Part 1 : solar dynamo models [Paul] Part 2 : Fluctuations and intermittency [Dario] Part 3 : From dynamo to interplanetary magnetic field [Paul]

Size: px
Start display at page:

Download "Part 1 : solar dynamo models [Paul] Part 2 : Fluctuations and intermittency [Dario] Part 3 : From dynamo to interplanetary magnetic field [Paul]"

Transcription

1 Dynamo tutorial Part 1 : solar dynamo models [Paul] Part 2 : Fluctuations and intermittency [Dario] Part 3 : From dynamo to interplanetary magnetic field [Paul] ISSI Dynamo tutorial 1 1

2 Dynamo tutorial Part 1 : solar dynamo models The solar cycle magnetic field Global 3D MHD simulations 2D axisymmetric solar dynamo models Mean-field electrodynamics and models Babcock-Leighton models Models based on HD/MHD instabilities ISSI Dynamo tutorial 1 2

3 The solar magnetic cycle ISSI Dynamo tutorial 1 3

4 Maxwell s equations ISSI Dynamo tutorial 1 4

5 From Maxwell to MHD (1) Step 1: Drop displacement current to revert to the original form of Ampère s Law: Step 2: Write down Ohm s Law in a frame co-moving with the fluid: Step 3: Non-relativistic transformation back to the laboratory frame of reference: ISSI Dynamo tutorial 1 5

6 From Maxwell to MHD (2) Step 4: Combine with Ampère s Law to express the electric field as: Step 5: Substitute into Faraday s Law to get the justly famous magnetohydrodynamical induction equation: where we defined the magnetic diffusivity as: ISSI Dynamo tutorial 1 6

7 The MHD equations ISSI Dynamo tutorial 1 7

8 Global 3D MHD simulations ISSI Dynamo tutorial 1 8

9 Simulation framework Simulate anelastic convection in thick rotating fluid shell, convectively unstable in upper two thirds, using EULAG-MHD in «ideal» mode. This type of ILES simulation is often refered to as «minimally diffusive»; This allows to reach a maximally turbulent state on a given mesh; A flow or magnetic structure can develop gradients reaching the mesh scale and remain nonlinearly stable; Simulations can be run in strongly turbulent regimes over very long times. ISSI Dynamo tutorial 1 9

10 Kinetic and magnetic energies (120 s.d.=10 yr) ISSI Dynamo tutorial 1 10

11 Magnetic cycles (1) QuickTime et un décompresseur sont requis pour visionner cette image. Large-scale organisation of the magnetic field takes place primarily at and immediately below the base of the convecting fluid layers ISSI Dynamo tutorial 1 11

12 Zonally-averaged Magnetic B phi at r/r cycles =0.718 (1) Zonally-averaged B phi at -58 o latitude ISSI Dynamo tutorial 1 12

13 Successes and problems KiloGauss-strength large-scale magnetic fields, antisymmetric about equator and undergoing regular polarity reversals on decadal timescales. Cycle period four times too long, and strong fields concentrated at mid-latitudes, rather than low latitudes. Internal magnetic field dominated by toroidal component and strongly concentrated immediately beneath core-envelope interface. Well-defined dipole moment, well-aligned with rotation axis, but oscillating in phase with internal toroidal component. Reasonably solar-like internal differential rotation, and solar-like cyclic torsional oscillations (correct amplitude and phasing). On long timescales, tendency for hemispheric decoupling, and/or transitions to non-axisymmetric oscillatory modes. ISSI Dynamo tutorial 1 13

14 REALITY CHECK The numerical treatment of unresolved scales influences a lot the global dynamo behavior! ISSI Dynamo tutorial 1 14

15 Axisymmetric+kinematic formulation of solar dynamo models ISSI Dynamo tutorial 1 15

16 Model setup Solve MHD induction equation in spherical polar coordinates for large-scale (~R), axisymmetric magnetic field in a sphere of electrically conducting fluid: Evolving under the influence of a steady, axisymmetric large-scale flow: Match solutions to potential field in r > R. ISSI Dynamo tutorial 1 16

17 Kinematic axisymmetric dynamo ISSI Dynamo tutorial 1 17

18 Differential rotation Slow Fast ISSI Dynamo tutorial 1 18

19 Shearing by axisymmetric differential rotation ISSI Dynamo tutorial 1 19

20 Kinematic axisymmetric dynamo ISSI Dynamo tutorial 1 20

21 Meridional circulation ISSI Dynamo tutorial 1 21

22 REALITY CHECK Many independent global MHD simulations suggest that magnetic backreaction on large-scale flows is an important (perhaps the dominant) amplitude-limiting mechanism ISSI Dynamo tutorial 1 22

23 Kinematic axisymmetric dynamo ISSI Dynamo tutorial 1 23

24 Kinematic axisymmetric dynamos ISSI Dynamo tutorial 1 24

25 Poloidal source terms 1. Turbulent alpha-effect 2. Active region decay (Babcock-Leighton mechanism) 3. Helical hydrodynamical instabilities 4. Magnetohydrodynamical instabilities (flux tubes, Spruit-Tayler) ISSI Dynamo tutorial 1 25

26 REALITY CHECK We are forcing fundamentally nonaxisymmetric processes into an axisymmetric model formulation ISSI Dynamo tutorial 1 26

27 Mean-field electrodynamics and dynamo models ISSI Dynamo tutorial 1 27

28 The basic idea [ Parker, E.N., ApJ, 122, 293 (1955) ] Cyclonic convective updraft/downdrafts acting on a pre-existing toroidal magnetic field will twist the fieldlines into poloidal planes (in the high Rm regime) The collective effect of many such events is the production of an electrical current flowing parallel to the background toroidal magnetic field; such a current system contributes to the production of a poloidal magnetic component ISSI Dynamo tutorial 1 28

29 Scale separation Separate flow and magnetic field into large-scale, «laminar» component, and a small-scale, «turbulent» component: Assume now that a good separation of scales exists between these two components, so that it becomes possible to define an averaging operator: such that: This is NOT a linearization! No assumption is made at this stage with regards to the relative magnitudes of flow and field components ISSI Dynamo tutorial 1 29

30 The turbulent EMF (1) Substitute into MHD induction equation and apply averaging operator: with : TURBULENT ELECTROMOTIVE FORCE! Now subtract averaged induction equation from original induction equation to obtain evolution equation for b : with : Still no approximation!! ISSI Dynamo tutorial 1 30

