Relativistic MHD Jets

Size: px
Start display at page:

Download "Relativistic MHD Jets"

Transcription

1 Formation and Kinematic Properties of Relativistic MHD Jets Nektarios Vlahakis Outline ideal MHD in general semianalytical modeling r-self similarity AGN outflows GRB outflows z-self similarity Crab-like pulsar winds summary meet the observations

2 Ideal Magneto-Hydro-Dynamics How the jet is collimated and accelerated? Need to examine outflows taking into account matter: velocity V, rest density ρ 0, pressure P, specific enthalpy ξc 2 electromagnetic field: E, B ideal MHD equations: Maxwell: B = 0 = E + B c t, B = E c t + 4π c J, E = 4π c J 0 Ohm: E + V c B = 0 mass conservation: (γρ 0) t specific entropy conservation: ( ) momentum: γρ 0 t + V + (γρ 0 V) = 0 ( ) ( P t + V ρ Γ 0 ) = 0 (ξγv) = P + J 0 E + J B c

3 Integration assume axisymmetry ( / φ = 0, E φ = 0) steady state ( / t = 0) introduce the magnetic flux function A (A = const is a poloidal field-streamline) the full set of ideal MHD equations can be partially integrated to yield five fieldline constants: 1 the mass-to-magnetic flux ratio (continuity equation) 2 the field angular velocity (Faraday + Ohm) 3 the specific angular momentum ( ˆφ component of momentum equation) 4 the total energy-to-mass flux ratio (momentum equation along V) 5 the adiabat (entropy equation) two integrals remain to be performed, involving the Bernoulli and transfield force-balance boundary conditions?

4 r self-similarity If the boundary conditions on the conical disk surface θ = θ i are power laws: B r = C 1 r F 2, B φ = C 2 r F 2, V r /c = C 3, V θ /c = C 4, V φ /c = C 5, ρ 0 = C 6 r 2(F 2), P = C 7 r 2(F 2), then the variables r, θ are separable and the system reduces to ODEs. The solution should cross the Alfvén and the modified fast singular points. [Blandford & Payne (nonrelativistic) Li, Chiueh, & Begelman (1992) and Contopoulos (1994) (cold) Vlahakis & Königl (2003, astro-ph/ , ) (including thermal/radiation effects)] F (the only parameter of the model) controls the current distribution: I ϖb φ r F 1 F > 1: current-carrying jet (near the rotation axis) F < 1: return-current (possibly at large ϖ)

5 ( ' ?:@? A <:=< >.0/21 axis of rotation BDC!#"$ 8:98 ; % & )*+,- disk

6 AGN outflows (Vlahakis & Königl in preparation) (modeling the sub-pc-scale jet in NGC 6251) VLBI measurements show sub-pc scale acceleration of the radio-jet in NGC 6251, from V (r = 0.53pc) = 0.13c to V (r = 1pc) = 0.42c [Sudou, H., et al. 2000, PASJ, 52, 989] Adopting the best fit model of Melia et al. 2002, ApJ, 567, 811 (consistent with the limits set by Jones et al. 1986, ApJ, 305, 684) and assuming n r 2 we find temperature: T = [ r(pc) sound speed: C s c = specific enthalpy: ξ = /3 o 0.026] K [ ] 2/3 r(pc) [ ] 4/3 r(pc) Thus, for 0.53pc< r < 1pc the flow is supersonic and the quantity ξγ 1 changes from at r = 0.53pc to at r = 1pc. As for hydrodynamic flows ξγ 1 = const., the conclusion is that the flow is not hydrodynamically accelerated. We propose the magnetic acceleration as a plausible explanation of the observations.

7 ϖωβ φ /Ψ Α c 2 =(Poynting flux)/(mass flux)c 2 z(pc) inner poloidal fieldline outer poloidal fieldline ξγ=(enthalpy+kinetic)/(mass flux)c ϖ(pc) 10 0 γ=lorentz factor ϖ/ϖ A 10 1 Β φ (G) 10 1 Β z (G) magnetic Β ϖ (G) (dyn cm 3 ) centrifugal 10 7 pressure ϖ/ϖ A ϖ/ϖ A

8 GRB outflows (including time dependence, e ±, radiation) 10 4 EB φ /(4πγρ 0 cv p )=(Poynting flux)/(mass flux)c γ 10 4 ρο /100 g cm 3 kt/m e c 2 B p /10 14 G 10 1 ξ=(enthalpy)/(rest mass)c ϖω/c z(cm) ϖ=ϖ i slow Alfven classical fast τ ± =1 γ=ξ i ϖ=ϖ τ= τ τ τ M/10 7 M s ϖ 1 ϖ ϖ(cm) ϖ 2 3 ϖ 4 ϖ5 ϖ 6 ϖ 7 ϖ sp r out /r in ϖ 1 < ϖ < ϖ 6 : Thermal acceleration - force free magnetic field (γ ϖ, ρ 0 ϖ 3, T ϖ 1, ϖb φ = const, parabolic shape of fieldlines: z ϖ 2 ) ϖ 6 < ϖ < ϖ 8 : Magnetic acceleration (γ ϖ, ρ 0 ϖ 3 ) ϖ = ϖ 8 : cylindrical regime - equipartition γ ( EB φ /4πγρ 0 V p )

9 Collimation Acceleration The flow is centrifugally accelerated for V φ V p V p c 2. Thermal acceleration is important for γ ξ i. For γ ξ i, ξ 1 and the magnetic acceleration takes over. How efficient is the magnetic acceleration? (σ =?) For F > 1 the flow reaches asymptotically a rough equipartition between kinetic and Poynting fluxes (σ 1). The Lorentz force is capable of collimating the flow reaching cylindrical asymptotics (the collimation is possible for γ a few 10, following γ 2 ϖ R). For F < 1, the acceleration is more efficient. The collimation is not so strong and the flow eventually approaches conical asymptotics. Is the 100% acceleration efficiency possible (σ = 0)? Super-Alfvénic asymptotic solutions show that it is!

