 3.01 30.01 Introduction &

More information

VSOP-2 Survey of a complete sample of nearby sources selected at low frequency

VSOP-2 Survey of a complete sample of nearby sources selected at low frequency VSOP-2 Survey of a complete sample of nearby sources selected at low frequency Gabriele Giovannini Dipartimento di Astronomia, Bologna University Istituto di Radioastronomia - INAF In collaboration with:

More information

Feedback in Galaxy Clusters

Feedback in Galaxy Clusters Feedback in Galaxy Clusters Brian Morsony University of Maryland 1 Not talking about Galaxy-scale feedback Local accretion disk feedback 2 Outline Galaxy cluster properties Cooling flows the need for feedback

More information

Gamma Ray Burst Jets: Predictions and Observations. James E. Rhoads Space Telescope Science Institute

Gamma Ray Burst Jets: Predictions and Observations. James E. Rhoads Space Telescope Science Institute Gamma Ray Burst Jets: Predictions and Observations James E. Rhoads Space Telescope Science Institute Motivation Burst energy requirements and event rates scale linearly with collimation solid angle. With

More information

Simulation of Relativistic Jet-Plasma Interactions

Simulation of Relativistic Jet-Plasma Interactions Simulation of Relativistic Jet-Plasma Interactions Robert Noble and Johnny Ng Stanford Linear Accelerator Center SABER Workshop, Laboratory Astrophysics WG SLAC, March 15-16, 2006 Motivations High energy

More information

Non-Blazar Gamma-ray Active Galactic Nuclei seen by Fermi-LAT. C.C. Teddy Cheung Naval Research Lab/NRC on behalf of the Fermi-LAT Collaboration

Non-Blazar Gamma-ray Active Galactic Nuclei seen by Fermi-LAT. C.C. Teddy Cheung Naval Research Lab/NRC on behalf of the Fermi-LAT Collaboration Non-Blazar Gamma-ray Active Galactic Nuclei seen by Fermi-LAT C.C. Teddy Cheung Naval Research Lab/NRC on behalf of the Fermi-LAT Collaboration 1 st LAT AGN Catalog (1LAC) Summary FmJ 2010 Entire 1LAC:

More information

AGN and Radio Galaxy Studies with LOFAR and SKA

AGN and Radio Galaxy Studies with LOFAR and SKA AGN and Radio Galaxy Studies with LOFAR and SKA Andrei Lobanov MPIfR, Bonn AGN/RG Science AGN/RG drivers for LOFAR and SKA: astrophysical masers, nuclear regions of AGN, physics of relativistic and mildly

More information

The Crab Nebula: 3-dimensional Modeling

The Crab Nebula: 3-dimensional Modeling The Crab Nebula: 3-dimensional Modeling Shinpei SHIBATA, Haruhiko TOMATSURI, Makiko SHIMANUKI, Kazuyuki SAITO, Yuji NAKAMURA, Department of Physics Yamagata University, Yamagata 990-8560, JAPAN, Koji MORI

More information

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie On (shock ( shock) acceleration of ultrahigh energy cosmic rays Martin Lemoine Institut d Astrophysique d de Paris CNRS, Université Pierre & Marie Curie 1 Acceleration Hillas criterion log 10 (B/1 G) 15

More information

Doppler boosting effects on the radiation of relativistic jets in AGN

Doppler boosting effects on the radiation of relativistic jets in AGN Doppler boosting effects on the radiation of relativistic jets in AGN Author:. Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: Valentí Bosch-Ramon (Dated: January

More information

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts! Discovered 1967 Vela satellites classified! Published 1973! GRB history Ruderman 1974 Texas: More theories than bursts! Burst diversity E peak ~ 300 kev Non-thermal spectrum In some thermal contrib. Short

More information

arxiv:astro-ph/ v1 6 May 2004

arxiv:astro-ph/ v1 6 May 2004 XMM-NEWTON OBSERVATIONS OF THREE HIGH REDSHIFT RADIO GALAXIES arxiv:astro-ph/0405116 v1 6 May 2004 Abstract E. Belsole, D.M. Worrall, M. J. Hardcastle Department of Physics - University of Bristol Tyndall