31 The turbulent EMF (2) Now, the whole point of the mean-field approach is NOT to have to deal explicitly with the small scales; since the PDE for b is linear, with the term acting as a source; therefore there must exit a linear relationship between b and B, and also between B and ; We develop the mean emf as Where the various tensorial coefficients can be a function of, of the statistical properties of u, on the magnetic diffusivity, but NOT of. Specifying these closure relationships is the crux of the mean-field approach ISSI Dynamo tutorial 1 31

32 The alpha-effect (1) Consider the first term in our EMF development: If u is an isotropic random field, there can be no preferred direction in space, and the alpha-tensor must also be isotropic: This leads to: The mean turbulent EMF is parallel to the mean magnetic field! This is called the «alpha-effect» ISSI Dynamo tutorial 1 32

33 The alpha-effect (2) Computing the alpha-tensor requires a knowledge of the statistical properties of the turbulent flow, more precisely the cross-correlation between velocity components; under the assumption that b << B, if the turbulence is only mildly anisotropic and inhomogeneous, the so-called Second-Order Correlation Approximation leads to where is the correlation time for the turbulence. The alpha-effect is proportional to the fluid helicity! If the mild-anisotropy is provided by rotation, and the inhomogeneity by stratification, then we have ISSI Dynamo tutorial 1 33

34 Turbulent diffusivity Turn now to the second term in our EMF development: In cases where u is isotropic, we have, and thus: The mathematical form of this expression suggests that can be interpreted as a turbulent diffusivity of the large-scale field. for homogeneous, isotropic turbulence with correlation time, it can be shown that This result is expected to hold also in mildly anisotropic, mildly inhomogeneous turbulence. In general, ISSI Dynamo tutorial 1 34

35 REALITY CHECK All commonly-used formulations for the alpha and beta-tensors apply to physical regimes that are far removed from solar interior conditions ISSI Dynamo tutorial 1 35

36 Scalings and dynamo numbers Length scale: solar/stellar radius: Time scale: turbulent diffusion time: 0 Three dimensionless groupings have materialized: ISSI Dynamo tutorial 1 36

37 The mean-field zoo The alpha-effect is the source of both poloidal and toroidal magnetic components; works without a large-scale flow! planetary dynamos are believed to be of this kind. Differential rotation shear is the source of the toroidal component; the alpha-effect is the source of only the poloidal component. the solar dynamo is believed to be of this kind. Both the alpha-effect and differential rotation shear contribute to toroidal field production; stellar dynamos could be of this kind if differential rotation is weak, and/or if dynamo action takes place in a very thin layer. ISSI Dynamo tutorial 1 37

38 Linear alpha-omega solutions (1) Solve the axisymmetric kinematic mean-field alpha-omega dynamo equation in a differentially rotating sphere of electrically conducting fluid, embedded in vacuum; in spherical polar coordinates: Choice of alpha: ISSI Dynamo tutorial 1 38

39 Linear alpha-omega solutions (2) The growth rate, frequency, and eigenmode morphology are completely determined by the product of the two dynamo numbers ISSI Dynamo tutorial 1 39

40 Linear alpha-omega solutions (3) QuickTime et un décompresseur codec YUV420 sont requis pour visionner cette image. QuickTime et un décompresseur codec YUV420 sont requis pour visionner cette image. Positive alpha-effect Negative alpha-effect ISSI Dynamo tutorial 1 40

41 Linear alpha-omega solutions (4) Time-latitude «butterfly» diagram [ ] Equivalent in axisymmetric numerical model: constant-r cut at r/r=0.7, versus latitude (vertical) and time (horizontal) ISSI Dynamo tutorial 1 41

42 Linear alpha-omega solutions (5) QuickTime et un décompresseur codec YUV420 sont requis pour visionner cette image. QuickTime et un décompresseur codec YUV420 sont requis pour visionner cette image. ISSI Dynamo tutorial 1 42

43 Nonlinear models: alpha-quenching (1) We expect that the Lorentz force should oppose the cyclonic motions giving rise to the alpha-effect; We also expect this to become important when the magnetic energy becomes comparable to the kinetic energy of the turbulent fluid motions, i.e.: This motivates the following ad hoc expression for «alpha-quenching»: ISSI Dynamo tutorial 1 43

44 Nonlinear models: alpha-quenching (2) ISSI Dynamo tutorial 1 44

45 Nonlinear models: alpha-quenching (3) The magnetic diffusivity is the primary determinant of the cycle period ISSI Dynamo tutorial 1 45

46 Nonlinear models: alpha-quenching (4) Magnetic fields concentrated at too high latitude; Try instead a latitudinal dependency for alpha: QuickTime et un décompresseur codec YUV420 sont requis pour visionner cette image. QuickTime et un décompresseur codec YUV420 sont requis pour visionner cette image. ISSI Dynamo tutorial 1 46

47 Nonlinear models: alpha-quenching (5) ISSI Dynamo tutorial 1 47

48 REALITY CHECK Alpha-quenching is a ridiculously oversimplistic representation of the complex nonlinear interactions between a flow and a magnetic field ISSI Dynamo tutorial 1 48

49 Alpha-Omega dynamos with meridional circulation (1) QuickTime et un décompresseur codec YUV420 sont requis pour visionner cette image. Equatorward propagation of the deep toroidal field is now due to advection by the meridional flow, not «dynamo waves» effect. ISSI Dynamo tutorial 1 49

50 Models with meridional circulation (2) ISSI Dynamo tutorial 1 50

51 Models with meridional circulation (3) ISSI Dynamo tutorial 1 51

52 REALITY CHECK Both observations and numerical simulations indicate that the solar meridional flow is spatiotemporally far more complex than the steady, single-cell pattern used in the vast majority of models ISSI Dynamo tutorial 1 52

53 Models based on the Babcock-Leighton mechanism ISSI Dynamo tutorial 1 53

54 Sunspot as as emerging toroidal flux ropes Hale et al. 1919, ApJ, 49, 153 Tilt Parker 1955, ApJ, 121, 491 Latitude ISSI Dynamo tutorial 1 54

55 1952 «magnetograph» ISSI Dynamo tutorial 1 55

56 2001 magnetogram ISSI Dynamo tutorial 1 56

57 Active region decay (1) Peak polar cap flux: ~10^14 Wb Synoptic magnetogram courtesy D. Hathaway, NASA/MSFC [ ] Toroidal flux emerging in active regions in one cycle: ~10^17 Wb ISSI Dynamo tutorial 1 57

58 (2b) ISSI Dynamo tutorial 1 58

59 Active region decay (3) Zonal means ISSI Dynamo tutorial 1 59

60 REALITY CHECK Is the Babcock-Leighton effect an essential part of the dynamo loop, or a mere surface side effect of sunspot decay? ISSI Dynamo tutorial 1 60

