Solar Structure. Connections between the solar interior and solar activity. Deep roots of solar activity

Size: px
Start display at page:

Download "Solar Structure. Connections between the solar interior and solar activity. Deep roots of solar activity"

Transcription

1 Deep roots of solar activity Michael Thompson University of Sheffield Sheffield, U.K. With thanks to: Alexander Kosovichev, Rudi Komm, Steve Tobias Connections between the solar interior and solar activity Magnetic field generation Field emergence and evolution Active regions Magnetic carpet Sub-photospheric flows Cause-and-effect between solar interior and eruptive events contributing to solar activity: flares, coronal mass ejections Solar Structure Solar Interior 1. Core 2. Radiative Interior 3. (Tachocline) 4. Convection Zone Visible Sun 1. Photosphere 2. Chromosphere 3. Transition Region 4. Corona 5. (Solar Wind) amplitude variations of a factor of 3 length 8-15 yr mean 11.1 yr asymmetric rise-decline (strongest for high-amplitude cycles) 1

2 Observations Solar Longitudinally averaged photospheric magnetic field Solar cycle not just visible in sunspots Solar corona also modified as cycle progresses. Weak polar magnetic field has mainly one polarity at each pole and two poles have opposite polarities Polar field reverses every 11 years but out of phase with the sunspot field. Global Magnetic field reversal. Coronal heating and the magnetic carpet The large-scale coronal magnetic field Small-scale reconnection may play a large role in heating the corona, with magnetic energy being released as heat. SOHO observations have led to the concept of the magnetic carpet, with small-scale flux being renewed every 14 hours. Work in St Andrews indicates that only a small fraction (a few per cent) of flux tubes reach the corona. Reconnection amongst the tangle of low-lying field lines may heat the feet of the overlying loop structures. 2

3 Evolution of the coronal magnetic field Coronal loops observed by TRACE satellite This instability is known as Magnetic Buoyancy. Theoretical picture Sunspot pairs are believed to be formed by the instability of a magnetic field generated deep within the Sun. It is also important in Galaxies and Accretion Disks and Other Stars. Flux tube rises and breaks through the solar surface forming active regions. Stressed magnetic fields The high conductivity of the photospheric plasma means that the field is frozen in and must move with the plasma. Convective motions in the photosphere move the footpoints of magnetic loops, causing the field to get contorted and storing up energy. If the field is sufficiently contorted, even a little diffusivity allows the field to jump abruptly into a lower-energy state reconnection. This can be a common explanation of such spectacular events as eruptions of prominences, solar flares and coronal mass ejections. The energy is released as kinetic energy and heat. Wissink et al (2000) 3

4 Helioseismology Observe Sun oscillating simultaneously in more than a million modes acoustic waves. Measure mode properties?; A, G; line-shapes Eigenfunctions / spherical harmonics Frequencies? nlm (t) depend on conditions in solar interior determining wave propagation? nlm degeneracy lifted by rotation and by structural asphericities and magnetic fields Spherical harmonics Inversion provides maps such as of c and? and rotation and wave-speed asphericities Also new techniques such as time-distance helioseismology : make subsurface inferences from measured wave travel times between points on the Sun s surface Solar Internal Rotation Helioseismology shows the internal structure of the Sun. Surface Differential Rotation is maintained throughout the Convection zone Solid body rotation in the radiative interior Thin matching zone of shear known as the tachocline at the base of the solar convection zone (just in the stable region). Radial cuts through inferred rotation profile of the solar interior (at latitudes indicated) Meridional flows Mostly poleward but with transient counter-cell in northern hemisphere Meridional circulation Zonal flows at 1 Mm and 7 Mm depth (note torsional oscillation) 4

5 Large and Small-scale dynamos The alpha-omega dynamo LARGE SCALE Sunspots Butterfly Diagram 11-yr activity cycle Coronal Poloidal Field Systematic reversals Periodicities Field generation on scales > L TURB SMALL SCALE Magnetic Carpet Field Associated with granular and supergranular convection Magnetic network Field generation on scales ~ L TURB Alternative Mechanisms for Producing Poloidal Field Poloidalfield generated by magnetic buoyancy instability in connection with rotation or shear Either the instability of (thin) magnetic flux tubes Or more likely the instability of a layer of magnetic field (e.g. Brummell) Joint Instability of field and differential rotation in the tachocline (Gilman, Dikpati etc) Produces a mean flow with a net helicity Decay and dispersion of tilted active regions at the solar surface (Babcock-Leighton mechanism) Interface Dynamo scenario The dynamo is thought to work at the interface of the convection zone and the tachocline. The mean toroidal (sunspot field) is created by the radial diffential rotation and stored in the tachocline. And the mean poloidal field (coronal field) is created by turbulence (or perhaps by a dynamic a- effect) in the lower reaches of the convection zone 5

6 Interface Dynamo scenario PROS The radial shear provides a natural mechanism for generating a strong toroidal field The stable stratification enables the field to be stored and stretched to a large value. As the mean magnetic field is stored away from the convection zone, the a-effect is not suppressed Separation of large and smallscale magnetic helicity CONS Relies on transport of flux to and from tachocline how is this achieved? Delicate balance between turbulent transport and fields. Flux Transport Scenario Here the poloidal field is generated at the surface of the Sun via the decay of active regions with a systematic tilt (Babcock-Leighton Scenario) and transported towards the poles by the observed meridional flow The flux is then transported by a conveyor belt meridional flow to the tachocline where it is sheared into the sunspot toroidal field No role is envisaged for the turbulent convection in the bulk of the convection zone. Flux Transport Scenario PROS Does not rely on turbulent a- effect therefore all the problems of a-quenching are not a problem Sunspot field is intimately linked to polar field immediately before. CONS Requires strong meridional flow at base of CZ of exactly the right form Relies on existence of sunspots for dynamo to work (cf Maunder Minimum) Sunspot structure and dynamics 6