More information

Multi-frequency study of the TeV blazar Markarian 421 with VLBA observations taken during 2011

Multi-frequency study of the TeV blazar Markarian 421 with VLBA observations taken during 2011 Multi-frequency study of the TeV blazar Markarian 421 with VLBA observations taken during 2011 Presented by: Rocco Lico M.Giroletti, M.Orienti, G.Giovannini, Y.Y.Kovalev, A.Marscher, S.Jorstad, T.P. Krichbaum,

More information

(Astro)Physics 343 Lecture # 12: active galactic nuclei

(Astro)Physics 343 Lecture # 12: active galactic nuclei (Astro)Physics 343 Lecture # 12: active galactic nuclei Schedule for this week Monday & Tuesday 4/21 22: ad hoc office hours for Lab # 5 (you can use the computer in my office if necessary; Sections A

More information

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers.

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers. Black Holes Special Relativity Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers. 2. The speed of light is the same for all inertial observers regardless

More information

Outline. Supermassive Black Holes Jets Hot spots and the evolution of radio galaxies

Outline. Supermassive Black Holes Jets Hot spots and the evolution of radio galaxies Active Galaxies Outline 2 Normal (boring) galaxies Active (fun) galaxies The extragalactic zoo: Quasars, Blazars, Radio Galaxies, BL Lacs, Seyferts, Optically Violent Variables, GHz Peaked Spectrum, Compact

More information

S hw 2 v and hw 2 p D are the relativistic densities

S hw 2 v and hw 2 p D are the relativistic densities THE ASTROPHYSICAL JOURNAL, 448 : L105 L108, 1995 August 1 1995. The American Astronomical Society. All rights reserved. Printed in U.S.A. MORPHOLOGY AND DYNAMICS OF HIGHLY SUPERSONIC RELATIVISTIC JETS

More information

Toward models of light relativistic jets interacting with an inhomogeneous ISM

Toward models of light relativistic jets interacting with an inhomogeneous ISM Toward models of light relativistic jets interacting with an inhomogeneous ISM Alexander Wagner Geoffrey Bicknell Ralph Sutherland (Research School of Astronomy and Astrophysics) 1 Outline Introduction

More information

Interferometric Observations of S140-IRS1

Interferometric Observations of S140-IRS1 Interferometric Observations of S140-IRS1 e-merlin early science workshop April 2014 Luke T. Maud University of Leeds, UK Melvin G. Hoare University of Leeds Star formation scenario Collapse of a core

More information

PoS(11th EVN Symposium)094

PoS(11th EVN Symposium)094 18-22cm VLBA Observations of Three BL Lac Objects Denise Gabuzda University College Cork E-mail: fiona.m.healy@umail.ucc.ie VLBA polarization observations of the 135 AGNs in the MOJAVE-I sample have recently

More information

Astrophysical Radiation Processes

Astrophysical Radiation Processes PHY3145 Topics in Theoretical Physics Astrophysical Radiation Processes 3: Relativistic effects I Dr. J. Hatchell, Physics 407, J.Hatchell@exeter.ac.uk Course structure 1. Radiation basics. Radiative transfer.

More information

Introduction to AGN. General Characteristics History Components of AGN The AGN Zoo

Introduction to AGN. General Characteristics History Components of AGN The AGN Zoo Introduction to AGN General Characteristics History Components of AGN The AGN Zoo 1 AGN What are they? Active galactic nucleus compact object in the gravitational center of a galaxy that shows evidence

More information

High-Energy Astrophysics

High-Energy Astrophysics Part C Major Option Astrophysics High-Energy Astrophysics Garret Cotter garret@astro.ox.ac.uk Office 756 DWB Michaelmas 2012 Lecture 6 Today s lecture Synchrotron emission Part III Synchrotron self-absorption

More information