61 Babcock-Leighton dynamo model (1) ISSI Dynamo tutorial 1 61

62 Kinematic axisymmetric dynamo ISSI Dynamo tutorial 1 62

63 Babcock-Leighton dynamo model (2) A Babcock-Leighton source term for the axisymmetric dynamo equations: Peaking at mid-latitudes Non-local in B Concentrated in surface layers The source term operates only in a finite range of toroidal field strengths. ISSI Dynamo tutorial 1 63

64 Babcock-Leighton dynamo model (3) QuickTime et un décompresseur codec YUV420 sont requis pour visionner cette image. The turnover time of the meridional flow is the primary determinant of the cycle period ISSI Dynamo tutorial 1 64

65 Babcock-Leighton dynamo model (4) ISSI Dynamo tutorial 1 65

66 REALITY CHECK Can the solar polar field really be kinematically subducted by the meridional flow, like assumed by all Babcock-Leighton models? ISSI Dynamo tutorial 1 66

67 Hinode ISSI Dynamo tutorial 1 67

68 Babcock-Leighton versus alpha-effect There are serious potential problems with the operation of the alpha-effect at high field strength; not so with the B-L mechanism The B-L mechanism operates only in a finite range of field strength; potentially problematic in the presence of large cycle amplitude fluctuations. Both models can produce tolerably solar-like toroidal field butterfly diagrams, and yield the proper phase relationship between surface poloidal and deep toroial components (with circulation included in the mean-field model) The alpha-effect (or something analogous) appears unavoidable in stratified, rotating turbulence. A decadal period arises «naturally» in B-L models; in mean-field models, it requires tuning the value of the turbulent magnetic diffusivity ISSI Dynamo tutorial 1 68

69 Models based on HD and/or MHD instabilities ISSI Dynamo tutorial 1 69

70 Buoyant rise of toroidal flux ropes [ Caligari et al. 1995, ApJ, 441, 886 ] Destabilization and buoyant rise of thin toroidal magnetic flux tubes stored immediately below the core-envelope interface (overshoot) Non-axisymmetric modes of low order (m=1 or m=2) are most easily destabilized; Conservation of angular momentum generates a flow along the axis of the rising loop; The Coriolis force acting on the flow in the legs of the loop imparts a twist that shows up as an E-W tilt upon emergence through the surface. ISSI Dynamo tutorial 1 70

71 Instability of toroidal flux tubes stored in the tachocline Toroidal flux ropes stored In the overshoot region of the tachocline are sensitive to a buoyantly-driven undulatory instability with long growth rate; these «helical waves» provide a mean EMF parallel to the tube axis, I.e., a form of alpha-effect. Diagram courtesy A. Ferriz Mas Dynamo regions Emergence region ISSI Dynamo tutorial 1 71

72 REALITY CHECK We currently do not have a «concensus dynamo model» for the basic solar cycle ISSI Dynamo tutorial 1 72

73 Coming up after recess: Dynamo tutorial Part 2 : Fluctuations and intermittency ISSI Dynamo tutorial 1 73

Solar and stellar dynamo models

Solar and stellar dynamo models Solar and stellar dynamo models Paul Charbonneau, Université de Montréal From MHD to simple dynamo models Mean-field models Babcock-Leighton models Stochastic forcing Cycle forecasting Stellar dynamos

More information

Paul Charbonneau, Université de Montréal

Paul Charbonneau, Université de Montréal Stellar dynamos Paul Charbonneau, Université de Montréal Magnetohydrodynamics (ch. I.3) Simulations of solar/stellar dynamos (ch. III.5, +) Mean-field electrodynamics (ch. I.3, III.6) From MHD to simpler

More information

Simulations of the solar magnetic cycle with EULAG-MHD Paul Charbonneau Département de Physique, Université de Montréal

Simulations of the solar magnetic cycle with EULAG-MHD Paul Charbonneau Département de Physique, Université de Montréal Simulations of the solar magnetic cycle with EULAG-MHD Paul Charbonneau Département de Physique, Université de Montréal 1. The solar magnetic field and its cycle 2. Magnetic cycles with EULAG-MHD 3. Why

More information

Meridional Flow, Torsional Oscillations, and the Solar Magnetic Cycle

Meridional Flow, Torsional Oscillations, and the Solar Magnetic Cycle Meridional Flow, Torsional Oscillations, and the Solar Magnetic Cycle David H. Hathaway NASA/MSFC National Space Science and Technology Center Outline 1. Key observational components of the solar magnetic

More information

Solar cycle & Dynamo Modeling

Solar cycle & Dynamo Modeling Solar cycle & Dynamo Modeling Andrés Muñoz-Jaramillo www.solardynamo.org Georgia State University University of California - Berkeley Stanford University THE SOLAR CYCLE: A MAGNETIC PHENOMENON Sunspots

More information

The Sun s Magnetic Cycle: Current State of our Understanding

The Sun s Magnetic Cycle: Current State of our Understanding The Sun s Magnetic Cycle: Current State of our Understanding Dibyendu Nandi Outline: The need to understand solar variability The solar cycle: Observational characteristics MHD: Basic theoretical perspectives;

More information

Solar Structure. Connections between the solar interior and solar activity. Deep roots of solar activity

Solar Structure. Connections between the solar interior and solar activity. Deep roots of solar activity Deep roots of solar activity Michael Thompson University of Sheffield Sheffield, U.K. michael.thompson@sheffield.ac.uk With thanks to: Alexander Kosovichev, Rudi Komm, Steve Tobias Connections between

More information

Parity of solar global magnetic field determined by turbulent diffusivity

Parity of solar global magnetic field determined by turbulent diffusivity First Asia-Pacific Solar Physics Meeting ASI Conference Series, 2011, Vol. 1, pp 117 122 Edited by Arnab Rai Choudhuri & Dipankar Banerjee Parity of solar global magnetic field determined by turbulent

More information

Solar Cycle Prediction and Reconstruction. Dr. David H. Hathaway NASA/Ames Research Center

Solar Cycle Prediction and Reconstruction. Dr. David H. Hathaway NASA/Ames Research Center Solar Cycle Prediction and Reconstruction Dr. David H. Hathaway NASA/Ames Research Center Outline Solar cycle characteristics Producing the solar cycle the solar dynamo Polar magnetic fields producing

More information

CONSTRAINTS ON THE APPLICABILITY OF AN INTERFACE DYNAMO TO THE SUN

CONSTRAINTS ON THE APPLICABILITY OF AN INTERFACE DYNAMO TO THE SUN The Astrophysical Journal, 631:647 652, 2005 September 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. CONSTRAINTS ON THE APPLICABILITY OF AN INTERFACE DYNAMO TO THE

More information

Creation and destruction of magnetic fields

Creation and destruction of magnetic fields HAO/NCAR July 20 2011 Magnetic fields in the Universe Earth Magnetic field present for 3.5 10 9 years, much longer than Ohmic decay time ( 10 4 years) Strong variability on shorter time scales (10 3 years)

More information

Understanding the solar dynamo

Understanding the solar dynamo Understanding the solar dynamo Solar magnetic activity is observed on a wide range of scales, from the intriguingly regular and well-ordered large-scale field, to much more complex small-scale structures.