10 Crab-like pulsar winds Integrate transfield force-balance equation under the z self-similar ansatz z = F 1 (A)F 2 (ϖ). 1.4e+18 G z(cm) e+15 σ 1.2e+18 (a) 8e+14 (b) 1e+18 z(cm) 8e+17 6e+17 ( ϖb φ ) 4 Φ=4 6e+14 4e+14 4e+17 2e+17 ( ϖb φ ) 3 2e+14 ( ϖb φ ) ( ϖb φ ) 1 2 Φ=1 0 Φ= e e e e e+14 ϖ(cm) ϖ(cm) J < 0 J > 0

11 Summary of the previous results The shape is determined close to the source (J < 0) Collimation is possible The acceleration continues at larger distances (J > 0) The magnetic acceleration is eficient r self-similar: does not cover both (J 0) cases (F > 1 is preferable) Alternatives: z self similar (captuers both cases) θ self-similar: applies to thermally driven flows near the axis (inside the light cylinder) Fully numerical studies

12 Meet the observations boundary conditions on the disk line shape z = z(ϖ), B, T, ξ(e ± or e p +?), V C s, V, B, ρ 0, P V φ = ϖω, size (M BH ), Ṁ as function of distance along each fieldline bulk flow synchrotron emission (knowing B in space) positions of the shocks γ 2 c t (knowing γ) (Source variability t?) final value of σ (asymptotic B B in shocks) polarizarion asymptotic width opening angle

13

Magnetic Driving of Gamma-Ray Burst Outflows

Magnetic Driving of Gamma-Ray Burst Outflows Magnetic Driving of Gamma-Ray Burst Outflows Nektarios Vlahakis University of Athens Outline GRBs and their afterglows observations our understanding the MHD description general theory the model results

More information

The correlation between magnetic flux and jet power

The correlation between magnetic flux and jet power The correlation between magnetic flux and jet power Frontiers in Astronomy and Space Sciences 2017 Elena Nokhrina Moscow Institute of Physics and Technology IAU Symposium 342 - Perseus in Sicily: from

More information

Magnetically-dominated relativistic jets.

Magnetically-dominated relativistic jets. Magnetically-dominated relativistic jets. Serguei Komissarov University of Leeds UK N.Vlahakis, Y.Granot, A.Konigl, A.Spitkovsky, M.Barkov, J.McKinney, Y.Lyubarsky, M.Lyutikov, N.Bucciantini Plan 1. Astrophysical

More information

Instabilities of relativistic jets

Instabilities of relativistic jets Instabilities of relativistic jets G. Bodo INAF Osservatorio Astrofisico di Torino, Italy A. Mignone, P. Rossi, G. Mamatsashvili, S. Massaglia, A. Ferrari show f Universality of relativistic jet phenomenon

More information

Electrodynamics of Magnetized Rotators Anatoly Spitkovsky,, UC Berkeley

Electrodynamics of Magnetized Rotators Anatoly Spitkovsky,, UC Berkeley Electrodynamics of Magnetized Rotators Anatoly Spitkovsky,, UC Berkeley Magnetized rotators are ubiquitous: pulsars, AGN, GRBs (?) Rotation very efficient at long-term energy storage Extraction of rotational

More information

Black Hole Accretion and Wind

Black Hole Accretion and Wind Black Hole Accretion and Wind Feng Yuan Shanghai Astronomical Observatory, Chinese Academy of Sciences Accretion Regimes Hyper-accretion, slim disk, ADAF (Abramowicz et al. 1988) TDEs, ULXs, SS433 Thin

More information

AGN jet launch scenarios

AGN jet launch scenarios AGN jet launch scenarios Rony Keppens Centre for mathematical Plasma Astrophysics Department of Mathematics, KU Leuven Rony Keppens (KU Leuven) Jet launch Nov. 2013, IAC winter school 1 / 48 Astrophysical

More information

Outflow from hot accretion flows Nature, origin and properties

Outflow from hot accretion flows Nature, origin and properties Outflow from hot accretion flows ------Nature, origin and properties (arxiv:1206.4173) Feng Yuan Shanghai Astronomical Observatory Chinese Academy of Sciences Accretion physics Motivation Outflow: important

More information

Radiation-MHD Simulations of Black Hole Accretion Flows & Outflows

Radiation-MHD Simulations of Black Hole Accretion Flows & Outflows Radiation-MHD Simulations of Black Hole Accretion Flows & Outflows clumpy outflow jet accretion disk Ken OHSUGA (NAOJ) WHY RADIATION-MHD? Disk viscosity is magnetic origin. Dissipation of the magnetic

More information

Magnetohydrodynamics of pulsar winds and plerions Yuri Lyubarsky

Magnetohydrodynamics of pulsar winds and plerions Yuri Lyubarsky Magnetohydrodynamics of pulsar winds and plerions Yuri Lyubarsky Ben-Gurion University, Israel Pulsar magneto sphere e Pulsar wind +, e, (ions?), electro-magnetic fields Pulsar wind nebula j j v B v v

More information

Modeling MHD jets and outflows *

Modeling MHD jets and outflows * JET Simulations, Experiments and Theories Modeling MHD jets and outflows * Kanaris Tsinganos (tsingan@phys.uoa.gr) Department of Physics, University of Athens, Greece www.jetsets.org *Various parts of

