The Center for Astrophysical Thermonuclear Flashes. FLASH Hydrodynamics

Size: px
Start display at page:

Download "The Center for Astrophysical Thermonuclear Flashes. FLASH Hydrodynamics"

Transcription

1 The Center for Astrophysical Thermonuclear Flashes FLASH Hydrodynamics Jonathan Dursi (CITA), Alan Calder (FLASH) B. Fryxell, T. Linde, A. Mignone, G. Wiers Many others! Mar 23, 2005 An Advanced Simulation and Computing (ASC) Academic Strategic Alliances Program (ASAP) Center at

2 What does the FLASH Centre Study?

3 What does the FLASH Centre Study? 1992, Bill Waterson

4 The Three Kablooies Supernovae Ia Courtesy Hubble STScI Novae X ray burst Courtesy Chandra X Ray Observatory Courtesy Hubble STScI

5 FLASH Hydrodynamics Original FLASH problems: Classical Novae X-Ray Burst Type Ia Supernovae FLASH hydrodynamics solvers chosen for flows which are Highly compressible Complex EOS Solvers selected that are Robust Well-tested

6 FLASH Hydrodynamics FLASH contains a number of hydrodynamic solvers (and can plug in more) Approach of existing solvers: Operator Split Finite Volume Godunov Central Explicit Dimensionally Split `Hydro' physics includes Classical hydro MHD (Special) Relativistic Hydro

7 Hydrodynamics: Equations Solved Operator Split

8 Operator Splitting If have operators H for hydro and B for burning, second-order accurate in time, H 1/2 B 1/2 B 1/2 H 1/2 also second-order. Strang splitting (1968) Much easier (possible!) to have general multi-physics code Higher-order time accuracy very hard

9 Finite Difference Solution discretized as point values Build approximation to PDEs based on divided difference approximation to differentials Can be made very highorder Higher accuracy Faster convergence to PDEs as go to lower resolution

10 Finite Volume Solution discretized on control volumes Value is cell average For conservation eqn, t Q F Q =0 equation is updated as fluxes through interfaces. FU FL FR FD Guaranteed conservation!

11 Finite Volume Slightly harder to make very high order Conservation may mean more than naïve order of accuracy Shock speed wrong with non-conservative discretization; can alter simulation results That one converges faster with resolution not a good indicator of accuracy with a given resolution

12 Explicit New value of solution requires only value at neighboring cells at current time Very efficient Parallelizes very well Very accurate for high- speed flows Limits timestep Neighbors must contain all regions causally connected within that timestep Extremely distant `neighbors' not so efficient, doesn't parallelize so well Or small timestep

13 Guard Cells Because only require current values at neighboring cells, communication with other processors / boundaries done through guardcells Values outside computational domain filled in to represent boundary conditions Larger block size better communication / computation ratio

14 Directional Splitting Like Operator Splitting If have operators X for xhydro and Y for y-hydro, second-order accurate in time, X 1/2 Y 1/2 Y 1/2 X 1/2 also second-order accurate. Directional sweeps Vectorizable Easier, smaller codes Higher-order time, space accuracy much harder Can be problematic for some areas (flame instability)

15 Solving the Euler Equations Low-order simple methods of solving the Euler equations result in substantial numerical diffusion of flow features. Higher-order simple methods can result in numerical dispersion of flow features 1st order upwind 2nd order Lax-Wendroff Particularly a problem around sharp features But hydro equations allow discontinuities (shocks, contacts) LeVeque,

16 Discretizing the Euler Equations Artificial `viscosity' can stabilize (not eliminate) oscillations, but not general solution 2nd order Lax-Wendroff Great improvement can be made by limiting slopes implied by methods disallow new min/max Best handling of shocks numerical methods that `know' detailed structure of hydro solutions LeVeque,

17 Riemann Problem Simplest non-trivial hydrodynamics problem. `Shock tube' Infinite 1d domain Initial conditions discontinuous at x=0,t=0 What happens?

18 Hydrodynamic Waves Consider 1d Euler equation in nonconservative form `Eigenvalue' problem Look at structure of matrix Jumps in density and nothing else propagate with fluid Coherent variations in pressure, density propagate with the sound speed w/rt the fluid Any jump can be expressed in terms of `r' basis

19 Riemann Problem Waves propagate outwards from discontinuity Wave strengths given by decomposition of jump Problem completely solved once know states on interior of Riemann fan. Self-similar Fewer Riemann invariants across each wave than state variables. Need jump conditions

20 Riemann Problem Jump conditions come from how neighboring characteristics behave Characteristics pile up Shock Shock jump condition completes problem. Characteristics diverge Rarefaction wave Rarefaction `jump' condition completes problem. Can have RCR SCS RCS/SCR

21 Riemann Solvers Given invariants, jump conditions, can find an intermediate state which connects left, right states In (p,u) plane, intersection of two curves gives (p*,u*), because contact discontinuity supports arbitrary density jump Even for ideal gas, correct solution an iterative process Dai & Woodward, (1994)

22 Godunov Method Conservative, FV method Assumes data piecewise constant in cells Solves Riemann problem at cell interfaces Riemann problem used to calculate fluxes.