More information

The solar dynamo (critical comments on) SPD Hale talk 14 June 2011

The solar dynamo (critical comments on) SPD Hale talk 14 June 2011 The solar dynamo (critical comments on) The solar dynamo (critical comments on) - what observations show - what they show is not the case - what is known from theory - interesting open questions quantitative

More information

L. A. Upton. Heliophysics Summer School. July 27 th 2016

L. A. Upton. Heliophysics Summer School. July 27 th 2016 L. A. Upton Heliophysics Summer School July 27 th 2016 Sunspots, cool dark regions appearing on the surface of the Sun, are formed when the magnetic field lines pass through the photosphere. (6000 times

More information

An accurate numerical approach for the kinematic dynamo problem

An accurate numerical approach for the kinematic dynamo problem Mem. S.A.It. Suppl. Vol. 4, 17 c SAIt 2004 Memorie della Supplementi An accurate numerical approach for the kinematic dynamo problem A. Bonanno INAF- Osservatorio Astrofisico di Catania, Via S.Sofia 78,

More information

"Heinrich Schwabe's holistic detective agency

Heinrich Schwabe's holistic detective agency "Heinrich Schwabe's holistic detective agency, Ricky Egeland* High Altitude Observatory, NCAR 1. Sun alone is a complex system, emergence, total is > Σ of parts=> holistic 2. The Sun alone has provided

More information

DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL

DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL MAGNETIC FIELD OF THE EARTH DIPOLE Field Structure Permanent magnetization of Core? 80% of field is dipole 20 % is non dipole 2)

More information

Differential Rotation and Emerging Flux in Solar Convective Dynamo Simulations

Differential Rotation and Emerging Flux in Solar Convective Dynamo Simulations Differential Rotation and Emerging Flux in Solar Convective Dynamo Simulations Yuhong Fan (HAO/NCAR), Fang Fang (LASP/CU) GTP workshop August 17, 2016 The High Altitude Observatory (HAO) at the National

More information

The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere. Cary Forest Department of Physics University of Wisconsin

The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere. Cary Forest Department of Physics University of Wisconsin The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere Cary Forest Department of Physics University of Wisconsin February 28, 2001 Planets, stars and perhaps the galaxy

More information

Large-scale Flows and Dynamo In Solar-Like Stars

Large-scale Flows and Dynamo In Solar-Like Stars Large-scale Flows and Dynamo In Solar-Like Stars Gustavo Guerrero Physics Department Universidade Federal de Minas Gerais Brazil P. Smolarkiewicz (ECMWF) A. Kosovichev (NJIT), Elisabete M. de G. Dal Pino

More information

Circulation-dominated solar shell dynamo models with positive alpha-effect

Circulation-dominated solar shell dynamo models with positive alpha-effect A&A 374, 301 308 (2001) DOI: 10.1051/0004-6361:20010686 c ESO 2001 Astronomy & Astrophysics Circulation-dominated solar shell dynamo models with positive alpha-effect M. Küker,G.Rüdiger, and M. Schultz

More information

Creation and destruction of magnetic fields

Creation and destruction of magnetic fields HAO/NCAR July 30 2007 Magnetic fields in the Universe Earth Magnetic field present for 3.5 10 9 years, much longer than Ohmic decay time ( 10 4 years) Strong variability on shorter time scales (10 3 years)

More information

Dynamo models of the solar cycle

Dynamo models of the solar cycle Chapter 10 Dynamo models of the solar cycle We can add to our knowledge, but we cannot subtract from it. Arthur Koestler The Sleepwalkers (1959) Was einmal gedacht wurde, kann nicht mehr zurückgenommen

More information

Studies of Solar Magnetic Cycle and Differential Rotation Based on Mean Field Model. Hideyuki Hotta

Studies of Solar Magnetic Cycle and Differential Rotation Based on Mean Field Model. Hideyuki Hotta Master thesis Studies of Solar Magnetic Cycle and Differential Rotation Based on Mean Field Model Hideyuki Hotta ( ) Department of Earth and Planetary Science Graduate School of Science, The University

More information

The Solar Cycle: From Understanding to Forecasting

The Solar Cycle: From Understanding to Forecasting AAS-SPD Karen Harvey Prize Lecture, 12th June, 2012, Anchorage, Alaska The Solar Cycle: From Understanding to Forecasting Dibyendu Nandy Indian Institute of Science Education and Research, Kolkata Influences

More information

Mechanism of Cyclically Polarity Reversing Solar Magnetic Cycle as a Cosmic Dynamo

Mechanism of Cyclically Polarity Reversing Solar Magnetic Cycle as a Cosmic Dynamo J. Astrophys. Astr. (2000) 21, 365-371 Mechanism of Cyclically Polarity Reversing Solar Magnetic Cycle as a Cosmic Dynamo Hirokazu Yoshimura, Department of Astronomy, University of Tokyo, Tokyo, Japan

More information

22. Kinematic Dynamo Theory; Mean Field Theory. We seek solutions to the Induction (dynamo) equation

22. Kinematic Dynamo Theory; Mean Field Theory. We seek solutions to the Induction (dynamo) equation 238 22. Kinematic Dynamo Theory; Mean Field Theory Dynamo Solutions We seek solutions to the Induction (dynamo) equation B/ t = λ 2B + x (u x B) (22.1) that do not decay with time and have no external

More information

arxiv: v1 [astro-ph.sr] 14 Jan 2019

arxiv: v1 [astro-ph.sr] 14 Jan 2019 Astronomy & Astrophysics manuscript no. 34705_arxiv c ESO 2019 January 15, 2019 A 3D kinematic Babcock Leighton solar dynamo model sustained by dynamic magnetic buoyancy and flux transport processes Rohit

More information

Amplification of magnetic fields in core collapse

Amplification of magnetic fields in core collapse Amplification of magnetic fields in core collapse Miguel Àngel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz Universitat de València; Max-Planck-Institut