More information

1 Energy dissipation in astrophysical plasmas

1 Energy dissipation in astrophysical plasmas 1 1 Energy dissipation in astrophysical plasmas The following presentation should give a summary of possible mechanisms, that can give rise to temperatures in astrophysical plasmas. It will be classified

More information

Warm absorbers from torus evaporative flows(??) Tim Kallman (NASA/GSFC) + A. Dorodnitsyn (GSFC) + D. Proga (UNLV)

Warm absorbers from torus evaporative flows(??) Tim Kallman (NASA/GSFC) + A. Dorodnitsyn (GSFC) + D. Proga (UNLV) Warm absorbers from torus evaporative flows(??) Tim Kallman (NASA/GSFC) + A. Dorodnitsyn (GSFC) + D. Proga (UNLV).. Why should we care about warm absorbers Mass loss rate in wind < 0.1 M sun /yr Mass accretion

More information

Diversity of Multi-wavelength Behavior of Relativistic Jet in 3C 279 Discovered During the Fermi Era

Diversity of Multi-wavelength Behavior of Relativistic Jet in 3C 279 Discovered During the Fermi Era Diversity of Multi-wavelength Behavior of Relativistic Jet in 3C 279 Discovered During the Fermi Era Rapid Variability of Blazar 3C 279 during Flaring States in 2013-2014 with Joint Fermi-LAT, NuSTAR,

More information

* What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made?

* What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made? * What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made? 1 * Galaxies contain massive black holes which power AGN * Gas accretes through a magnetized disk * Blazars are relativistically

More information

KINETIC ENERGY FLUX VS POYNTING FLUX IN MHD WINDS AND JETS: THE INTERMEDIATE REGIME

KINETIC ENERGY FLUX VS POYNTING FLUX IN MHD WINDS AND JETS: THE INTERMEDIATE REGIME KINETIC ENERGY FLUX VS POYNTING FLUX IN MHD WINDS AND JETS: THE INTERMEDIATE REGIME Jean Heyvaerts Université Louis Pasteur, Observatoire de Strasbourg 1,4 and Colin Norman Department of Physics and Astronomy,

More information

The origin of peculiar jet-torus structure in the Crab nebula

The origin of peculiar jet-torus structure in the Crab nebula Mon. Not. R. Astron. Soc. 000, 000 000 (2003) The origin of peculiar jet-torus structure in the Crab nebula S.S.Komissarov 1, Y.E.Lyubarsky 2 1 Department of Applied Mathematics, the University of Leeds,

More information

Accretion disks. AGN-7:HR-2007 p. 1. AGN-7:HR-2007 p. 2

Accretion disks. AGN-7:HR-2007 p. 1. AGN-7:HR-2007 p. 2 Accretion disks AGN-7:HR-2007 p. 1 AGN-7:HR-2007 p. 2 1 Quantitative overview Gas orbits in nearly circular fashion Each gas element has a small inward motion due to viscous torques, resulting in an outward

More information

Magnetic Fields in Blazar Jets

Magnetic Fields in Blazar Jets Magnetic Fields in Blazar Jets Bidzina Z. Kapanadze Ilia State University, Tbilisi, Georgia MFPO 2010- Cracow, May 17-21 Blazars are defined as a AGN class with following features: featureless spectra;

More information

Explosive reconnection of the double tearing mode in relativistic plasmas

Explosive reconnection of the double tearing mode in relativistic plasmas Explosive reconnection of the double tearing mode in relativistic plasmas Application to the Crab Jérôme Pétri 1 Hubert Baty 1 Makoto Takamoto 2, Seiji Zenitani 3 1 Observatoire astronomique de Strasbourg,

More information

Pulsar Winds. John Kirk. Max-Planck-Institut für Kernphysik Heidelberg, Germany. < > p.1/18

Pulsar Winds. John Kirk. Max-Planck-Institut für Kernphysik Heidelberg, Germany. < > p.1/18 Pulsar Winds John Kirk Max-Planck-Institut für Kernphysik Heidelberg, Germany < > p.1/18 About 50 years after... The Crab Nebula Central star is source of particles and magnetic field (Piddington 1957)

More information

Modeling the magnetized accretion and outflows in young stellar objects

Modeling the magnetized accretion and outflows in young stellar objects Contrib. Astron. Obs. Skalnaté Pleso 48, 40 47, (2018) Modeling the magnetized accretion and outflows in young stellar objects Ch. Fendt Max Planck Institute for Astronomy, Heidelberg, Germany (E-mail:

More information

CIMPA/ICTP Geometric Structures and Theory of Control October Acceleration of Plasma Flows Theory and Simulation

CIMPA/ICTP Geometric Structures and Theory of Control October Acceleration of Plasma Flows Theory and Simulation 2369-11 CIMPA/ICTP Geometric Structures and Theory of Control 1-12 October 2012 Acceleration of Plasma Flows Theory and Simulation Nana L. Shatashvili Faculty of Exact & Natural Sciences and Andronikashvili

More information

Jet Physics: implications for feedback. Robert Laing (ESO)

Jet Physics: implications for feedback. Robert Laing (ESO) Jet Physics: implications for feedback Robert Laing (ESO) Aims Quantify the physics of jets in low-power radio galaxies by fitting 3D models to very deep, high-resolution radio images. Geometry Velocity

More information

Localisation of Non-thermal Emission Production Sites in AGN. Andrei Lobanov Max-Planck-Institut für Radioastronomie, Bonn