23 Approximate Riemann Solvers Riemann solver is expensive, particularly for general EOS Detailed structure unnecessary for fluxes Several approximate approaches: Two-shock HLL(E) Roe Dai & Woodward, (1994)

24 Two shock solver Assumes shocks on both sides If a wave is a rarefaction wave, ends up using shock jump across a rarefaction Poor for determining structure, not bad for determining fluxes Main Riemann solver for hydro in FLASH

25 HLL Solver Assumes only one interior state Uses estimates for minimum and maximum wave speeds Very fast, less accurate Diffusive (esp. contact discontinuities) Results very robust Used only in very specific situations where diffusion is a benefit (near-aligned shock instability)

26 Roe Solver Not used in FLASH classical hydro Instead of approximate solution to exact problem, exact solution to approximate problem Linearized Riemann problem Linearized around weighted average (`Roe average') of left and right states Inexpensive, works very well except in extremely strong shocks/rarefactions

27 Higher Order Godunov Methods Godunov method very robust, but expensive, and not very accurate (diffusive) Only 1st order accurate! (piecewise constant) Can achieve much higher accuracy for little extra cost by using higher-order (conservative) interpolants

28 Higher Order Godunov Methods Diffusive vs. Dispersive Cost of higher-order interpolants is that they behave badly near discontinuities Unphysical max/min oscillations Slopes must be limited to prevent new extrema. Reduces to Godunov at shocks

29 PPM Piecewise Parabolic Method Defines an upwinded parabola at each point with correct cell average Very aggressive `flattening' to enforce a very strict measure of monotonicity Also flattens at contact discontinuities Long history in compressible astrophysical flows

30 PPM Parabolas improve space accuracy To improve time accuracy, must modify how left,right states are chosen for Riemann solve Estimate characteristic speeds in cell and find region which is connected to interface in timestep Average over reconstruction in that region Those are left, right states for Riemann solve

31 PPM Construct interpolant Detect shocks, contacts Flatten for monotonicity Construct left, right states for Riemann Solve Find domain of dependance of interface over timestep Integrate reconstruction polynomial over doman of dependance Perform Riemann Solve Update cells with Fluxes from Riemann Solve States, Riemann solve similar cost

32 Central Methods PPM Very good shock resolution Very expensive If resolution of shock less important, many nonriemann-solve methods available Recent series of methods based on very simple approach Lax-Friedrichs with staggered mesh Avoids solving detailed Riemann problem by notionally integrating over entire Riemann fan. Nessyahu & Tadmor (1990)

33 Central Methods Only very recently that examined extending this to higher order Same caveats must limit slopes but results in very simple, inexpensive scheme Very accurate, smears out shocks more than Riemann-based methods Nessyahu & Tadmor (1990)

34 Central Methods Staggered mesh not very handy Method very diffusive at small timesteps Kurganov began developing methods with fixed mesh Fiendishly difficult derivations Result in very simple semidiscrete schemes Kurganov & Tadmor (2000) Building the accurate interpolation much more complicated than the actual flux calculation/update

35 Central Methods 2nd order dimensionally split Kurganov method implemented in FLASH Not yet integrated with other operators because of different update approach Accurate, fast Kurganov & Tadmor (2000)

36 Relativistic Hydro SR hydrodynamics has same structure as classical hydro Equations shown: 1d Cartesian co-ordinates Minkowski space Lab frame Ideal gas Conversion between primitive and conserved variables much more complicated: Lorentz factor

37 Relativistic Hydro Riemann problem maintains same structure as classical hydro 3 waves shocks, rarefactions Biggest change: tangential velocity now plays dynamic role in 1d Riemann solution Couples through W Makes full Riemann solution more difficult, much more costly, even for ideal gas

38 Relativistic Hydro FLASH implements a PPM for SR hydro Based on Marti & Muller (1995), Mignone & Bodo (2003) Riemann Solvers: Two-shock HLLE Requires ideal gas Time scaled to `c', so limits interaction with other physics modules for now Mignone & Bodo (2003)

39 MHD FLASH implements a MHD solver of the same general nature as non-magnetic hydro Explicit Dimensionally Split Finite Volume Godunov-type method

40 MHD Method by Powell et al (1999) Use MHD equations in slightly unusual form Symmetrized (Godunov) Gallilean invariance 8 eqns, 8 waves with non-zero velocities One is the `div-b' wave; divb advected with the flow. Cannot pile up in one place and begin to grow

41 MHD 8 waves: u +/- C, where C is speed of: Alfven wave (incompressible magnetic wave) Fast magnetosonic wave (compressible, magnetic field & pressure coupled) Slow magnetosonic wave (ditto) u ( two waves ) Contact discontinuity Magnetic flux jump Makes Riemann solver much harder

42 MHD Riemann solver much harder with 8 waves Even with only ideal gas Roe-type Riemann solver (requires ideal gas) Harder to compute a unique `Roe average', but same approach can be used

43 Divergence Constraint Difficult to maintain divergence constraint on adaptive mesh This method doesn't attempt to `divb' wave prevents pileup Divergence cleaning every user-settable number of timesteps Diffusion Projection (via multigrid solver)

44 FLASH hydrodynamcs Questions?

The RAMSES code and related techniques I. Hydro solvers

The RAMSES code and related techniques I. Hydro solvers The RAMSES code and related techniques I. Hydro solvers Outline - The Euler equations - Systems of conservation laws - The Riemann problem - The Godunov Method - Riemann solvers - 2D Godunov schemes -