More information

Full-sphere simulations of a circulation-dominated solar dynamo: Exploring the parity issue

Full-sphere simulations of a circulation-dominated solar dynamo: Exploring the parity issue A&A 427, 119 13 (24) DOI: 1.151/4-6361:241199 c ESO 24 Astronomy & Astrophysics Full-sphere simulations of a circulation-dominated solar dynamo: Exploring the parity issue P. Chatterjee 1, D. Nandy 2,

More information

Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell

Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell PHYSICS OF PLASMAS VOLUME 11, NUMBER 11 NOVEMBER 2004 Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell Fujihiro Hamba a) Institute of Industrial Science,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature09786 1 Characteristics of the Minimum of Solar Cycle 23 Smoothed Sunspot Number 250 200 150 100 50 14 15 16 17 18 19 20 21 22 23 0 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 0

More information

Reconstructing the Subsurface Three-Dimensional Magnetic Structure of Solar Active Regions Using SDO/HMI Observations

Reconstructing the Subsurface Three-Dimensional Magnetic Structure of Solar Active Regions Using SDO/HMI Observations Reconstructing the Subsurface Three-Dimensional Magnetic Structure of Solar Active Regions Using SDO/HMI Observations Georgios Chintzoglou*, Jie Zhang School of Physics, Astronomy and Computational Sciences,

More information

THE DYNAMO EFFECT IN STARS

THE DYNAMO EFFECT IN STARS THE DYNAMO EFFECT IN STARS Axel Brandenburg NORDITA, Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark; and Department of Mathematics, University of Newcastle upon Tyne, NEl 7RU, UK brandenb@nordita.dk Abstract

More information

The Solar Interior. Paul Bushby (Newcastle University) STFC Introductory Course in Solar System Physics Leeds, 06 Sept 2010

The Solar Interior. Paul Bushby (Newcastle University) STFC Introductory Course in Solar System Physics Leeds, 06 Sept 2010 The Solar Interior Paul Bushby (Newcastle University) STFC Introductory Course in Solar System Physics Leeds, 06 Sept 2010 General Outline 1. Basic properties of the Sun 2. Solar rotation and large-scale

More information

Stratified Convection Driven by Internal Heating

Stratified Convection Driven by Internal Heating Stratified Convection Driven by Internal Heating (a convective amplitudes talk) Nick Featherstone Collaborators: Brad Hindman Mark Miesch Juri Toomre The Rossby Number typical velocity v Rotational Timescale

More information

Predicting a solar cycle before its onset using a flux transport dynamo model

Predicting a solar cycle before its onset using a flux transport dynamo model *** TITLE *** Proceedings IAU Symposium No. 335, 2017 ***NAME OF EDITORS*** c 2017 International Astronomical Union DOI: 00.0000/X000000000000000X Predicting a solar cycle before its onset using a flux

More information

Astrophysical Dynamos

Astrophysical Dynamos Astrophysical Dynamos Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics April 19, 2016 These lecture notes are based off of Kulsrud, Cowling (1981), Beck et al.

More information

We just finished talking about the classical, spherically symmetric, (quasi) time-steady solar interior.

We just finished talking about the classical, spherically symmetric, (quasi) time-steady solar interior. We just finished talking about the classical, spherically symmetric, (quasi) time-steady solar interior. In reality, it s not any of those things: Helioseismology: the Sun pulsates & jiggles like a big

More information

ASTRONOMY AND ASTROPHYSICS Magnetic field generation in weak-line T Tauri stars: an α 2 -dynamo

ASTRONOMY AND ASTROPHYSICS Magnetic field generation in weak-line T Tauri stars: an α 2 -dynamo Astron. Astrophys. 346, 922 928 (1999) ASTRONOMY AND ASTROPHYSICS Magnetic field generation in weak-line T Tauri stars: an α 2 -dynamo M. Küker and G. Rüdiger Astrophysikalisches Institut Potsdam, An der

More information

Theoretical Geomagnetism. Lecture 2: Self- Exciting Dynamos: Kinematic Theory

Theoretical Geomagnetism. Lecture 2: Self- Exciting Dynamos: Kinematic Theory Theoretical Geomagnetism Lecture 2: Self- Exciting Dynamos: Kinematic Theory 1 2.0 What is a self-exciting dynamo? Dynamo = A device that converts kinetic energy into electromagnetic energy. Dynamos use

More information

Konvektion und solares Magnetfeld

Konvektion und solares Magnetfeld Vorlesung Physik des Sonnensystems Univ. Göttingen, 2. Juni 2008 Konvektion und solares Magnetfeld Manfred Schüssler Max-Planck Planck-Institut für Sonnensystemforschung Katlenburg-Lindau Convection &

More information

Problem Set SOLUTIONS: Heliophysics Textbook III: Chapter 5

Problem Set SOLUTIONS: Heliophysics Textbook III: Chapter 5 SOLUTIONS Homework Exercise Solar Convection and the Solar Dynamo Mark Miesch (HAO/NCAR) NASA Heliophysics Summer School Boulder, Colorado, July 7 August 3, 011 Equation numbers in the Homework set are

More information

sampleess 471/503Research paper titles

sampleess 471/503Research paper titles Research Papers Any subject arguably important in Space Physics (Important: clear it with Bob first) Not new research, but synthesis of published research about a topic Pose a question, and provide the

More information

Macroscopic plasma description

Macroscopic plasma description Macroscopic plasma description Macroscopic plasma theories are fluid theories at different levels single fluid (magnetohydrodynamics MHD) two-fluid (multifluid, separate equations for electron and ion

More information

Meridional Flow, Differential Rotation, and the Solar Dynamo

Meridional Flow, Differential Rotation, and the Solar Dynamo Meridional Flow, Differential Rotation, and the Solar Dynamo Manfred Küker 1 1 Leibniz Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany Abstract. Mean field models of rotating

More information

Solar Magnetism. Arnab Rai Choudhuri. Department of Physics Indian Institute of Science

Solar Magnetism. Arnab Rai Choudhuri. Department of Physics Indian Institute of Science Solar Magnetism Arnab Rai Choudhuri Department of Physics Indian Institute of Science Iron filings around a bar magnet Solar corona during a total solar eclipse Solar magnetic fields do affect our lives!

More information

Vortex Dynamos. Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD)

Vortex Dynamos. Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD) Vortex Dynamos Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD) An introduction to vortices Vortices are ubiquitous in geophysical and astrophysical fluid mechanics (stratification & rotation).