7 Observations of emerging active region by time-distance helioseismology magnetogram Subphotospheric imaging of active regions AR Mm AR Sound-speed perturbation (~1 km/s: 300 K or 3000 G) 460 Mm Evolution of AR : October 24 November 2, 2003 Sound-speed map and magnetogram of AR on October 25, 2003, 4:00 UT (depth of the lower panel: 45 Mm) AR

8 Sound-speed map and magnetogram of AR on October 26, 2003, 12:00 UT is emerging Emergence of, October 26, 2003, 20:00 UT AR Emergence of, October 27, 2003, 4:00 UT Growth and formation of sunspots of, October 29, 2003, 4:00 UT 8

9 Growth and formation of sunspots of, October 31, 2003, 12:00 UT Cut in East-West direction through both magnetic polarities, showing a loop-like structure beneath, October 30, 2003, 20:00 UT View from the top through the semi-transparent magnetogram, October 30, 2003, 20:00 UT. The lower panel is 16 Mm deep. Sunspot dynamics associated with flares and CME Magnetic field topology and magnetic stresses in the solar atmosphere are likely be controlled by motions of magnetic fluxfootpoints below the surface However, the depth of these motions is unknown. Time-distance helioseismology provides maps of subphotospheric flows and sound-speed structures, which can be compared with photospheric magnetic fields and X-ray data. 9

10 Sub-photospheric flow maps and photospheric magnetograms during X10 flare Sub-photospheric flow maps and photospheric magnetograms during X10 flare SSW and Active Complex Mm Energyrelease site 16 Mm 10

11 Flows near and beneath active region Apr 2001 Kinetic helicity SOHO 14 - GONG 2004 SOHO 14 - GONG

12 SOHO 14 - GONG 2004 SOHO 14 - GONG 2004 Variability in and near tachocline 1.3-yr variations in inferred rotation rate at low latitudes above and beneath tachocline Signature of dynamo field evolution? Radiative interior also involved in solar cycle? Variations in O ( r,?; t ) Wavelet analysis of the Sun s mean photospheric magnetic field: prominent periods are the rotation period and its 2 nd harmonic, and the 1.3/1.4-yr period Solar mean magnetic field Link between tachocline and 1.3/1.4-yr variations in solar wind, aurorae, solar mean magnetic field? Howe et al Boberg et al

13 Imaging of active regions on the far-side of the Sun using acoustic holography before rotation brings them to the Earth-side. Far-side imaging Conclusions Field generation: probably large- and small-scale dynamos. Poloidal field generation still somewhat open. General consensus for large-scale dynamo sited in tachocline, but flux-transport dynamo also possible. Helioseismology gives new views of field emergence and subsurface structures and flows. Good prospects for now-casting of subsurface flows and active-region structures with helioseismology for space-weather studies. SOHO has given data of the highest quality for solar studies. This will continue with new missions such as Solar-B, STEREO and Solar Dynamics Observatory (2008) Solar Dynamics Observatory: Helioseismic and Magnetic Imager 1.B Solar Dynamo 1.J Sunspot Dynamics 1.C Global Circulation 1.I Magnetic Connectivity 1.A Interior Structure 1.D Irradiance Sources 1.H Far-side Imaging 1.E Coronal Magnetic Field NOAA 9393 Farside 1.G Magnetic Stresses 1.F Solar Subsurface Weather 13

14 HMI Data Filtergrams Observables Doppler Velocity Line-of-sight Magnetograms Vector Magnetograms Continuum Brightness Processing Global Helioseismology Processing Local Helioseismology Processing HMI Science Analysis Plan Data Product Internal rotation O(r,T) (0<r<R) Internal sound speed, c s(r,t) (0<r<R) Full-disk velocity, v(r,t,f), And sound speed, c s(r,t,f), Maps (0-30Mm) Carrington synoptic v and c s maps (0-30Mm) High-resolution v and c s maps (0-30Mm) Deep-focus v and c s maps (0-200Mm) Far-side activity index Line-of-Sight Magnetic Field Maps Vector Magnetic Field Maps Coronal magnetic Field Extrapolations Coronal and Solar wind models Brightness Images Science Objective Tachocline Meridional Circulation Differential Rotation Near-Surface Shear Layer Activity Complexes Active Regions Sunspots Irradiance Variations Magnetic Shear Flare Magnetic Configuration Flux Emergence Magnetic Carpet Coronal energetics Large-scale Coronal Fields Solar Wind Far-side Activity Evolution Predicting A-R Emergence IMF Bs Events Version 1.0w S. Tobias TURBULENT CONVECTION STRONG LARGE SCALE SUNSPOT FIELD <B T > ROTATION TURBULENT CONVECTION ROTATION TURBULENT CONVECTION ROTATION Reynolds Stress <u i u j > L-effect DIFFERENTIAL ROTATION W MERIDIONAL CIRCULATION U p DIFFERENTIAL ROTATION W MERIDIONAL CIRCULATION U p S. Tobias STRONG LARGE SCALE SUNSPOT FIELD <B T > S. Tobias STRONG LARGE SCALE SUNSPOT FIELD <B T > 14