More information

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Romain Teyssier CEA Saclay Romain Teyssier 1 Outline - Euler equations, MHD, waves, hyperbolic

More information

Computational Astrophysics

Computational Astrophysics 16 th Chris Engelbrecht Summer School, January 2005 3: 1 Computational Astrophysics Lecture 3: Magnetic fields Paul Ricker University of Illinois at Urbana-Champaign National Center for Supercomputing

More information

Advection / Hyperbolic PDEs. PHY 604: Computational Methods in Physics and Astrophysics II

Advection / Hyperbolic PDEs. PHY 604: Computational Methods in Physics and Astrophysics II Advection / Hyperbolic PDEs Notes In addition to the slides and code examples, my notes on PDEs with the finite-volume method are up online: https://github.com/open-astrophysics-bookshelf/numerical_exercises

More information

Various Hydro Solvers in FLASH3

Various Hydro Solvers in FLASH3 The Center for Astrophysical Thermonuclear Flashes Various Hydro Solvers in FLASH3 Dongwook Lee FLASH3 Tutorial June 22-23, 2009 An Advanced Simulation and Computing (ASC) Academic Strategic Alliances

More information

Computational Fluid Dynamics. PHY 688: Numerical Methods for (Astro)Physics

Computational Fluid Dynamics. PHY 688: Numerical Methods for (Astro)Physics Computational Fluid Dynamics Hydrodynamics When we discussed PDEs, we focused so far on scalar PDEs Often we wish to study systems of PDEs. Here we'll look at the equations of hydrodynamics Nonlinear system

More information

The RAMSES code and related techniques 2- MHD solvers

The RAMSES code and related techniques 2- MHD solvers The RAMSES code and related techniques 2- MHD solvers Outline - The ideal MHD equations - Godunov method for 1D MHD equations - Ideal MHD in multiple dimensions - Cell-centered variables: divergence B

More information

Multi-D MHD and B = 0

Multi-D MHD and B = 0 CapSel DivB - 01 Multi-D MHD and B = 0 keppens@rijnh.nl multi-d MHD and MHD wave anisotropies dimensionality > 1 non-trivial B = 0 constraint even if satisfied exactly t = 0: can numerically generate B

More information

Part 1: Numerical Modeling for Compressible Plasma Flows

Part 1: Numerical Modeling for Compressible Plasma Flows Part 1: Numerical Modeling for Compressible Plasma Flows Dongwook Lee Applied Mathematics & Statistics University of California, Santa Cruz AMS 280C Seminar October 17, 2014 MIRA, BG/Q, Argonne National

More information

Riemann Solvers and Numerical Methods for Fluid Dynamics

Riemann Solvers and Numerical Methods for Fluid Dynamics Eleuterio R Toro Riemann Solvers and Numerical Methods for Fluid Dynamics A Practical Introduction With 223 Figures Springer Table of Contents Preface V 1. The Equations of Fluid Dynamics 1 1.1 The Euler

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Many astrophysical scenarios are modeled using the field equations of fluid dynamics. Fluids are generally challenging systems to describe analytically, as they form a nonlinear

More information

Chp 4: Non-linear Conservation Laws; the Scalar Case. By Prof. Dinshaw S. Balsara

Chp 4: Non-linear Conservation Laws; the Scalar Case. By Prof. Dinshaw S. Balsara Chp 4: Non-linear Conservation Laws; the Scalar Case By Prof. Dinshaw S. Balsara 1 4.1) Introduction We have seen that monotonicity preserving reconstruction and iemann solvers are essential building blocks

More information

A Finite Volume Code for 1D Gas Dynamics

A Finite Volume Code for 1D Gas Dynamics A Finite Volume Code for 1D Gas Dynamics Michael Lavell Department of Applied Mathematics and Statistics 1 Introduction A finite volume code is constructed to solve conservative systems, such as Euler

More information

State of the Art MHD Methods for Astrophysical Applications p.1/32

State of the Art MHD Methods for Astrophysical Applications p.1/32 State of the Art MHD Methods for Astrophysical Applications Scott C. Noble February 25, 2004 CTA, Physics Dept., UIUC State of the Art MHD Methods for Astrophysical Applications p.1/32 Plan of Attack Is

More information

Approximate Harten-Lax-Van Leer (HLL) Riemann Solvers for Relativistic hydrodynamics and MHD

Approximate Harten-Lax-Van Leer (HLL) Riemann Solvers for Relativistic hydrodynamics and MHD Approximate Harten-Lax-Van Leer (HLL) Riemann Solvers for Relativistic hydrodynamics and MHD Andrea Mignone Collaborators: G. Bodo, M. Ugliano Dipartimento di Fisica Generale, Universita di Torino (Italy)

More information

Godunov methods in GANDALF

Godunov methods in GANDALF Godunov methods in GANDALF Stefan Heigl David Hubber Judith Ngoumou USM, LMU, München 28th October 2015 Why not just stick with SPH? SPH is perfectly adequate in many scenarios but can fail, or at least

More information

NUMERICAL SOLUTION OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

NUMERICAL SOLUTION OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS NUMERICAL SOLUTION OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS JOHN A. TRANGENSTEIN Department of Mathematics, Duke University Durham, NC 27708-0320 Ш CAMBRIDGE ЩР UNIVERSITY PRESS Contents 1 Introduction

More information

CapSel Roe Roe solver.