More information

ASTR-3760: Solar & Space Physics...Spring 2017

ASTR-3760: Solar & Space Physics...Spring 2017 ASTR-3760: Solar & Space Physics...Spring 2017 Review material for midterm exam (March 22, 2017) Although I m not recommending full-on memorization of everything in this document, I do think it s important

More information

Turbulent Magnetic Helicity Transport and the Rapid Growth of Large Scale Magnetic Fields

Turbulent Magnetic Helicity Transport and the Rapid Growth of Large Scale Magnetic Fields Turbulent Magnetic Helicity Transport and the Rapid Growth of Large Scale Magnetic Fields Jungyeon Cho Dmitry Shapovalov MWMF Madison, Wisconsin April 2012 The Large Scale Dynamo The accumulation of magnetic

More information

COMPLETE LIST OF PUBLICATIONS OF ARNAB RAI CHOUDHURI

COMPLETE LIST OF PUBLICATIONS OF ARNAB RAI CHOUDHURI COMPLETE LIST OF PUBLICATIONS OF ARNAB RAI CHOUDHURI Publications (Book) : The Physics of Fluids and Plasmas: An Introduction for Astrophysicists Arnab Rai Choudhuri (1998) Cambridge University Press.

More information

AN EXPLORATION OF NON-KINEMATIC EFFECTS IN FLUX TRANSPORT DYNAMOS

AN EXPLORATION OF NON-KINEMATIC EFFECTS IN FLUX TRANSPORT DYNAMOS Solar Physics DOI: 10.1007/ - - - - AN EXPLORATION OF NON-KINEMATIC EFFECTS IN FLUX TRANSPORT DYNAMOS Dário Passos 1,2,3,, Paul Charbonneau 2,, Patrice Beaudoin 2, c Springer Abstract Recent global magnetohydrodynamical

More information

The Sun s Internal Magnetic Field

The Sun s Internal Magnetic Field The Sun s Internal Magnetic Field... and Rotation and Stratification Toby Wood & Michael McIntyre DAMTP, University of Cambridge Toby Wood & Michael McIntyre (DAMTP) The Sun s Internal Magnetic Field 1

More information

On the role of tachoclines in solar and stellar dynamos

On the role of tachoclines in solar and stellar dynamos Not to appear in Nonlearned J., 45. On the role of tachoclines in solar and stellar dynamos G. Guerrero Physics Department, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte,

More information

arxiv:astro-ph/ v1 24 Jul 2001

arxiv:astro-ph/ v1 24 Jul 2001 TOWARDS A MEAN-FIELD FORMULATION OF THE BABCOCK LEIGHTON TYPE SOLAR DYNAMO. I. α-coefficient VERSUS DURNEY S DOUBLE RING APPROACH arxiv:astro-ph/0107466v1 24 Jul 2001 Dibyendu Nandy and Arnab Rai Choudhuri

More information

Asymptotic solutions for dynamo waves and polar activity in the solar cycle Kirill Kuzanyan 1,2)

Asymptotic solutions for dynamo waves and polar activity in the solar cycle Kirill Kuzanyan 1,2) Asymptotic solutions for dynamo waves and polar activity in the solar cycle Kirill Kuzanyan 1,2) 1) IZMIRAN, Moscow region, Russia 2) hosted by National Astronomical Observatories,Chinese Academy of Sciences,

More information

arxiv: v1 [astro-ph] 29 Jan 2008

arxiv: v1 [astro-ph] 29 Jan 2008 Contrib. Astron. Obs. Skalnaté Pleso?, 1 6, (2018) Non-dipolar magnetic fields in Ap stars arxiv:0801.4562v1 [astro-ph] 29 Jan 2008 J.Braithwaite 1 Canadian Institute for Theoretical Astrophysics 60 St.

More information

Solar surface rotation

Solar surface rotation Stellar rotation Solar surface rotation Solar nearsurface rotation Surface Doppler Schou et al. (1998; ApJ 505, 390) Rotational splitting Inferred solar internal rotation Near solidbody rotation of interior

More information

Convection-driven spherical dynamos: remarks on bistability and on simple models of the Solar cycle

Convection-driven spherical dynamos: remarks on bistability and on simple models of the Solar cycle University of Cambridge DAMTP, Astrophysics Group Seminar 2014-11-17 Convection-driven spherical dynamos: remarks on bistability and on simple models of the Solar cycle R.D. Simitev F.H. Busse School of

More information

arxiv: v2 [astro-ph.sr] 29 Jul 2018

arxiv: v2 [astro-ph.sr] 29 Jul 2018 Nonkinematic solar dynamo models with double-cell meridional circulation V.V. Pipin Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk, 664033, Russia arxiv:1803.09459v2 [astro-ph.sr]

More information

On the Generation of Core Dynamo Action

On the Generation of Core Dynamo Action On the Generation of Core Dynamo Action CIDER Meeting, KITP 7/7/16 Jonathan Aurnou UCLA Earth & Space Sciences aurnou@ucla.edu Beyond record players? Treat core dynamics as a rotating magnetoconvection

More information

Anisotropic turbulence in rotating magnetoconvection

Anisotropic turbulence in rotating magnetoconvection Anisotropic turbulence in rotating magnetoconvection André Giesecke Astrophysikalisches Institut Potsdam An der Sternwarte 16 14482 Potsdam MHD-Group seminar, 2006 André Giesecke (AIP) Anisotropic turbulence

More information

Planetary interiors: Magnetic fields, Convection and Dynamo Theory 3. How planetary magnetic fields are generated

Planetary interiors: Magnetic fields, Convection and Dynamo Theory 3. How planetary magnetic fields are generated Planetary interiors: Magnetic fields, Convection and Dynamo Theory 3. How planetary magnetic fields are generated Chris Jones, Department of Applied Mathematics University of Leeds UK FDEPS Lecture 3,

More information

arxiv: v1 [astro-ph.sr] 5 Jun 2018

arxiv: v1 [astro-ph.sr] 5 Jun 2018 Breaking Taylor-Proudman balance by magnetic field in stellar convection zone H. Hotta arxiv:1806.01452v1 [astro-ph.sr] 5 Jun 2018 Department of Physics, Graduate School of Science, Chiba university, 1-33

More information

Homogeneous Turbulence Dynamics

Homogeneous Turbulence Dynamics Homogeneous Turbulence Dynamics PIERRE SAGAUT Universite Pierre et Marie Curie CLAUDE CAMBON Ecole Centrale de Lyon «Hf CAMBRIDGE Щ0 UNIVERSITY PRESS Abbreviations Used in This Book page xvi 1 Introduction

More information

Workshop on Astrophysical 3-D Dynamics and Visualization 1 What is a dynamo in the context of the Sun and why must it be there? The solar dynamo revea