15 TURBULENT CONVECTION ROTATION TURBULENT CONVECTION ROTATION Reynolds Stress <u i u j > L-effect Reynolds Stress <u i u j > L-effect HELICAL/CYCLONIC CONVECTION u HELICAL/CYCLONIC CONVECTION u SMALL-SCALE MAG FIELD b DIFFERENTIAL ROTATION W MERIDIONAL CIRCULATION U p Turbulent amplification of <B> Turbulent EMF E = <u x b > a,b,g-effect DIFFERENTIAL ROTATION W MERIDIONAL CIRCULATION U p LARGE-SCALE MAG FIELD <B> W-effect LARGE-SCALE MAG FIELD <B> W-effect S. Tobias STRONG LARGE SCALE SUNSPOT FIELD <B T > S. Tobias STRONG LARGE SCALE SUNSPOT FIELD <B T > TURBULENT CONVECTION ROTATION HELICAL/CYCLONIC CONVECTION u SMALL-SCALE MAG FIELD b Reynolds Stress <u i u j > L-effect Maxwell Stresses L-quenching Turbulent amplification of <B> S. Tobias Turbulent EMF E = <u x b > a,b,g-effect LARGE-SCALE MAG FIELD <B> Small-scale Lorentz force a-quenching DIFFERENTIAL ROTATION W STRONG LARGE SCALE SUNSPOT FIELD <B T > Large-scale Lorentz force MERIDIONAL CIRCULATION U p Malkus-Proctor effect W-effect Simulations of turbulent pumping of magnetic field from convection zone into stable layer beneath. Tobias et al. (1998) 15

Logistics 2/13/18. Topics for Today and Thur+ Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies

Logistics 2/13/18. Topics for Today and Thur+ Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Pleiades Star Cluster Prof. Juri Toomre TAs: Peri Johnson, Ryan Horton Lecture 9 Tues 13 Feb 2018 zeus.colorado.edu/astr1040-toomre Topics for Today and Thur+ Helioseismology:

More information

Logistics 2/14/17. Topics for Today and Thur. Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies

Logistics 2/14/17. Topics for Today and Thur. Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Pleiades Star Cluster Prof. Juri Toomre TAs: Piyush Agrawal, Connor Bice Lecture 9 Tues 14 Feb 2017 zeus.colorado.edu/astr1040-toomre Topics for Today and Thur Helioseismology:

More information

Meridional Flow, Torsional Oscillations, and the Solar Magnetic Cycle

Meridional Flow, Torsional Oscillations, and the Solar Magnetic Cycle Meridional Flow, Torsional Oscillations, and the Solar Magnetic Cycle David H. Hathaway NASA/MSFC National Space Science and Technology Center Outline 1. Key observational components of the solar magnetic

More information

Helioseismic and Magnetic Imager for Solar Dynamics Observatory

Helioseismic and Magnetic Imager for Solar Dynamics Observatory Helioseismic and Magnetic Imager for Solar Dynamics Observatory Concept Study Report Appendix A HMI Science Plan SU-HMI-S014 2 July 2003 Stanford University Hansen Experimental Physics Laboratory and Lockheed-Martin

More information

Solar Magnetism. Arnab Rai Choudhuri. Department of Physics Indian Institute of Science

Solar Magnetism. Arnab Rai Choudhuri. Department of Physics Indian Institute of Science Solar Magnetism Arnab Rai Choudhuri Department of Physics Indian Institute of Science Iron filings around a bar magnet Solar corona during a total solar eclipse Solar magnetic fields do affect our lives!

More information

The Origin of the Solar Cycle & Helioseismology

The Origin of the Solar Cycle & Helioseismology The Origin of the Solar Cycle & Helioseismology What is the solar cycle? Simple concept of cycle mechanism, dynamo What is helioseismology? Global properties of the solar interior Local properties of the

More information

Helioseismic and Magnetic Imager for Solar Dynamics Observatory

Helioseismic and Magnetic Imager for Solar Dynamics Observatory for Solar Dynamics Observatory HMI Science Plan Including Science Requirements SU-HMI-S014 CDR Version - 9 November 2004 Stanford University Hansen Experimental Physics Laboratory and Lockheed-Martin Solar

More information

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere.

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere. Guidepost The Sun is the source of light an warmth in our solar system, so it is a natural object to human curiosity. It is also the star most easily visible from Earth, and therefore the most studied.

More information

Lecture 14: Solar Cycle. Observations of the Solar Cycle. Babcock-Leighton Model. Outline

Lecture 14: Solar Cycle. Observations of the Solar Cycle. Babcock-Leighton Model. Outline Lecture 14: Solar Cycle Outline 1 Observations of the Solar Cycle 2 Babcock-Leighton Model Observations of the Solar Cycle Sunspot Number 11-year (average) cycle period as short as 8 years as long as 15

More information

The Sun. The Sun. Bhishek Manek UM-DAE Centre for Excellence in Basic Sciences. May 7, 2016

The Sun. The Sun. Bhishek Manek UM-DAE Centre for Excellence in Basic Sciences. May 7, 2016 The Sun Bhishek Manek UM-DAE Centre for Excellence in Basic Sciences May 7, 2016 Outline 1 Motivation 2 Resume of the Sun 3 Structure of the Sun - Solar Interior and Atmosphere 4 Standard Solar Model -

More information

Solar Cycle Prediction and Reconstruction. Dr. David H. Hathaway NASA/Ames Research Center

Solar Cycle Prediction and Reconstruction. Dr. David H. Hathaway NASA/Ames Research Center Solar Cycle Prediction and Reconstruction Dr. David H. Hathaway NASA/Ames Research Center Outline Solar cycle characteristics Producing the solar cycle the solar dynamo Polar magnetic fields producing

More information

The Sun s Magnetic Cycle: Current State of our Understanding

The Sun s Magnetic Cycle: Current State of our Understanding The Sun s Magnetic Cycle: Current State of our Understanding Dibyendu Nandi Outline: The need to understand solar variability The solar cycle: Observational characteristics MHD: Basic theoretical perspectives;