CapSel Roe Roe solver. CapSel Roe - 01 Roe solver keppens@rijnh.nl modern high resolution, shock-capturing schemes for Euler capitalize on known solution of the Riemann problem originally developed by Godunov always use conservative

More information

Recent Progress in FLASH: High-Energy- Density Physics Applications

Recent Progress in FLASH: High-Energy- Density Physics Applications The Center for Astrophysical Thermonuclear Flashes Recent Progress in FLASH: High-Energy- Density Physics Applications Dongwook Lee The Physics of Intracluster Medium: Theory & Computation University of

More information

The one-dimensional equations for the fluid dynamics of a gas can be written in conservation form as follows:

The one-dimensional equations for the fluid dynamics of a gas can be written in conservation form as follows: Topic 7 Fluid Dynamics Lecture The Riemann Problem and Shock Tube Problem A simple one dimensional model of a gas was introduced by G.A. Sod, J. Computational Physics 7, 1 (1978), to test various algorithms

More information

Finite Volume Schemes: an introduction

Finite Volume Schemes: an introduction Finite Volume Schemes: an introduction First lecture Annamaria Mazzia Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Università di Padova mazzia@dmsa.unipd.it Scuola di dottorato

More information

MATHEMATICAL ASPECTS OF NUMERICAL SOLUTION OF HYPERBOLIC SYSTEMS

MATHEMATICAL ASPECTS OF NUMERICAL SOLUTION OF HYPERBOLIC SYSTEMS K CHAPMAN & HALL/CRC Monographs and Surveys in Pure and Applied Mathematics I 18 MATHEMATICAL ASPECTS OF NUMERICAL SOLUTION OF HYPERBOLIC SYSTEMS ANDREI G. KULIKOVSKII NIKOLAI V. POGORELOV ANDREI YU. SEMENOV

More information

Fluid Dynamics. Part 2. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/17

Fluid Dynamics. Part 2. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/17 Fluid Dynamics p.1/17 Fluid Dynamics Part 2 Massimo Ricotti ricotti@astro.umd.edu University of Maryland Fluid Dynamics p.2/17 Schemes Based on Flux-conservative Form By their very nature, the fluid equations

More information

X i t react. ~min i max i. R ij smallest. X j. Physical processes by characteristic timescale. largest. t diff ~ L2 D. t sound. ~ L a. t flow.

X i t react. ~min i max i. R ij smallest. X j. Physical processes by characteristic timescale. largest. t diff ~ L2 D. t sound. ~ L a. t flow. Physical processes by characteristic timescale Diffusive timescale t diff ~ L2 D largest Sound crossing timescale t sound ~ L a Flow timescale t flow ~ L u Free fall timescale Cooling timescale Reaction

More information

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics Diffusion / Parabolic Equations Summary of PDEs (so far...) Hyperbolic Think: advection Real, finite speed(s) at which information propagates carries changes in the solution Second-order explicit methods

More information

High-resolution finite volume methods for hyperbolic PDEs on manifolds

High-resolution finite volume methods for hyperbolic PDEs on manifolds High-resolution finite volume methods for hyperbolic PDEs on manifolds Randall J. LeVeque Department of Applied Mathematics University of Washington Supported in part by NSF, DOE Overview High-resolution

More information

The PLUTO code for astrophysical gasdynamics

The PLUTO code for astrophysical gasdynamics Mem. S.A.It. Suppl. Vol. 13, 67 c SAIt 009 Memorie della Supplementi The PLUTO code for astrophysical gasdynamics A. Mignone 1, 1 Dipartimento di Fisica Generale Amedeo Avogadro, Università degli Studi

More information

Projection Dynamics in Godunov-Type Schemes

Projection Dynamics in Godunov-Type Schemes JOURNAL OF COMPUTATIONAL PHYSICS 142, 412 427 (1998) ARTICLE NO. CP985923 Projection Dynamics in Godunov-Type Schemes Kun Xu and Jishan Hu Department of Mathematics, Hong Kong University of Science and

More information

2 Introduction Standard conservative schemes will admit non-physical oscillations near material interfaces, which can be avoided by the application of

2 Introduction Standard conservative schemes will admit non-physical oscillations near material interfaces, which can be avoided by the application of A Conservative Approach to the Multiphase Euler Equations without Spurious Pressure Oscillations Xu-Dong Liu Ronald P. Fedkiw Stanley Osher June 8, 998 Abstract In [4], the pressure evolution equation

More information

A Central Rankine Hugoniot Solver for Hyperbolic Conservation Laws

A Central Rankine Hugoniot Solver for Hyperbolic Conservation Laws A Central Rankine Hugoniot Solver for Hyperbolic Conservation Laws S. Jaisankar, S. V. Raghurama Rao CFD Centre, Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India-56 Abstract

More information

Computational Physics & Validation

Computational Physics & Validation The Center for Astrophysical Thermonuclear Flashes Computational Physics & Validation Tomek Plewa Hua Pan, Timur Linde, Greg Weirs, Dahai Yu Todd Dupont Advanced Simulation and Computing (ASC) Academic