Workshop on Astrophysical 3-D Dynamics and Visualization 1 What is a dynamo in the context of the Sun and why must it be there? The solar dynamo revea Solar Dynamo Mechanisms Workshop on Astrophysical 3-D Dynamics and Visualization Vasilis Archontis & Bertil Dorch, The Astronomical Observatory at NBIfAFG, Juliane Maries Vej 30, DK-2100 Copenhagen. January

More information

Large scale magnetic fields and Dynamo theory. Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008

Large scale magnetic fields and Dynamo theory. Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008 Large scale magnetic fields and Dynamo theory Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008 The Earth Mainly dipolar magnetic field Would decay in 20kyr if not regenerated Declination of the

More information

Magnetic instabilities in stellar interiors

Magnetic instabilities in stellar interiors Magnetic instabilities in stellar interiors Laurène Jouve Institut de Recherche en Astrophysique et Planétologie Toulouse Journées Equip@Meso, 26/27 Novembre 2015 Stellar magnetism Our Sun Stellar magnetism

More information

EVIDENCE THAT A DEEP MERIDIONAL FLOW SETS THE SUNSPOT CYCLE PERIOD David H. Hathaway. Dibyendu Nandy. and Robert M. Wilson and Edwin J.

EVIDENCE THAT A DEEP MERIDIONAL FLOW SETS THE SUNSPOT CYCLE PERIOD David H. Hathaway. Dibyendu Nandy. and Robert M. Wilson and Edwin J. The Astrophysical Journal, 589:665 670, 2003 May 20 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. EVIDENCE THAT A DEEP MERIDIONAL FLOW SETS THE SUNSPOT CYCLE PERIOD

More information

Nonmodal Growth and the Unstratified MRI Dynamo

Nonmodal Growth and the Unstratified MRI Dynamo MPPC general meeting, Berlin, June 24 Nonmodal Growth and the Unstratified MRI Dynamo Jonathan Squire!! and!! Amitava Bhattacharjee MRI turbulence Observed accretion rate in disks in astrophysical disks

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

where G is Newton s gravitational constant, M is the mass internal to radius r, and Ω 0 is the

where G is Newton s gravitational constant, M is the mass internal to radius r, and Ω 0 is the Homework Exercise Solar Convection and the Solar Dynamo Mark Miesch (HAO/NCAR) NASA Heliophysics Summer School Boulder, Colorado, July 27 - August 3, 2011 PROBLEM 1: THERMAL WIND BALANCE We begin with

More information

2014 Heliophysics School DYNAMO LAB NOTES

2014 Heliophysics School DYNAMO LAB NOTES 1 2014 Heliophysics School DYNAMO LAB NOTES Paul Charbonneau Département de Physique Université de Montréal June 2014 2 Contents 1 Kinematic axisymmetric dynamo models 5 1.1 Model design.....................................

More information

Prediction of solar activity cycles by assimilating sunspot data into a dynamo model

Prediction of solar activity cycles by assimilating sunspot data into a dynamo model Solar and Stellar Variability: Impact on Earth and Planets Proceedings IAU Symposium No. 264, 2009 A. G. Kosovichev, A. H. Andrei & J.-P. Rozelot, eds. c International Astronomical Union 2010 doi:10.1017/s1743921309992638

More information

Lecture 14: Solar Cycle. Observations of the Solar Cycle. Babcock-Leighton Model. Outline

Lecture 14: Solar Cycle. Observations of the Solar Cycle. Babcock-Leighton Model. Outline Lecture 14: Solar Cycle Outline 1 Observations of the Solar Cycle 2 Babcock-Leighton Model Observations of the Solar Cycle Sunspot Number 11-year (average) cycle period as short as 8 years as long as 15

More information

Dynamo-generated magnetic fields at the surface of a massive star

Dynamo-generated magnetic fields at the surface of a massive star Mon. Not. R. Astron. Soc. 356, 1139 1148 (2005) doi:10.1111/j.1365-2966.2004.08544.x Dynamo-generated magnetic fields at the surface of a massive star D. J. Mullan 1 and James MacDonald 2 1 Bartol Research

More information

Summary: Mean field theory. ASTR 7500: Solar & Stellar Magnetism. Lecture 11 Tues 26 Feb Summary: Mean field theory. Summary: Mean field theory

Summary: Mean field theory. ASTR 7500: Solar & Stellar Magnetism. Lecture 11 Tues 26 Feb Summary: Mean field theory. Summary: Mean field theory ASTR 7500: Solar & Stellar Magnetism Summary: Mean fiel theory Hale CGEG Solar & Space Physics Average of inuction equation: ( ) = v + v η New solution properties arie from the term: E = v Assumption of

More information

Supercomputers simulation of solar granulation

Supercomputers simulation of solar granulation Supercomputers simulation of solar granulation simulation by Stein et al (2006), visualization by Henze (2008) Beyond Solar Dermatology But still stops at 0.97R! what lies deeper still? Supercomputers

More information

Fluid equations, magnetohydrodynamics

Fluid equations, magnetohydrodynamics Fluid equations, magnetohydrodynamics Multi-fluid theory Equation of state Single-fluid theory Generalised Ohm s law Magnetic tension and plasma beta Stationarity and equilibria Validity of magnetohydrodynamics

More information

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014 Reduced MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 19, 2014 These lecture notes are largely based on Lectures in Magnetohydrodynamics by Dalton

More information

Scope of this lecture ASTR 7500: Solar & Stellar Magnetism. Lecture 9 Tues 19 Feb Magnetic fields in the Universe. Geomagnetism.

Scope of this lecture ASTR 7500: Solar & Stellar Magnetism. Lecture 9 Tues 19 Feb Magnetic fields in the Universe. Geomagnetism. Scope of this lecture ASTR 7500: Solar & Stellar Magnetism Hale CGEG Solar & Space Physics Processes of magnetic field generation and destruction in turbulent plasma flows Introduction to general concepts

More information

The Waldmeier effect and the flux transport solar dynamo

The Waldmeier effect and the flux transport solar dynamo Mon. Not. R. Astron. Soc. 410, 13 1512 (2011) doi:10.1111/j.1365-2966.2010.17531.x The Waldmeier effect and the flux transport solar dynamo Bidya Binay Karak and Arnab Rai Choudhuri Department of Physics,

More information

Amplification and stability of magnetic fields and dynamo effect in young A stars

Amplification and stability of magnetic fields and dynamo effect in young A stars Mon. Not. R. Astron. Soc., 1 13 (21) Printed 21 October 21 (MN LATEX style file v2.2) Amplification and stability of magnetic fields and dynamo effect in young A stars R. Arlt and G. Rüdiger Astrophysikalisches