More information

1. Solar Atmosphere Surface Features and Magnetic Fields

1. Solar Atmosphere Surface Features and Magnetic Fields 1. Solar Atmosphere Surface Features and Magnetic Fields Sunspots, Granulation, Filaments and Prominences, Coronal Loops 2. Solar Cycle: Observations The Sun: applying black-body radiation laws Radius

More information

arxiv: v1 [astro-ph] 2 Oct 2007

arxiv: v1 [astro-ph] 2 Oct 2007 Speed of Meridional Flows and Magnetic Flux Transport on the Sun Michal Švanda, 1,2, Alexander G. Kosovichev 3, and Junwei Zhao 3 arxiv:0710.0590v1 [astro-ph] 2 Oct 2007 ABSTRACT We use the magnetic butterfly

More information

Chapter 8 The Sun Our Star

Chapter 8 The Sun Our Star Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 8 The Sun

More information

Chapter 1. Introduction. 1.1 Motivation

Chapter 1. Introduction. 1.1 Motivation Chapter 1 Introduction 1.1 Motivation The Sun is a fascinating star, which not only supports life on the Earth, but also exhibits some extraordinary scientific phenomena, such as solar flares, coronal

More information

Solar and stellar dynamo models

Solar and stellar dynamo models Solar and stellar dynamo models Paul Charbonneau, Université de Montréal From MHD to simple dynamo models Mean-field models Babcock-Leighton models Stochastic forcing Cycle forecasting Stellar dynamos

More information

The Interior Structure of the Sun

The Interior Structure of the Sun The Interior Structure of the Sun Data for one of many model calculations of the Sun center Temperature 1.57 10 7 K Pressure 2.34 10 16 N m -2 Density 1.53 10 5 kg m -3 Hydrogen 0.3397 Helium 0.6405 The

More information

CONSTRAINTS ON THE APPLICABILITY OF AN INTERFACE DYNAMO TO THE SUN

CONSTRAINTS ON THE APPLICABILITY OF AN INTERFACE DYNAMO TO THE SUN The Astrophysical Journal, 631:647 652, 2005 September 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. CONSTRAINTS ON THE APPLICABILITY OF AN INTERFACE DYNAMO TO THE

More information

Part 1 : solar dynamo models [Paul] Part 2 : Fluctuations and intermittency [Dario] Part 3 : From dynamo to interplanetary magnetic field [Paul]

Part 1 : solar dynamo models [Paul] Part 2 : Fluctuations and intermittency [Dario] Part 3 : From dynamo to interplanetary magnetic field [Paul] Dynamo tutorial Part 1 : solar dynamo models [Paul] Part 2 : Fluctuations and intermittency [Dario] Part 3 : From dynamo to interplanetary magnetic field [Paul] ISSI Dynamo tutorial 1 1 Dynamo tutorial

More information

L. A. Upton. Heliophysics Summer School. July 27 th 2016

L. A. Upton. Heliophysics Summer School. July 27 th 2016 L. A. Upton Heliophysics Summer School July 27 th 2016 Sunspots, cool dark regions appearing on the surface of the Sun, are formed when the magnetic field lines pass through the photosphere. (6000 times

More information

Astronomy 404 October 18, 2013

Astronomy 404 October 18, 2013 Astronomy 404 October 18, 2013 Parker Wind Model Assumes an isothermal corona, simplified HSE Why does this model fail? Dynamic mass flow of particles from the corona, the system is not closed Re-write

More information

Astronomy Chapter 12 Review

Astronomy Chapter 12 Review Astronomy Chapter 12 Review Approximately how massive is the Sun as compared to the Earth? A. 100 times B. 300 times C. 3000 times D. 300,000 times E. One million times Approximately how massive is the

More information

1-4-1A. Sun Structure

1-4-1A. Sun Structure Sun Structure A cross section of the Sun reveals its various layers. The Core is the hottest part of the internal sun and is the location of nuclear fusion. The heat and energy produced in the core is

More information

9-1 The Sun s energy is generated by thermonuclear reactions in its core The Sun s luminosity is the amount of energy emitted each second and is

9-1 The Sun s energy is generated by thermonuclear reactions in its core The Sun s luminosity is the amount of energy emitted each second and is 1 9-1 The Sun s energy is generated by thermonuclear reactions in its core The Sun s luminosity is the amount of energy emitted each second and is produced by the proton-proton chain in which four hydrogen

More information

Supercomputers simulation of solar granulation

Supercomputers simulation of solar granulation Supercomputers simulation of solar granulation simulation by Stein et al (2006), visualization by Henze (2008) Beyond Solar Dermatology But still stops at 0.97R! what lies deeper still? Supercomputers

More information

Paul Charbonneau, Université de Montréal

Paul Charbonneau, Université de Montréal Stellar dynamos Paul Charbonneau, Université de Montréal Magnetohydrodynamics (ch. I.3) Simulations of solar/stellar dynamos (ch. III.5, +) Mean-field electrodynamics (ch. I.3, III.6) From MHD to simpler

More information

The Sun Our Extraordinary Ordinary Star

The Sun Our Extraordinary Ordinary Star The Sun Our Extraordinary Ordinary Star 1 Guiding Questions 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the

More information

An Overview of the Details

An Overview of the Details The Sun Our Extraordinary Ordinary Star 1 Guiding Questions 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the

More information

"Heinrich Schwabe's holistic detective agency

Heinrich Schwabe's holistic detective agency "Heinrich Schwabe's holistic detective agency, Ricky Egeland* High Altitude Observatory, NCAR 1. Sun alone is a complex system, emergence, total is > Σ of parts=> holistic 2. The Sun alone has provided

More information

The Magnetic Sun. Lecture Presented at the Alpbach Summer School on Space Weather: Physics, Impacts and Predictions

The Magnetic Sun. Lecture Presented at the Alpbach Summer School on Space Weather: Physics, Impacts and Predictions The Magnetic Sun Lecture Presented at the Alpbach Summer School on Space Weather: Physics, Impacts and Predictions Len Culhane Mullard Space Science Laboratory University College London Lecture Aims Focus

More information

An Overview of the Details

An Overview of the Details Guiding Questions The Sun Our Extraordinary Ordinary Star 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the Sun

More information

Figure C.1. Sound-speed beneath a sunspot (red positive and blue negative perturbations) from SOHO/MDI high-resolution data (June 18, 1998).