More information

Finite volumes for complex applications In this paper, we study finite-volume methods for balance laws. In particular, we focus on Godunov-type centra

Finite volumes for complex applications In this paper, we study finite-volume methods for balance laws. In particular, we focus on Godunov-type centra Semi-discrete central schemes for balance laws. Application to the Broadwell model. Alexander Kurganov * *Department of Mathematics, Tulane University, 683 St. Charles Ave., New Orleans, LA 708, USA kurganov@math.tulane.edu

More information

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A. A. I. Peer a,, A. Gopaul a, M. Z. Dauhoo a, M. Bhuruth a, a Department of Mathematics, University of Mauritius, Reduit,

More information

NUMERICAL METHODS IN ASTROPHYSICS An Introduction

NUMERICAL METHODS IN ASTROPHYSICS An Introduction -1 Series in Astronomy and Astrophysics NUMERICAL METHODS IN ASTROPHYSICS An Introduction Peter Bodenheimer University of California Santa Cruz, USA Gregory P. Laughlin University of California Santa Cruz,

More information

Comparison of Approximate Riemann Solvers

Comparison of Approximate Riemann Solvers Comparison of Approximate Riemann Solvers Charlotte Kong May 0 Department of Mathematics University of Reading Supervisor: Dr P Sweby A dissertation submitted in partial fulfilment of the requirement for

More information

The Deflagration Phase of Type Ia SNe

The Deflagration Phase of Type Ia SNe The Center for Astrophysical Thermonuclear Flashes The Deflagration Phase of Type Ia SNe Alan Calder ASC FLASH Center Type Ia Supernova Team Type Ia Supernovae and Cosmology August 5, 2004 An Advanced

More information

Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models

Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models 0-0 Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models B. Srinivasan, U. Shumlak Aerospace and Energetics Research Program, University of Washington, Seattle,

More information

Computations with Discontinuous Basis Functions

Computations with Discontinuous Basis Functions Computations with Discontinuous Basis Functions Carl Sovinec University of Wisconsin-Madison NIMROD Team Meeting November 12, 2011 Salt Lake City, Utah Motivation The objective of this work is to make

More information

A Comparative Study of Divergence-Cleaning Techniques for Multi-Dimensional MHD Schemes )

A Comparative Study of Divergence-Cleaning Techniques for Multi-Dimensional MHD Schemes ) A Comparative Study of Divergence-Cleaning Techniques for Multi-Dimensional MHD Schemes ) Takahiro MIYOSHI and Kanya KUSANO 1) Hiroshima University, Higashi-Hiroshima 739-856, Japan 1) Nagoya University,

More information

An efficient implementation of the divergence free constraint in a discontinuous Galerkin method for magnetohydrodynamics on unstructured meshes

An efficient implementation of the divergence free constraint in a discontinuous Galerkin method for magnetohydrodynamics on unstructured meshes An efficient implementation of the divergence free constraint in a discontinuous Galerkin method for magnetohydrodynamics on unstructured meshes Christian Klingenberg, Frank Pörner, Yinhua Xia Abstract

More information

Bound-preserving high order schemes in computational fluid dynamics Chi-Wang Shu

Bound-preserving high order schemes in computational fluid dynamics Chi-Wang Shu Bound-preserving high order schemes in computational fluid dynamics Chi-Wang Shu Division of Applied Mathematics Brown University Outline Introduction Maximum-principle-preserving for scalar conservation

More information

Outline of lectures. Adding more physics. Doing Better: source terms in CTU unsplit integrator

Outline of lectures. Adding more physics. Doing Better: source terms in CTU unsplit integrator Grid-based methods for hydrodynamics, MHD, and radiation hydrodynamics. Outline of lectures (Four lectures) Lecture 1. Introduction to physics and numerics Lecture 2. Operator split (ZEUS-like) methods

More information

Recapitulation: Questions on Chaps. 1 and 2 #A

Recapitulation: Questions on Chaps. 1 and 2 #A Recapitulation: Questions on Chaps. 1 and 2 #A Chapter 1. Introduction What is the importance of plasma physics? How are plasmas confined in the laboratory and in nature? Why are plasmas important in astrophysics?

More information

A recovery-assisted DG code for the compressible Navier-Stokes equations

A recovery-assisted DG code for the compressible Navier-Stokes equations A recovery-assisted DG code for the compressible Navier-Stokes equations January 6 th, 217 5 th International Workshop on High-Order CFD Methods Kissimmee, Florida Philip E. Johnson & Eric Johnsen Scientific

More information

Positivity-preserving high order schemes for convection dominated equations

Positivity-preserving high order schemes for convection dominated equations Positivity-preserving high order schemes for convection dominated equations Chi-Wang Shu Division of Applied Mathematics Brown University Joint work with Xiangxiong Zhang; Yinhua Xia; Yulong Xing; Cheng

More information

arxiv: v4 [astro-ph.im] 27 Apr 2011

arxiv: v4 [astro-ph.im] 27 Apr 2011 A ROBUST NUMERICAL SCHEME FOR HIGHLY COMPRESSIBLE MAGNETOHYDRODYNAMICS: NONLINEAR STABILITY, IMPLEMENTATION AND TESTS K. WAAGAN, C. FEDERRATH, AND C. KLINGENBERG arxiv:1101.3007v4 [astro-ph.im] 27 Apr

More information

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II Elliptic Problems / Multigrid Summary of Hyperbolic PDEs We looked at a simple linear and a nonlinear scalar hyperbolic PDE There is a speed associated with the change of the solution Explicit methods

More information

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow Outline Scalar nonlinear conservation laws Traffic flow Shocks and rarefaction waves Burgers equation Rankine-Hugoniot conditions Importance of conservation form Weak solutions Reading: Chapter, 2 R.J.