Localisation of Non-thermal Emission Production Sites in AGN. Andrei Lobanov Max-Planck-Institut für Radioastronomie, Bonn Localisation of Non-thermal Emission Production Sites in AGN Andrei Lobanov Max-Planck-Institut für Radioastronomie, Bonn Jet (Changing) AGN Paradigm A. Lobanov The BLR is a multicomponent complex Jet

More information

CRITERION FOR GENERATION OF WINDS FROM MAGNETIZED ACCRETION DISKS

CRITERION FOR GENERATION OF WINDS FROM MAGNETIZED ACCRETION DISKS CRITERION FOR GENERATION OF WINDS FROM MAGNETIZED ACCRETION DISKS OSAMU KABURAKI 1 1 Astronomical Institute, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan; okabu@astr.tohoku.ac.jp

More information

UvA-DARE (Digital Academic Repository) Magnetic acceleration and instabilities of astrophysical jets Moll, R. Link to publication

UvA-DARE (Digital Academic Repository) Magnetic acceleration and instabilities of astrophysical jets Moll, R. Link to publication UvA-DARE (Digital Academic Repository) Magnetic acceleration and instabilities of astrophysical jets Moll, R. Link to publication Citation for published version (APA): Moll, R. (2010). Magnetic acceleration

More information

Chapter 6 Accretion onto Compact Stars

Chapter 6 Accretion onto Compact Stars Chapter 6 Accretion onto Compact Stars General picture of the inner accretion flow around a NS/WD 1 1. Boundary layers around nonmagnetic white dwarfs Luminosity For non- or weakly-magnetized accreting

More information

Collimating, relativistic, magnetic jets from rotating disks

Collimating, relativistic, magnetic jets from rotating disks A&A manuscript no. (will be inserted by hand later) Your thesaurus codes are: 12 (02.01.2; 02.13.2; 03.13.4; 08.13.1; 09.10.1; 11.10.1) ASTRONOMY AND ASTROPHYSICS Collimating, relativistic, magnetic jets

More information

Explosive X-point reconnection & Crab flares. Maxim Lyutikov (Purdue U.)

Explosive X-point reconnection & Crab flares. Maxim Lyutikov (Purdue U.) Explosive X-point reconnection & Crab flares Maxim Lyutikov (Purdue U.) Spectra of Crab nebula & flares Tavani et al. 20 Beuhler et al., 2011 ] E 2.F [erg cm 2 s 1 9 11 Break at ~ 0 MeV Fermi CGRO COMPTEL

More information

Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling

Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling Wataru Ishizaki ( Department of Physics, Graduate School of Science, The University of Tokyo ) Abstract The pulsar

More information

Jin Matsumoto. Relativistic HD/MHD Flow for GRB Jets. RIKEN Astrophysical Big Bang Laboratory

Jin Matsumoto. Relativistic HD/MHD Flow for GRB Jets. RIKEN Astrophysical Big Bang Laboratory Relativistic HD/MHD Flow for GRB Jets Jin Matsumoto RIKEN Astrophysical Big Bang Laboratory Collaborators: Nagataki, Ito, Mizuta, Barkov, Dainotti, Teraki (RIKEN), Masada (Kobe University) What a relativistic

More information

Radiation-hydrodynamic Models for ULXs and ULX-pulsars

Radiation-hydrodynamic Models for ULXs and ULX-pulsars Radiation-hydrodynamic Models for ULXs and ULX-pulsars Tomohisa KAWASHIMA Division of Theoretical Astrophysics, NAOJ in collaboration with Ken OHSUGA, Hiroyuki TAKAHASHI (NAOJ) Shin MINESHIGE, Takumi OGAWA

More information

arxiv:astro-ph/ v1 31 Aug 2001

arxiv:astro-ph/ v1 31 Aug 2001 Jet Formation and Collimation in AGN and µ-quasars Christophe Sauty 1, Kanaris Tsinganos 2, and Edoardo Trusssoni 3 arxiv:astro-ph/0108509v1 31 Aug 2001 1 Université Paris 7 - Observatoire de Paris, D.A.E.C.,F-92190

More information

Disk modelling by global radiation-mhd simulations

Disk modelling by global radiation-mhd simulations Disk modelling by global radiation-mhd simulations ~Confrontation of inflow & outflow~ Shin Mineshige (Kyoto) & Ken Ohsuga (NAOJ) Magnetic tower jet by RMHD simulation (Takeuchi+11) Outline Introduction

More information

A structure and energy dissipation efficiency of relativistic reconfinement shocks

A structure and energy dissipation efficiency of relativistic reconfinement shocks Mon. Not. R. Astron. Soc. 008) doi:10.1111/j.1365-966.008.1413.x A structure and energy dissipation efficiency of relativistic reconfinement shocks Krzysztof Nalewajko and Marek Sikora Nicolaus Copernicus

More information

Jin Matsumoto. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets. RIKEN Astrophysical Big Bang Laboratory

Jin Matsumoto. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets. RIKEN Astrophysical Big Bang Laboratory Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets Jin Matsumoto RIKEN Astrophysical Big Bang Laboratory Collaborator: Youhei Masada (Kobe University) What a relativistic

More information

Lecture 16: Winds, Jets and Outflows. HH 212 H 2 (Mc Caughrean & Zinnecker VLT)

Lecture 16: Winds, Jets and Outflows. HH 212 H 2 (Mc Caughrean & Zinnecker VLT) Lecture 16: Winds, Jets and Outflows HH 212 H 2 (Mc Caughrean & Zinnecker VLT) Losing Material from the Outer Disk Through Photoevaporation Formation & viscous spreading of disk Formation & viscous spreading