Figure C.1. Sound-speed beneath a sunspot (red positive and blue negative perturbations) from SOHO/MDI high-resolution data (June 18, 1998). C. THE HELIOSEISMIC AND MAGNETIC IMAGER INVESTIGATION The primary goal of the Helioseismic and Magnetic Imager (HMI) investigation is to study the origin of solar variability and to characterize and understand

More information

Solar Activity The Solar Wind

Solar Activity The Solar Wind Solar Activity The Solar Wind The solar wind is a flow of particles away from the Sun. They pass Earth at speeds from 400 to 500 km/s. This wind sometimes gusts up to 1000 km/s. Leaves Sun at highest speeds

More information

FARSIDE HELIOSEISMIC HOLOGRAPHY: RECENT ADVANCES

FARSIDE HELIOSEISMIC HOLOGRAPHY: RECENT ADVANCES FARSIDE HELIOSEISMIC HOLOGRAPHY: RECENT ADVANCES I. González Hernández 1, F. Hill 1, C. Lindsey 2, D. Braun 2, P. Scherrer 3, and S.M. Hanasoge 3 1 National Solar Observatory, Tucson, Arizona, USA 2 NorthWest

More information

The Sun Our Star. Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun

The Sun Our Star. Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun The Sun Our Star Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun General Properties Not a large star, but larger than most Spectral type G2 It

More information

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature:

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature: The Sun Basic Properties Radius: Mass: 5 R Sun = 6.96 km 9 R M Sun 5 30 = 1.99 kg 3.33 M ρ Sun = 1.41g cm 3 Luminosity: L Sun = 3.86 26 W Effective Temperature: L Sun 2 4 = 4πRSunσTe Te 5770 K The Sun

More information

Magnetic twists and energy releases in solar flares

Magnetic twists and energy releases in solar flares Hinode seminar 2 September 2015 Magnetic twists and energy releases in solar flares Toshifumi Shimizu (ISAS/JAXA, Japan) 2015.9.2 Hinode seminar 1 Eruptive solar flares! General scenario Formation of magnetic

More information

The Magnetic Sun. CESAR s Booklet

The Magnetic Sun. CESAR s Booklet The Magnetic Sun CESAR s Booklet 1 Introduction to planetary magnetospheres and the interplanetary medium Most of the planets in our Solar system are enclosed by huge magnetic structures, named magnetospheres

More information

Obridko V., Georgieva K. June 6-10, 2016, Bulgaria

Obridko V., Georgieva K. June 6-10, 2016, Bulgaria First VarSITI General Symposium Solar activity in the following decades based on the results of the ISSI/VarSITI Forum on future evolution of solar activity, 01.03-03.03.2015 ISSI, Bern, Switzerland Obridko

More information

Solar cycle & Dynamo Modeling

Solar cycle & Dynamo Modeling Solar cycle & Dynamo Modeling Andrés Muñoz-Jaramillo www.solardynamo.org Georgia State University University of California - Berkeley Stanford University THE SOLAR CYCLE: A MAGNETIC PHENOMENON Sunspots

More information

Predicting the Solar Cycle 24 with a Solar Dynamo Model

Predicting the Solar Cycle 24 with a Solar Dynamo Model Predicting the Solar Cycle 24 with a Solar Dynamo Model Arnab Rai Choudhuri and Piyali Chatterjee Department of Physics, Indian Institute of Science and Jie Jiang National Astronomical Observatories, Beijing

More information

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky The Sun as Our Star Last class we talked about how the Sun compares to other stars in the sky Today's lecture will concentrate on the different layers of the Sun's interior and its atmosphere We will also

More information

4+ YEARS OF SCIENTIFIC RESULTS WITH SDO/HMI

4+ YEARS OF SCIENTIFIC RESULTS WITH SDO/HMI 4+ YEARS OF SCIENTIFIC RESULTS WITH SDO/HMI Sebastien Couvidat and the HMI team Solar Metrology Symposium, October 2014 The HMI Instrument HMI Science Goals Evidence of Double-Cell Meridional Circulation

More information

Large-scale Flows and Dynamo In Solar-Like Stars

Large-scale Flows and Dynamo In Solar-Like Stars Large-scale Flows and Dynamo In Solar-Like Stars Gustavo Guerrero Physics Department Universidade Federal de Minas Gerais Brazil P. Smolarkiewicz (ECMWF) A. Kosovichev (NJIT), Elisabete M. de G. Dal Pino

More information

Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that

Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that generates energy through nuclear fusion in its core. The

More information

Publ. Astron. Obs. Belgrade No. 90 (2010), A CASE OF FILAMENT ACTIVE REGION INTERACTION

Publ. Astron. Obs. Belgrade No. 90 (2010), A CASE OF FILAMENT ACTIVE REGION INTERACTION Publ. Astron. Obs. Belgrade No. 90 (2010), 125-130 Contributed Paper A CASE OF FILAMENT ACTIVE REGION INTERACTION Astronomical Institute of the Romanian Academy, Str. Cuţitul de Argint 5, 040557 Bucharest,

More information

Solar-B. Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University

Solar-B. Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University Solar-B Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University The mission overview Japanese mission as a follow-on to Yohkoh. Collaboration with USA

More information

Solar-terrestrial relation and space weather. Mateja Dumbović Hvar Observatory, University of Zagreb Croatia

Solar-terrestrial relation and space weather. Mateja Dumbović Hvar Observatory, University of Zagreb Croatia Solar-terrestrial relation and space weather Mateja Dumbović Hvar Observatory, University of Zagreb Croatia Planets Comets Solar wind Interplanetary magnetic field Cosmic rays Satellites Astronauts HELIOSPHERE

More information

We just finished talking about the classical, spherically symmetric, (quasi) time-steady solar interior.