More information

Lecture 5.7 Compressible Euler Equations

Lecture 5.7 Compressible Euler Equations Lecture 5.7 Compressible Euler Equations Nomenclature Density u, v, w Velocity components p E t H u, v, w e S=c v ln p - c M Pressure Total energy/unit volume Total enthalpy Conserved variables Internal

More information

Gas-Kinetic Relaxation (BGK-Type) Schemes for the Compressible Euler Equations

Gas-Kinetic Relaxation (BGK-Type) Schemes for the Compressible Euler Equations Gas-Kinetic Relaxation (BGK-Type) Schemes for the Compressible Euler Equations Iizln Xu* and Antony ~arneson~ Department of Mechanical and Aerospace Engineering Princeton University Princeton, New Jersey

More information

A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS

A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS HASEENA AHMED AND HAILIANG LIU Abstract. High resolution finite difference methods

More information

Finite volume approximation of the relativistic Burgers equation on a Schwarzschild (anti-)de Sitter spacetime

Finite volume approximation of the relativistic Burgers equation on a Schwarzschild (anti-)de Sitter spacetime Turkish Journal of Mathematics http:// journals. tubitak. gov. tr/ math/ Research Article Turk J Math 2017 41: 1027 1041 c TÜBİTAK doi:10.906/mat-1602-8 Finite volume approximation of the relativistic

More information

Chapter 4: Non-Linear Conservation Laws; the Scalar Case. The conservation law in eqn. (4.1) will be hyperbolic if its eigenvalue ( ) ( )

Chapter 4: Non-Linear Conservation Laws; the Scalar Case. The conservation law in eqn. (4.1) will be hyperbolic if its eigenvalue ( ) ( ) Chapter 4: Non-inear Conservation aws; the Scalar Case 4.1) Introduction In the previous chapter we developed an understanding of monotonicity preserving advection schemes and iemann solvers for linear

More information

Waves in a Shock Tube

Waves in a Shock Tube Waves in a Shock Tube Ivan Christov c February 5, 005 Abstract. This paper discusses linear-wave solutions and simple-wave solutions to the Navier Stokes equations for an inviscid and compressible fluid

More information

Using Numerical Simulations to explore a Mixing Mechanisms for Nova Enrichment Jonathan Dursi

Using Numerical Simulations to explore a Mixing Mechanisms for Nova Enrichment Jonathan Dursi The Center for Astrophysical Thermonuclear Flashes Using Numerical Simulations to explore a Mixing Mechanisms for Nova Enrichment Jonathan Dursi May 21, 2001 Alan Calder, Alexandros Alexakis, James Truran,

More information

c 2003 Society for Industrial and Applied Mathematics

c 2003 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol., No., pp. 57 7 c 00 Society for Industrial and Applied Mathematics ON THE ARTIFICIAL COMPRESSION METHOD FOR SECOND-ORDER NONOSCILLATORY CENTRAL DIFFERENCE SCHEMES FOR SYSTEMS

More information

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes Math 660-Lecture 3: Gudonov s method and some theories for FVM schemes 1 The idea of FVM (You can refer to Chapter 4 in the book Finite volume methods for hyperbolic problems ) Consider the box [x 1/,

More information

A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations

A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations Ch. Altmann, G. Gassner, F. Lörcher, C.-D. Munz Numerical Flow Models for Controlled

More information

Shock-capturing Schemes for a Collisionless Two-fluid Plasma Model

Shock-capturing Schemes for a Collisionless Two-fluid Plasma Model Shock-capturing Schemes for a Collisionless Two-fluid Plasma Model E. Alec Johnson Department of Mathematics, UW-Madison Presented on August 29, 2 at Sandia National Laboratories c 23, Kenneth Lang, Tufts

More information

Advanced numerical methods for nonlinear advectiondiffusion-reaction. Peter Frolkovič, University of Heidelberg

Advanced numerical methods for nonlinear advectiondiffusion-reaction. Peter Frolkovič, University of Heidelberg Advanced numerical methods for nonlinear advectiondiffusion-reaction equations Peter Frolkovič, University of Heidelberg Content Motivation and background R 3 T Numerical modelling advection advection

More information

VISCOUS FLUX LIMITERS

VISCOUS FLUX LIMITERS VISCOUS FLUX LIMITERS E. F. Toro Department of Aerospace Science College of Aeronautics Cranfield Institute of Technology Cranfield, Beds MK43 OAL England. Abstract We present Numerical Viscosity Functions,

More information

RESEARCH HIGHLIGHTS. WAF: Weighted Average Flux Method

RESEARCH HIGHLIGHTS. WAF: Weighted Average Flux Method RESEARCH HIGHLIGHTS (Last update: 3 rd April 2013) Here I briefly describe my contributions to research on numerical methods for hyperbolic balance laws that, in my view, have made an impact in the scientific