More information

Planetary dynamos: Dipole-multipole transition and dipole reversals

Planetary dynamos: Dipole-multipole transition and dipole reversals Planetary dynamos: Dipole-multipole transition and dipole reversals Ulrich Christensen Max-Planck-Institute for Solar System Research Katlenburg-Lindau, Germany in collaboration with Hagay Amit, Julien

More information

DYNAMO ACTION AND THE SUN

DYNAMO ACTION AND THE SUN Title : will be set by the publisher Editors : will be set by the publisher EAS Publications Series, Vol.?, 2006 DYNAMO ACTION AND THE SUN Michael Proctor 1 Abstract. Solar magnetic fields are produced

More information

Turbulent three-dimensional MHD dynamo model in spherical shells: Regular oscillations of the dipolar field

Turbulent three-dimensional MHD dynamo model in spherical shells: Regular oscillations of the dipolar field Center for Turbulence Research Proceedings of the Summer Program 2010 475 Turbulent three-dimensional MHD dynamo model in spherical shells: Regular oscillations of the dipolar field By R. D. Simitev, F.

More information

The Sun. The Sun. Bhishek Manek UM-DAE Centre for Excellence in Basic Sciences. May 7, 2016

The Sun. The Sun. Bhishek Manek UM-DAE Centre for Excellence in Basic Sciences. May 7, 2016 The Sun Bhishek Manek UM-DAE Centre for Excellence in Basic Sciences May 7, 2016 Outline 1 Motivation 2 Resume of the Sun 3 Structure of the Sun - Solar Interior and Atmosphere 4 Standard Solar Model -

More information

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Chapter 1 Earth Science Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Project Representative Yozo Hamano Authors Ataru Sakuraba Yusuke Oishi

More information

The solar dynamo and its influence on the earth climate. Gustavo A. Guerrero Departamento de Física (UFMG) IAG-USP Palio-climate Workshop

The solar dynamo and its influence on the earth climate. Gustavo A. Guerrero Departamento de Física (UFMG) IAG-USP Palio-climate Workshop The solar dynamo and its influence on the earth climate Gustavo A. Guerrero Departamento de Física (UFMG) IAG-USP Palio-climate Workshop - 2016 3 Bsp 10 G Maunder (1904) Besides the 11 yr cycle ~80 yr

More information

On Solar Radius Variation with magnetic Activity

On Solar Radius Variation with magnetic Activity On Solar Radius Variation with magnetic Activity arxiv:astro-ph/0311028v1 3 Nov 2003 Arnab Rai Choudhuri and Piyali Chatterjee Department of Physics, Indian Institute of Science, Bangalore-560012, India.

More information

IS THE SMALL-SCALE MAGNETIC FIELD CORRELATED WITH THE DYNAMO CYCLE? ApJ press (arxiv: ) Bidya Binay Karak & Axel Brandenburg (Nordita)

IS THE SMALL-SCALE MAGNETIC FIELD CORRELATED WITH THE DYNAMO CYCLE? ApJ press (arxiv: ) Bidya Binay Karak & Axel Brandenburg (Nordita) IS THE SMALL-SCALE MAGNETIC FIELD CORRELATED WITH THE DYNAMO CYCLE? ApJ press (arxiv:1505.06632) Bidya Binay Karak & Axel Brandenburg (Nordita) Solar Seminar at MPS Oct 25, 2015 Large-scale magnetic field

More information

(a) (b) (c) (d) (e) (f) r (minor radius) time. time. Soft X-ray. T_e contours (ECE) r (minor radius) time time

(a) (b) (c) (d) (e) (f) r (minor radius) time. time. Soft X-ray. T_e contours (ECE) r (minor radius) time time Studies of Spherical Tori, Stellarators and Anisotropic Pressure with M3D 1 L.E. Sugiyama 1), W. Park 2), H.R. Strauss 3), S.R. Hudson 2), D. Stutman 4), X-Z. Tang 2) 1) Massachusetts Institute of Technology,

More information

Pulsations and Magnetic Fields in Massive Stars. Matteo Cantiello KITP Fellow Kavli Institute for Theoretical Physics, UCSB

Pulsations and Magnetic Fields in Massive Stars. Matteo Cantiello KITP Fellow Kavli Institute for Theoretical Physics, UCSB Pulsations and Magnetic Fields in Massive Stars Matteo Cantiello KITP Fellow Kavli Institute for Theoretical Physics, UCSB Massive stars Energy / Momentum in ISM Stellar Winds, SNe Nucleosynthesis Remnants:

More information

Obridko V., Georgieva K. June 6-10, 2016, Bulgaria

Obridko V., Georgieva K. June 6-10, 2016, Bulgaria First VarSITI General Symposium Solar activity in the following decades based on the results of the ISSI/VarSITI Forum on future evolution of solar activity, 01.03-03.03.2015 ISSI, Bern, Switzerland Obridko

More information

Simulations and understanding large-scale dynamos

Simulations and understanding large-scale dynamos Simulations and understanding large-scale dynamos Issues with global models Possibility of smaller scales Consequences of this Magnetic flux concentrations Unusual dynamo effects Axel randenburg (Nordita,

More information

A numerical MHD model for the solar tachocline with meridional flow

A numerical MHD model for the solar tachocline with meridional flow Astronomy & Astrophysics manuscript no. aniket March 9, 2005 (DOI: will be inserted by hand later) A numerical MHD model for the solar tachocline with meridional flow A. Sule, G. Rüdiger, and R. Arlt Astrophysikalisches

More information

Jet Stability: A computational survey

Jet Stability: A computational survey Jet Stability Galway 2008-1 Jet Stability: A computational survey Rony Keppens Centre for Plasma-Astrophysics, K.U.Leuven (Belgium) & FOM-Institute for Plasma Physics Rijnhuizen & Astronomical Institute,

More information

Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow

Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow R. A. Bayliss, C. B. Forest,* M. D. Nornberg, E. J. Spence, and P. W. Terry Department of Physics,

More information

Why does the magnetic field of the Earth reverse?

Why does the magnetic field of the Earth reverse? IMPRS Solar System Seminar June 2002 Why does the magnetic field of the Earth reverse? Dieter Schmitt (Katlenburg-Lindau) 1. Geomagnetic field >99% of matter in universe is plasma: gas of electrons, ions

More information

Momentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi

Momentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi Momentum transport from magnetic reconnection in laboratory and astrophysical plasmas Space Science Center - University of New Hampshire collaborators : V. Mirnov, S. Prager, D. Schnack, C. Sovinec Center

More information