We just finished talking about the classical, spherically symmetric, (quasi) time-steady solar interior. We just finished talking about the classical, spherically symmetric, (quasi) time-steady solar interior. In reality, it s not any of those things: Helioseismology: the Sun pulsates & jiggles like a big

More information

COMPLETE LIST OF PUBLICATIONS OF ARNAB RAI CHOUDHURI

COMPLETE LIST OF PUBLICATIONS OF ARNAB RAI CHOUDHURI COMPLETE LIST OF PUBLICATIONS OF ARNAB RAI CHOUDHURI Publications (Book) : The Physics of Fluids and Plasmas: An Introduction for Astrophysicists Arnab Rai Choudhuri (1998) Cambridge University Press.

More information

Using This Flip Chart

Using This Flip Chart Using This Flip Chart Sunspots are the first indicators that a storm from the Sun is a possibility. However, not all sunspots cause problems for Earth. By following the steps in this flip chart you will

More information

The Sun ASTR /17/2014

The Sun ASTR /17/2014 The Sun ASTR 101 11/17/2014 1 Radius: 700,000 km (110 R ) Mass: 2.0 10 30 kg (330,000 M ) Density: 1400 kg/m 3 Rotation: Differential, about 25 days at equator, 30 days at poles. Surface temperature: 5800

More information

Flare Energy Release in the Low Atmosphere

Flare Energy Release in the Low Atmosphere Flare Energy Release in the Low Atmosphere Alexander G. Kosovichev, Viacheslav M. Sadykov New Jersey Institute of Technology Ivan N. Sharykin, Ivan V. Zimovets Space Research Institute RAS Santiago Vargas

More information

WHAT S DOWN WITH THE SUN? MAJOR DROP IN SOLAR ACTIVITY PREDICTED

WHAT S DOWN WITH THE SUN? MAJOR DROP IN SOLAR ACTIVITY PREDICTED WHAT S DOWN WITH THE SUN? MAJOR DROP IN SOLAR ACTIVITY PREDICTED A missing jet stream, fading spots, and slower activity near the poles say that our Sun is heading for a rest period even as it is acting

More information

Reconstructing the Subsurface Three-Dimensional Magnetic Structure of Solar Active Regions Using SDO/HMI Observations

Reconstructing the Subsurface Three-Dimensional Magnetic Structure of Solar Active Regions Using SDO/HMI Observations Reconstructing the Subsurface Three-Dimensional Magnetic Structure of Solar Active Regions Using SDO/HMI Observations Georgios Chintzoglou*, Jie Zhang School of Physics, Astronomy and Computational Sciences,

More information

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1 Solar Magnetic Fields 1 11 Jun 07 UA/NSO Summer School 1 If the sun didn't have a magnetic field, then it would be as boring a star as most astronomers think it is. -- Robert Leighton 11 Jun 07 UA/NSO

More information

2 Solar models: structure, neutrinos and helioseismological properties 8 J.N. Bahcall, S. Basu and M.H. Pinsonneault

2 Solar models: structure, neutrinos and helioseismological properties 8 J.N. Bahcall, S. Basu and M.H. Pinsonneault Foreword xv E.N. Parker 1 Dynamic Sun: an introduction 1 B.N. Dwivedi 1.1 Introduction 1 1.2 Main contents 2 1.3 Concluding remarks 7 2 Solar models: structure, neutrinos and helioseismological properties

More information

Helioseismology. Jesper Schou Max Planck Institute for Solar System Research

Helioseismology. Jesper Schou Max Planck Institute for Solar System Research Helioseismology Jesper Schou Max Planck Institute for Solar System Research schou@mps.mpg.de Page 1 of 60 Helioseismology The study of the Sun using waves Similar to Earth seismology Sounds waves are trapped

More information

AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT

AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT SDO SUMMER SCHOOL ~ August 2010 ~ Yunnan, China Marc DeRosa (LMSAL) ~ derosa@lmsal.com WHAT IS SDO? The goal of Solar Dynamics Observatory (SDO) is to understand:

More information

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons AST 100 General Astronomy: Stars & Galaxies 5. What s inside the Sun? From the Center Outwards Core: Hydrogen ANNOUNCEMENTS Midterm I on Tue, Sept. 29 it will cover class material up to today (included)

More information

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He Our sole source of light and heat in the solar system A common star: a glowing ball of plasma held together by its own gravity and powered by nuclear fusion at its center. Nuclear fusion: Combining of

More information

The solar dynamo (critical comments on) SPD Hale talk 14 June 2011

The solar dynamo (critical comments on) SPD Hale talk 14 June 2011 The solar dynamo (critical comments on) The solar dynamo (critical comments on) - what observations show - what they show is not the case - what is known from theory - interesting open questions quantitative

More information

Parity of solar global magnetic field determined by turbulent diffusivity

Parity of solar global magnetic field determined by turbulent diffusivity First Asia-Pacific Solar Physics Meeting ASI Conference Series, 2011, Vol. 1, pp 117 122 Edited by Arnab Rai Choudhuri & Dipankar Banerjee Parity of solar global magnetic field determined by turbulent