More information

Two-scale numerical solution of the electromagnetic two-fluid plasma-maxwell equations: Shock and soliton simulation

Two-scale numerical solution of the electromagnetic two-fluid plasma-maxwell equations: Shock and soliton simulation Mathematics and Computers in Simulation 76 (2007) 3 7 Two-scale numerical solution of the electromagnetic two-fluid plasma-maxwell equations: Shock and soliton simulation S. Baboolal a,, R. Bharuthram

More information

Comparison of (Some) Algorithms for Edge Gyrokinetics

Comparison of (Some) Algorithms for Edge Gyrokinetics Comparison of (Some) Algorithms for Edge Gyrokinetics Greg (G.W.) Hammett & Luc (J. L.) Peterson (PPPL) Gyrokinetic Turbulence Workshop, Wolfgang Pauli Institute, 15-19 Sep. 2008 w3.pppl.gov/~hammett Acknowledgments:

More information

Numerical Hydrodynamics in Special Relativity

Numerical Hydrodynamics in Special Relativity Numerical Hydrodynamics in Special Relativity J. M. Martí Departamento de Astronomía y Astrofísica Universidad de Valencia 46100 Burjassot (Valencia), Spain martij@godunov.daa.uv.es E. Müller Max-Planck-Institut

More information

Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler:

Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler: Lecture 7 18.086 Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler: U j,n+1 t U j,n = U j+1,n 2U j,n + U j 1,n x 2 Expected accuracy: O(Δt) in time,

More information

Physical Diffusion Cures the Carbuncle Phenomenon

Physical Diffusion Cures the Carbuncle Phenomenon Physical Diffusion Cures the Carbuncle Phenomenon J. M. Powers 1, J. Bruns 1, A. Jemcov 1 1 Department of Aerospace and Mechanical Engineering University of Notre Dame, USA Fifty-Third AIAA Aerospace Sciences

More information

A Divergence-Free Upwind Code for Multidimensional Magnetohydrodynamic Flows 4

A Divergence-Free Upwind Code for Multidimensional Magnetohydrodynamic Flows 4 draft of August 0, 998 A Divergence-Free Upwind Code for Multidimensional Magnetohydrodynamic Flows 4 Dongsu Ryu, Francesco Miniati,T.W.Jones, and Adam Frank 3 ABSTRACT A description is given for preserving

More information

Affordable, entropy-consistent, Euler flux functions

Affordable, entropy-consistent, Euler flux functions Affordable, entropy-consistent, Euler flux functions (with application to the carbuncle phenomenon) Phil Roe Aerospace Engineering University 0f Michigan Ann Arbor Presented at HYP 2006 1 Entropy pairs

More information

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology 7th World Congress on Computational Mechanics

More information

A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws

A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws Mehdi Dehghan, Rooholah Jazlanian Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University

More information

Numerically Solving Partial Differential Equations

Numerically Solving Partial Differential Equations Numerically Solving Partial Differential Equations Michael Lavell Department of Applied Mathematics and Statistics Abstract The physics describing the fundamental principles of fluid dynamics can be written

More information

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2 Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer ringhofer@asu.edu, C2 b 2 2 h2 x u http://math.la.asu.edu/ chris Last update: Jan 24, 2006 1 LITERATURE 1. Numerical Methods for Conservation

More information

c 1999 Society for Industrial and Applied Mathematics

c 1999 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 21, No. 3, pp. 1115 1145 c 1999 Society for Industrial and Applied Mathematics A SIMPLE METHOD FOR COMPRESSIBLE MULTIFLUID FLOWS RICHARD SAUREL AND RÉMI ABGRALL Abstract. A simple

More information

Info. No lecture on Thursday in a week (March 17) PSet back tonight

Info. No lecture on Thursday in a week (March 17) PSet back tonight Lecture 0 8.086 Info No lecture on Thursday in a week (March 7) PSet back tonight Nonlinear transport & conservation laws What if transport becomes nonlinear? Remember: Nonlinear transport A first attempt

More information

An Accurate Deterministic Projection Method for Hyperbolic Systems with Stiff Source Term

An Accurate Deterministic Projection Method for Hyperbolic Systems with Stiff Source Term An Accurate Deterministic Projection Method for Hyperbolic Systems with Stiff Source Term Alexander Kurganov Department of Mathematics, Tulane University, 683 Saint Charles Avenue, New Orleans, LA 78,

More information

Non-Oscillatory Central Schemes for a Traffic Flow Model with Arrhenius Look-Ahead Dynamics

Non-Oscillatory Central Schemes for a Traffic Flow Model with Arrhenius Look-Ahead Dynamics Non-Oscillatory Central Schemes for a Traffic Flow Model with Arrhenius Look-Ahead Dynamics Alexander Kurganov and Anthony Polizzi Abstract We develop non-oscillatory central schemes for a traffic flow

More information

International Engineering Research Journal

International Engineering Research Journal Special Edition PGCON-MECH-7 Development of high resolution methods for solving D Euler equation Ms.Dipti A. Bendale, Dr.Prof. Jayant H. Bhangale and Dr.Prof. Milind P. Ray ϯ Mechanical Department, SavitribaiPhule