More information

Pulsar Wind Nebulae. Pennsylvania State University. General outlook Chandra results Polarization in radio and optical X-ray polarization

Pulsar Wind Nebulae. Pennsylvania State University. General outlook Chandra results Polarization in radio and optical X-ray polarization Pulsar Wind Nebulae George Pavlov & Oleg Kargaltsev Pennsylvania State University General outlook Chandra results Polarization in radio and optical X-ray polarization Pulsar Wind Nebulae: extended objects

More information

Feedback from growth of supermassive black holes

Feedback from growth of supermassive black holes Research Collection Other Conference Item Feedback from growth of supermassive black holes Author(s): Begelman, Mitchell C.; Ruszkowksi, Mateusz Publication Date: 2003 Permanent Link: https://doi.org/10.3929/ethz-a-004585094

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Observations of jet dissipation. Robert Laing (ESO/Oxford)

Observations of jet dissipation. Robert Laing (ESO/Oxford) Observations of jet dissipation Robert Laing (ESO/Oxford) Overview X-ray radio connections in radio galaxies and quasars: High-energy emission from non-thermal electrons. The interaction of radio galaxies

More information

arxiv: v1 [astro-ph.co] 10 Jun 2010

arxiv: v1 [astro-ph.co] 10 Jun 2010 Astronomy & Astrophysics manuscript no. 12920tex c ESO 2010 June 11, 2010 Relativistic spine jets from Schwarzschild black holes: Application to AGN radioloud sources Z. Meliani, 1,2, C. Sauty 2, K. Tsinganos

More information

Global Simulations of Black Hole Accretion. John F. Hawley Department of Astronomy, University of Virginia

Global Simulations of Black Hole Accretion. John F. Hawley Department of Astronomy, University of Virginia Global Simulations of Black Hole Accretion John F. Hawley Department of Astronomy, University of Virginia Collaborators and Acknowledgements Julian Krolik, Johns Hopkins University Scott Noble, JHU Jeremy

More information

Vertical angular momentum transfer from accretion disks and the formation of large-scale collimated jets

Vertical angular momentum transfer from accretion disks and the formation of large-scale collimated jets Author manuscript, published in "Plasma Physics and Controlled Fusion 50 (2008) 4020" DOI : 10.1088/0741-3335/50/12/124020 35th EPS Conference on Plasma Physics Vertical angular momentum transfer from

More information

AGN Outflows in Dynamic ICMs: Winds and Twists

AGN Outflows in Dynamic ICMs: Winds and Twists AGN Outflows in Dynamic ICMs: Winds and Twists Tom Jones University of Minnesota Pete Mendygral (UMN, Cray Computer) David Porter (UMN) Klaus Dolag (MPA, U Munich) 11/29/2012 Binary Black Holes & Dual

More information

Polarization Studies of Extragalactic Relativistic Jets from Supermassive Black Holes. Iván Agudo

Polarization Studies of Extragalactic Relativistic Jets from Supermassive Black Holes. Iván Agudo Polarization Studies of Extragalactic Relativistic Jets from Supermassive Black Holes Iván Agudo What is an active galactic nuclei (AGN)? Compact regions at the centre of galaxies with much higher than

More information

MHD Simulations of Star-disk Interactions in Young Stars & Related Systems

MHD Simulations of Star-disk Interactions in Young Stars & Related Systems MHD Simulations of Star-disk Interactions in Young Stars & Related Systems Marina Romanova, Cornell University R. Kurosawa, P. Lii, G. Ustyugova, A. Koldoba, R. Lovelace 5 March 2012 1 1. Young stars 2.

More information

Nonradial and nonpolytropic astrophysical outflows. VIII. A GRMHD generalization for relativistic jets ABSTRACT

Nonradial and nonpolytropic astrophysical outflows. VIII. A GRMHD generalization for relativistic jets ABSTRACT A&A 447, 797 81 006 DOI: 10.1051/0004-6361:0053915 c ESO 006 Astronomy & Astrophysics Nonradial and nonpolytropic astrophysical outflows VIII. A GRMHD generalization for relativistic jets Z. Meliani 1,,,C.Sauty

More information

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) Accretion onto the Massive Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? GR! Best evidence for a BH (stellar orbits) M 4x10 6 M Largest BH on the sky

More information

Crab flares - explosive Reconnection Events in the Nebula

Crab flares - explosive Reconnection Events in the Nebula Crab flares - explosive Reconnection Events in the Nebula Maxim Lyutikov (Purdue) in collaboration with Sergey Komissarov (Leeds) Lorenzo Sironi (Columbia) Oliver Porth (Frankfurt) - ApJ 2017; - JPP, 2017abc

More information

Polarisation of high-energy emission in a pulsar striped wind

Polarisation of high-energy emission in a pulsar striped wind Polarisation of high-energy emission in a pulsar striped wind Jérôme Pétri Max Planck Institut für Kernphysik - Heidelberg Bad Honnef - 16/5/26 p.1/22 Outline 1. The models 2. The striped wind 3. Application

More information

Pulsar Wind and pulsar wind nebulae

Pulsar Wind and pulsar wind nebulae Pulsar Wind and pulsar wind nebulae Takata Jumpei 1 Outline S1, Pulsar Wind (PW) and Pulsar Wind Nebula(PWN) around isolate pulsars. -PWN nebula around the Crab pulsar -Formation of PW and PWNe -Kennel

More information

arxiv: v1 [astro-ph.sr] 17 Nov 2011

arxiv: v1 [astro-ph.sr] 17 Nov 2011 Proceedings of Magnetic Fields in the Universe: From Laboratory and Stars to Primordial Structures Aug. 21st 27th 2011, Zakopane, Poland Eds. M. Soida, K. Otmianowska-Mazur, E.M. de Gouveia Dal Pino &