More information

Predicting a solar cycle before its onset using a flux transport dynamo model

Predicting a solar cycle before its onset using a flux transport dynamo model *** TITLE *** Proceedings IAU Symposium No. 335, 2017 ***NAME OF EDITORS*** c 2017 International Astronomical Union DOI: 00.0000/X000000000000000X Predicting a solar cycle before its onset using a flux

More information

The Sun: A Star of Our Own ASTR 2110 Sarazin

The Sun: A Star of Our Own ASTR 2110 Sarazin The Sun: A Star of Our Own ASTR 2110 Sarazin Sarazin Travel Wednesday, September 19 afternoon Friday, September 21 Will miss class Friday, September 21 TA Molly Finn will be guest lecturer Cancel Office

More information

Correlations of magnetic features and the torsional pattern

Correlations of magnetic features and the torsional pattern The Physics of Sun and Star Spots Proceedings IAU Symposium No. 273, 2010 D. P. Choudhary & K. G. Strassmeier, eds. c International Astronomical Union 2011 doi:10.1017/s1743921311015626 Correlations of

More information

The Structure of the Sun. CESAR s Booklet

The Structure of the Sun. CESAR s Booklet How stars work In order to have a stable star, the energy it emits must be the same as it can produce. There must be an equilibrium. The main source of energy of a star it is nuclear fusion, especially

More information

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity ! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun The Sun & Solar Activity The Sun in Perspective Planck s Law for Black Body Radiation ν = c / λ

More information

Solar eruptive phenomena

Solar eruptive phenomena Solar eruptive phenomena Andrei Zhukov Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium 26/01/2018 1 Eruptive solar activity Solar activity exerts continous influence on the solar

More information

An accurate numerical approach for the kinematic dynamo problem

An accurate numerical approach for the kinematic dynamo problem Mem. S.A.It. Suppl. Vol. 4, 17 c SAIt 2004 Memorie della Supplementi An accurate numerical approach for the kinematic dynamo problem A. Bonanno INAF- Osservatorio Astrofisico di Catania, Via S.Sofia 78,

More information

Meridional Flow, Differential Rotation, and the Solar Dynamo

Meridional Flow, Differential Rotation, and the Solar Dynamo Meridional Flow, Differential Rotation, and the Solar Dynamo Manfred Küker 1 1 Leibniz Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany Abstract. Mean field models of rotating

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 8

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 8 Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 8 MULTIPLE CHOICE 1. Granulation is caused by a. sunspots. * b. rising gas below the photosphere. c. shock waves in the corona. d. the

More information

Studies of Solar Magnetic Cycle and Differential Rotation Based on Mean Field Model. Hideyuki Hotta

Studies of Solar Magnetic Cycle and Differential Rotation Based on Mean Field Model. Hideyuki Hotta Master thesis Studies of Solar Magnetic Cycle and Differential Rotation Based on Mean Field Model Hideyuki Hotta ( ) Department of Earth and Planetary Science Graduate School of Science, The University

More information

Hydrogen Burning in More Massive Stars.

Hydrogen Burning in More Massive Stars. Hydrogen Burning in More Massive Stars http://apod.nasa.gov/apod/astropix.html 2 min For temperatures above 18 million K, the CNO cycle dominates energy production 10 min 14 CNO N CNO CYCLE (Shorthand)

More information

Received 2002 January 19; accepted 2002 April 15; published 2002 May 6

Received 2002 January 19; accepted 2002 April 15; published 2002 May 6 The Astrophysical Journal, 571:L181 L185, 2002 June 1 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. LARGE-SCALE SOLAR CORONAL STRUCTURES IN SOFT X-RAYS AND THEIR RELATIONSHIP

More information

The Future of Helio- and Asteroseismology (L.Gizon)

The Future of Helio- and Asteroseismology (L.Gizon) The Future of Helio- and Asteroseismology (L.Gizon) Millions of modes of vibration, excited by turbulent convection, permeate the solar interior. Surface observations of the motions caused by these waves

More information

The Solar Cycle: From Understanding to Forecasting

The Solar Cycle: From Understanding to Forecasting AAS-SPD Karen Harvey Prize Lecture, 12th June, 2012, Anchorage, Alaska The Solar Cycle: From Understanding to Forecasting Dibyendu Nandy Indian Institute of Science Education and Research, Kolkata Influences

More information

Lecture 5 The Formation and Evolution of CIRS

Lecture 5 The Formation and Evolution of CIRS Lecture 5 The Formation and Evolution of CIRS Fast and Slow Solar Wind Fast solar wind (>600 km/s) is known to come from large coronal holes which have open magnetic field structure. The origin of slow

More information

Our sole source of light and heat in the solar system. A very common star: a glowing g ball of gas held together by its own gravity and powered

Our sole source of light and heat in the solar system. A very common star: a glowing g ball of gas held together by its own gravity and powered The Sun Visible Image of the Sun Our sole source of light and heat in the solar system A very common star: a glowing g ball of gas held together by its own gravity and powered by nuclear fusion at its

More information

Physical modeling of coronal magnetic fields and currents

Physical modeling of coronal magnetic fields and currents Physical modeling of coronal magnetic fields and currents Participants: E. Elkina,, B. Nikutowski,, A. Otto, J. Santos (Moscow,Lindau,, Fairbanks, São José dos Campos) Goal: Forward modeling to understand

More information

The General Properties of the Sun

The General Properties of the Sun Notes: The General Properties of the Sun The sun is an average star with average brightness. It only looks bright because it s so close. It contains 99% of the mass of the solar system. It is made of entirely