More information

Doppler boosting effects on the radiation of relativistic jets in AGN

Doppler boosting effects on the radiation of relativistic jets in AGN Doppler boosting effects on the radiation of relativistic jets in AGN Author:. Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: Valentí Bosch-Ramon (Dated: January

More information

Jet Stability: A computational survey

Jet Stability: A computational survey Jet Stability Galway 2008-1 Jet Stability: A computational survey Rony Keppens Centre for Plasma-Astrophysics, K.U.Leuven (Belgium) & FOM-Institute for Plasma Physics Rijnhuizen & Astronomical Institute,

More information

from Fermi (Higher Energy Astrophysics)

from Fermi (Higher Energy Astrophysics) Particle Acceleration Results from Fermi (Higher Energy Astrophysics) Roger Blandford KIPAC Stanford 3 viii 2011 SLAC SSI 1 Fermi Joint NASA-DOE-Italy- France-Japan- Sweden, Germany mission Launch June

More information

PLASMOIDS IN RELATIVISTIC RECONNECTION: THE BLOBS OF BLAZAR EMISSION? Maria Petropoulou Purdue University

PLASMOIDS IN RELATIVISTIC RECONNECTION: THE BLOBS OF BLAZAR EMISSION? Maria Petropoulou Purdue University PLASMOIDS IN RELATIVISTIC RECONNECTION: THE BLOBS OF BLAZAR EMISSION? Maria Petropoulou Purdue University in collaboration with Dimitrios Giannios (Purdue) Lorenzo Sironi(Columbia) October 19, 2016 Einstein

More information

Formation of protostellar jets effects of magnetic diffusion

Formation of protostellar jets effects of magnetic diffusion A&A 395, 1045 1060 (2002) DOI: 10.1051/0004-6361:20021442 c ESO 2002 Astronomy & Astrophysics Formation of protostellar jets effects of magnetic diffusion C. Fendt 1,2 and M. Čemeljić 2 1 Universität Potsdam,

More information

The Axisymmetric Pulsar Magnetosphere

The Axisymmetric Pulsar Magnetosphere The Axisymmetric Pulsar Magnetosphere Ioannis Contopoulos 1, Demosthenes Kazanas 2 and Christian Fendt 3 Received ; accepted 1 Physics Department, University of Crete, P. O. Box 2208, Heraklion 71003,

More information

arxiv: v1 [astro-ph.he] 15 Dec 2017

arxiv: v1 [astro-ph.he] 15 Dec 2017 Astronomy & Astrophysics manuscript no. MHDRSJKerr-Decembre-017 c ESO 017 December 18, 017 Nonradial and nonpolytropic astrophysical outflows. X. Relativistic MHD rotating spine jets in Kerr metric L.

More information

Disc jet coupling in black hole accretion systems II. Force-free electrodynamical models

Disc jet coupling in black hole accretion systems II. Force-free electrodynamical models Mon. Not. R. Astron. Soc. 375, 531 547 (2007) doi:10.1111/j.1365-2966.2006.11220.x Disc jet coupling in black hole accretion systems II. Force-free electrodynamical models Jonathan C. McKinney and Ramesh

More information

Exercises in Astrophysical Gas Dynamics

Exercises in Astrophysical Gas Dynamics Exercises in Astrophysical Gas Dynamics. Tensors and non-tensors. In the following u i and v i are vectors. Show that: a) i. u i v i is a scalar ii. u i v j is a second rank tensor. iii. u i / x j is a

More information

Intermission Page 343, Griffith

Intermission Page 343, Griffith Intermission Page 343, Griffith Chapter 8. Conservation Laws (Page 346, Griffith) Lecture : Electromagnetic Power Flow Flow of Electromagnetic Power Electromagnetic waves transport throughout space the

More information

arxiv:astro-ph/ v1 2 Dec 2003

arxiv:astro-ph/ v1 2 Dec 2003 3-D Simulations of MHD Jets - The Stability Problem Masanori Nakamura and David L. Meier arxiv:astro-ph/0312055v1 2 Dec 2003 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

More information

Formation of Rotationally Supported Protostellar Disks: Some Theoretical Difficulties. Ruben Krasnopolsky Zhi-Yun Li Hsien Shang

Formation of Rotationally Supported Protostellar Disks: Some Theoretical Difficulties. Ruben Krasnopolsky Zhi-Yun Li Hsien Shang Formation of Rotationally Supported Protostellar Disks: Some Theoretical Difficulties Ruben Krasnopolsky Zhi-Yun Li Hsien Shang Protostars and disks Jet Envelope Jet Inside a protostellar core, a star

More information

Crab Pulsar. Chandra Image of the Crab Nebula. Crab is the most famous pulsar, which is studied in detail across the entire energy spectrum

Crab Pulsar. Chandra Image of the Crab Nebula. Crab is the most famous pulsar, which is studied in detail across the entire energy spectrum Crab Pulsar Chandra Image of the Crab Nebula Crab is the most famous pulsar, which is studied in detail across the entire energy spectrum Conventional view on the Crab Pulsar Related Emitting Zones Pulsar(Massaro+)

More information

Plasma Physics for Astrophysics

Plasma Physics for Astrophysics - ' ' * ' Plasma Physics for Astrophysics RUSSELL M. KULSRUD PRINCETON UNIVERSITY E;RESS '. ' PRINCETON AND OXFORD,, ', V. List of Figures Foreword by John N. Bahcall Preface Chapter 1. Introduction 1

More information

arxiv: v1 [astro-ph.he] 24 Jan 2013

arxiv: v1 [astro-ph.he] 24 Jan 2013 arxiv:1301.5751v1 [astro-ph.he] 24 Jan 2013 1, Tuomas Savolainen 1, Alexander B. Pushkarev 2,3,1, Yuri Y. Kovalev 4,1, Matthew L. Lister 5 1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121

More information

The Crab Nebula: 3-dimensional Modeling

The Crab Nebula: 3-dimensional Modeling The Crab Nebula: 3-dimensional Modeling Shinpei SHIBATA, Haruhiko TOMATSURI, Makiko SHIMANUKI, Kazuyuki SAITO, Yuji NAKAMURA, Department of Physics Yamagata University, Yamagata 990-8560, JAPAN, Koji MORI

More information

General relativistic computation of shocks in accretion disc and bipolar jets

General relativistic computation of shocks in accretion disc and bipolar jets General relativistic computation of shocks in accretion disc and bipolar jets Rajiv Kumar Co-author Dr. Indranil Chattopadhyay Aryabhatta Research Institute of observational sciences (ARIES) rajiv.k@aries.res.in

More information

Morphologies of extragalactic jets

Morphologies of extragalactic jets MOMENTUM TRANSPORT IN TURBULENT HYDRO JETS AND EXTRAGALACTIC SOURCES MORPHOLOGY Attilio Ferrari University of Torino University of Chicago JETSET - CMSO with G. Bodo, S. Massaglia, A. Mignone, P. Rossi

More information

Accretion disc dynamos

Accretion disc dynamos Accretion disc dynamos (i) Relative field orientation (ii) Ambient field vs dynamo (iii) Spin-up vs spin-down B. von Rekowski, A. Brandenburg, 2004, A&A 420, 17-32. von Rekowski, A. Brandenburg, W. Dobler,

More information

On the Radio Image of Relativistic Jets I: Internal Structure, Doppler Boosting, and Polarisation Maps

On the Radio Image of Relativistic Jets I: Internal Structure, Doppler Boosting, and Polarisation Maps MNRAS 000, 1 10 (018) Preprint 5 December 018 Compiled using MNRAS LATEX style file v3.0 On the Radio Image of Relativistic Jets I: Internal Structure, Doppler Boosting, and Polarisation Maps A. V. Chernoglazov

More information

Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets

Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets Deciphering the Violent Universe, Playa del Carmen, December 11-15, 2017 Accretion disk coronae Star Formation

More information

The origin of peculiar jet-torus structure in the Crab nebula

The origin of peculiar jet-torus structure in the Crab nebula Mon. Not. R. Astron. Soc. 344, L93 L96 (2003) The origin of peculiar jet-torus structure in the Crab nebula S. S. Komissarov 1 and Y. E. Lyubarsky 2 1 Department of Applied Mathematics, University of Leeds,

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

arxiv: v1 [astro-ph] 17 Oct 2007

arxiv: v1 [astro-ph] 17 Oct 2007 Astronomy & Astrophysics manuscript no. paper c ESO 2008 February 2, 2008 Two-component jet simulations I. Topological stability of analytical MHD outflow solutions T. Matsakos 1, K. Tsinganos 2, N. Vlahakis

More information

MHD Supernova Jets: The Missing Link

MHD Supernova Jets: The Missing Link 1 MHD Supernova Jets: The Missing Link David L. Meier and Masanori Nakamura Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 arxiv:astro-ph/0312050v1 2 Dec 2003 Abstract.

More information

RADIO-CONTINUUM EMISSION FROM STELLAR FLOWS IN LOW MASS STARS

RADIO-CONTINUUM EMISSION FROM STELLAR FLOWS IN LOW MASS STARS RADIO-CONTINUUM EMISSION FROM STELLAR FLOWS IN LOW MASS STARS R.F. González Instituto Astronômico e Geofísico (IAGUSP), Universidade de São Paulo, Cidade Universitária, Rua do Matão, 1226, São Paulo, SP

More information

- Potentials. - Liénard-Wiechart Potentials. - Larmor s Formula. - Dipole Approximation. - Beginning of Cyclotron & Synchrotron

- Potentials. - Liénard-Wiechart Potentials. - Larmor s Formula. - Dipole Approximation. - Beginning of Cyclotron & Synchrotron - Potentials - Liénard-Wiechart Potentials - Larmor s Formula - Dipole Approximation - Beginning of Cyclotron & Synchrotron Maxwell s equations in a vacuum become A basic feature of these eqns is the existence

More information

Cosmic Pevatrons in the Galaxy

Cosmic Pevatrons in the Galaxy Cosmic Pevatrons in the Galaxy Jonathan Arons UC Berkeley Cosmic Rays Acceleration in Supernova Remnants Pulsar Wind Nebulae Cosmic rays Cronin, 1999, RMP, 71, S165 J(E) = AE! p, p " 2.7,1GeV < E

More information

Probing Pulsar Winds with Gamma Rays

Probing Pulsar Winds with Gamma Rays Probing Pulsar Winds with Gamma Rays Dmitry Khangulyan Institute of Space and Astronautical Science (ISAS/JAXA) in coll. with Felix Aharonian&Sergey Bogovalov International School on Neutron Star Matter

More information

Lecture 3 Pulsars and pulsar wind nebulae

Lecture 3 Pulsars and pulsar wind nebulae Lecture 3 Pulsars and pulsar wind nebulae Pulsars Characteristic parameters Pulsar wind nebulae Properties Evolution Exotic central compact objects - Magnetars The Crab Pulsar http://www.jb.man.ac.uk/~pulsar/education/sounds/sounds.html