More information

8.2 The Sun pg Stars emit electromagnetic radiation, which travels at the speed of light.

8.2 The Sun pg Stars emit electromagnetic radiation, which travels at the speed of light. 8.2 The Sun pg. 309 Key Concepts: 1. Careful observation of the night sky can offer clues about the motion of celestial objects. 2. Celestial objects in the Solar System have unique properties. 3. Some

More information

B.V. Gudiksen. 1. Introduction. Mem. S.A.It. Vol. 75, 282 c SAIt 2007 Memorie della

B.V. Gudiksen. 1. Introduction. Mem. S.A.It. Vol. 75, 282 c SAIt 2007 Memorie della Mem. S.A.It. Vol. 75, 282 c SAIt 2007 Memorie della À Ø Ò Ø ËÓÐ Ö ÓÖÓÒ B.V. Gudiksen Institute of Theoretical Astrophysics, University of Oslo, Norway e-mail:boris@astro.uio.no Abstract. The heating mechanism

More information

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc.

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc. Chapter 14 Lecture The Cosmic Perspective Seventh Edition Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is

More information

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc.

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc. Chapter 14 Lecture Chapter 14: Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on FIRE?

More information

Helioseismology. Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK

Helioseismology. Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK Helioseismology Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK STFC Advanced Summer School, 2014 Sep 1 University of Dundee http://solarscience.msfc.nasa.gov/predict.shtml http://solarscience.msfc.nasa.gov/predict.shtml

More information

Chapter 14 Our Star A Closer Look at the Sun. Why was the Sun s energy source a major mystery?

Chapter 14 Our Star A Closer Look at the Sun. Why was the Sun s energy source a major mystery? Chapter 14 Our Star 14.1 A Closer Look at the Sun Our goals for learning Why was the Sun s energy source a major mystery? Why does the Sun shine? What is the Sun s structure? Why was the Sun s energy source

More information

The Solar Interior and Helioseismology

The Solar Interior and Helioseismology The Solar Interior and Helioseismology Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK STFC Advanced Summer School, 2016 Sep 6 University of Sheffield http://solarscience.msfc.nasa.gov/predict.shtml

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature09786 1 Characteristics of the Minimum of Solar Cycle 23 Smoothed Sunspot Number 250 200 150 100 50 14 15 16 17 18 19 20 21 22 23 0 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 0

More information

1.3j describe how astronomers observe the Sun at different wavelengths

1.3j describe how astronomers observe the Sun at different wavelengths 1.3j describe how astronomers observe the Sun at different wavelengths 1.3k demonstrate an understanding of the appearance of the Sun at different wavelengths of the electromagnetic spectrum, including

More information

The Sun: Our Star. The Sun is an ordinary star and shines the same way other stars do.

The Sun: Our Star. The Sun is an ordinary star and shines the same way other stars do. The Sun: Our Star The Sun is an ordinary star and shines the same way other stars do. Announcements q Homework # 4 is due today! q Units 49 and 51 Assigned Reading Today s Goals q Today we start section

More information

Solar Physics & Space Plasma Research Centre (SP 2 RC) Living with a Star. Robertus Erdélyi

Solar Physics & Space Plasma Research Centre (SP 2 RC) Living with a Star. Robertus Erdélyi Living with a Star Robertus Erdélyi Robertus@sheffield.ac.uk SP 2 RC, School of Mathematics & Statistics, The (UK) Living with a Star The Secrets of the Sun Robertus Erdélyi Robertus@sheffield.ac.uk SP

More information

Earth/Space/Physics Kristy Halteman.

Earth/Space/Physics Kristy Halteman. Earth/Space/Physics Kristy Halteman http://www.lesia.obspm.fr/~bonnin/fichiers/images/sun-soho011905-1919z.jpg A. Properties 1. 330,000 times more massive than the Earth. http://www.37signals.com/svn/images/sun_v_planets.jpg

More information

On 1 September 1859, a small white light flare erupted on the Solar surface

On 1 September 1859, a small white light flare erupted on the Solar surface The Sun Our Star On 1 September 1859, a small white light flare erupted on the Solar surface 17 hours later Magnetometers recorded a large disturbance Aurorae were seen in the Carribean, Telegraphs went

More information

PTYS/ASTR 206. The Sun 3/1/07

PTYS/ASTR 206. The Sun 3/1/07 The Announcements Reading Assignment Review and finish reading Chapter 18 Optional reading March 2006 Scientific American: article by Gene Parker titled Shielding Space Travelers http://en.wikipedia.org/wiki/solar_variability

More information

A Closer Look at the Sun

A Closer Look at the Sun Our Star A Closer Look at the Sun Our goals for learning Why was the Sun s energy source a major mystery? Why does the Sun shine? What is the Sun s structure? Why was the Sun s energy source a major mystery?

More information

Module 4: Astronomy - The Solar System Topic 2 Content: Solar Activity Presentation Notes

Module 4: Astronomy - The Solar System Topic 2 Content: Solar Activity Presentation Notes The Sun, the largest body in the Solar System, is a giant ball of gas held together by gravity. The Sun is constantly undergoing the nuclear process of fusion and creating a tremendous amount of light

More information

The solar magnetic field

The solar magnetic field INSTITUTE OF PHYSICS PUBLISHING Rep. Prog. Phys. 69 (2006) 563 668 REPORTS ON PROGRESS IN PHYSICS doi:10.1088/0034-4885/69/3/r02 The solar magnetic field Sami K Solanki, Bernd Inhester and Manfred Schüssler

More information

Outline. Astronomy: The Big Picture. Earth Sun comparison. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned.

Outline. Astronomy: The Big Picture. Earth Sun comparison. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned. Next homework due Oct 24 th. I will not be here on Wednesday, but Paul Ricker will present the lecture! My Tuesday

More information