More information

Relativistic reconnection at the origin of the Crab gamma-ray flares

Relativistic reconnection at the origin of the Crab gamma-ray flares Relativistic reconnection at the origin of the Crab gamma-ray flares Benoît Cerutti Center for Integrated Plasma Studies University of Colorado, Boulder, USA Collaborators: Gregory Werner (CIPS), Dmitri

More information

Collapse of Massive Cloud Cores

Collapse of Massive Cloud Cores Collapse of Massive Cloud Cores Robi Banerjee ITA, University of Heidelberg Based on 3D MHD, AMR* Simulations * Adaptive Mesh Refinement Collapse of Hydrostatic Cores Cloud formation by TI Slowly rotating

More information

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) The Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? The Best Evidence for a BH: M 3.6 10 6 M (M = mass of sun) It s s close! only ~ 10 55 Planck Lengths

More information

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT Julian H. Krolik ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT PRINCETON UNIVERSITY PRESS Princeton, New Jersey Preface Guide for Readers xv xix 1. What Are Active Galactic

More information

Magnetic fields in the early phase of massive star formation

Magnetic fields in the early phase of massive star formation Magnetic fields in the early phase of massive star formation FLASH workshop in Hamburg 16.2.2012 Daniel Seifried Hamburger Sternwarte, University of Hamburg (Robi Banerjee, Ralf Klessen, Ralph Pudritz,

More information

Magnetically driven superluminal motion from rotating black holes

Magnetically driven superluminal motion from rotating black holes A&A manuscript no. (will be inserted by hand later) Your thesaurus codes are: 12 (02.01.2; 02.02.1; 02.13.2; 08.13.2; 09.10.1; 11.10.1) ASTRONOMY AND ASTROPHYSICS Magnetically driven superluminal motion

More information

arxiv:astro-ph/ v1 2 Oct 2002

arxiv:astro-ph/ v1 2 Oct 2002 Astronomy & Astrophysics manuscript no. 2729tex October 22, 2018 (DOI: will be inserted by hand later) Formation of protostellar jets - effects of magnetic diffusion Christian Fendt 1,2, Miljenko Čemeljić

More information

Polarization of high-energy emission in a pulsar striped wind

Polarization of high-energy emission in a pulsar striped wind Paris - 16/1/26 p.1/2 Polarization of high-energy emission in a pulsar striped wind Jérôme Pétri Max Planck Institut für Kernphysik - Heidelberg Paris - 16/1/26 p.2/2 Outline 1. The models 2. The striped

More information

The Collapsar Model for Gamma-Ray Bursts

The Collapsar Model for Gamma-Ray Bursts The Collapsar Model for Gamma-Ray Bursts S. E. Woosley (UCSC) Weiqun Zhang (UCSC) Alex Heger (Univ. Chicago) Andrew MacFadyen (Cal Tech) Harvard CfA Meeting on GRBs, May 21, 2002 Requirements on the Central

More information

arxiv: v2 [astro-ph] 27 Oct 2008

arxiv: v2 [astro-ph] 27 Oct 2008 Mon. Not. R. Astron. Soc. 000,?? 008) Printed 0 September 08 MN LATEX style file v.) On the central core in MHD winds and jets arxiv:080.4307v [astro-ph] 7 Oct 008 V. S. Beskin and E. E. Nokhrina, P.N.Lebedev

More information

Galaxies with radio and optical jets Françoise Combes

Galaxies with radio and optical jets Françoise Combes Chaire Galaxies et Cosmologie Galaxies with radio and optical jets Françoise Combes The jet: component of the standard model Less than 10% of galaxies have an active nucleus. 10% of AGN have Radio jets

More information

PIC modeling of particle acceleration and high-energy radiation in pulsars

PIC modeling of particle acceleration and high-energy radiation in pulsars PIC modeling of particle acceleration and high-energy radiation in pulsars Benoît Cerutti IPAG, CNRS, Université Grenoble Alpes In collaboration with : Sasha Philippov (Princeton), Anatoly Spitkovsky (Princeton),

More information

Nonthermal Emission in Starburst Galaxies

Nonthermal Emission in Starburst Galaxies Nonthermal Emission in Starburst Galaxies! Yoel Rephaeli!!! Tel Aviv University & UC San Diego Cosmic Ray Origin! San Vito, March 20, 2014 General Background * Stellar-related nonthermal phenomena * Particle

More information

THEORY OF JET DISSIPATION

THEORY OF JET DISSIPATION X-Ray and Radio Connections www.aoc.nrao.edu/events/xraydio Santa Fe NM, 3-6 February 2004 (7.1) 1 THEORY OF JET DISSIPATION D. S. De Young National Optical Astronomy Observatory P.O. Box 26732, Tucson,

More information

Particle acceleration during the gamma-ray flares of the Crab Nebular

Particle acceleration during the gamma-ray flares of the Crab Nebular Particle acceleration during the gamma-ray flares of the Crab Nebular SLAC Accelerator seminar SLAC 15 June 2011 R. Buehler for the LAT collaboration and A. Tennant, E. Costa, D. Horns, C. Ferrigno, A.

More information

Synergetic Growth of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in the Relativistic Jet. Jin Matsumoto RIKEN

Synergetic Growth of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in the Relativistic Jet. Jin Matsumoto RIKEN Synergetic Growth of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in the Relativistic Jet Jin Matsumoto RIKEN Morphological Dichotomy of the Jet 3C 31 Cygnus A FR I (Fanaroff-Riley Class I)

More information