More information

Journal of Computational Physics

Journal of Computational Physics Journal of Computational Physics 8 (9) 77 798 Contents lists available at ScienceDirect Journal of Computational Physics journal homepage: www.elsevier.com/locate/jcp A central Rankine Hugoniot solver

More information

Computational Fluid Dynamics-1(CFDI)

Computational Fluid Dynamics-1(CFDI) بسمه تعالی درس دینامیک سیالات محاسباتی 1 دوره کارشناسی ارشد دانشکده مهندسی مکانیک دانشگاه صنعتی خواجه نصیر الدین طوسی Computational Fluid Dynamics-1(CFDI) Course outlines: Part I A brief introduction to

More information

Computational Astrophysics 7 Hydrodynamics with source terms

Computational Astrophysics 7 Hydrodynamics with source terms Computational Astrophysics 7 Hydrodynamics with source terms Oscar Agertz Outline - Optically thin radiative hydrodynamics - Relaxation towards the diffusion limit - Hydrodynamics with gravity source term

More information

What is a flux? The Things We Does Know

What is a flux? The Things We Does Know What is a flux? Finite Volume methods (and others) (are based on ensuring conservation by computing the flux through the surfaces of a polyhedral box. Either the normal component of the flux is evaluated

More information

Core-Collapse Supernovae and Neutrino Transport

Core-Collapse Supernovae and Neutrino Transport Core-Collapse Supernovae and Neutrino Transport SFB TR7 Gravitational Wave Astronomy Video Seminar B.Müller 5.7.2010 Core Collapse Supernovae, General Relativity & Gravitational Waves Core collapse supernova

More information

2.2. Methods for Obtaining FD Expressions. There are several methods, and we will look at a few:

2.2. Methods for Obtaining FD Expressions. There are several methods, and we will look at a few: .. Methods for Obtaining FD Expressions There are several methods, and we will look at a few: ) Taylor series expansion the most common, but purely mathematical. ) Polynomial fitting or interpolation the

More information

Solution of Two-Dimensional Riemann Problems for Gas Dynamics without Riemann Problem Solvers

Solution of Two-Dimensional Riemann Problems for Gas Dynamics without Riemann Problem Solvers Solution of Two-Dimensional Riemann Problems for Gas Dynamics without Riemann Problem Solvers Alexander Kurganov, 1, * Eitan Tadmor 2 1 Department of Mathematics, University of Michigan, Ann Arbor, Michigan

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS NUMERICAL FLUID MECHANICS FALL 2011

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS NUMERICAL FLUID MECHANICS FALL 2011 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139 2.29 NUMERICAL FLUID MECHANICS FALL 2011 QUIZ 2 The goals of this quiz 2 are to: (i) ask some general

More information

Hyperbolic Divergence Cleaning for the MHD Equations

Hyperbolic Divergence Cleaning for the MHD Equations Journal of Computational Physics 175, 645 673 (2002) doi:10.1006/jcph.2001.6961, available online at http://www.idealibrary.com on Hyperbolic Divergence Cleaning for the MHD Equations A. Dedner, F. Kemm,

More information

A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations

A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations Hao Li Math Dept, Purdue Univeristy Ocean University of China, December, 2017 Joint work with

More information

Extremum-Preserving Limiters for MUSCL and PPM

Extremum-Preserving Limiters for MUSCL and PPM arxiv:0903.400v [physics.comp-ph] 7 Mar 009 Extremum-Preserving Limiters for MUSCL and PPM Michael Sekora Program in Applied and Computational Mathematics, Princeton University Princeton, NJ 08540, USA

More information

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x CapSel Euler - 01 The Euler equations keppens@rijnh.nl conservation laws for 1D dynamics of compressible gas ρ t + (ρ v) x = 0 m t + (m v + p) x = 0 e t + (e v + p v) x = 0 vector of conserved quantities

More information

Advection algorithms II. Flux conservation, subgrid models and flux limiters

Advection algorithms II. Flux conservation, subgrid models and flux limiters Chapter 4 Advection algorithms II. Flu conservation, subgrid models and flu limiters In this chapter we will focus on the flu-conserving formalism of advection algorithms, and we shall discuss techniues

More information

An Assessment of Semi-Discrete Central Schemes for Hyperbolic Conservation Laws

An Assessment of Semi-Discrete Central Schemes for Hyperbolic Conservation Laws SANDIA REPORT SAND2003-3238 Unlimited Release Printed September 2003 An Assessment of Semi-Discrete Central Schemes for Hyperbolic Conservation Laws Mark A. Christon David I. Ketcheson Allen C. Robinson

More information

Numerical Simulations. Duncan Christie

Numerical Simulations. Duncan Christie Numerical Simulations Duncan Christie Motivation There isn t enough time to derive the necessary methods to do numerical simulations, but there is enough time to survey what methods and codes are available

More information

Numerical Methods for Modern Traffic Flow Models. Alexander Kurganov

Numerical Methods for Modern Traffic Flow Models. Alexander Kurganov Numerical Methods for Modern Traffic Flow Models Alexander Kurganov Tulane University Mathematics Department www.math.tulane.edu/ kurganov joint work with Pierre Degond, Université Paul Sabatier, Toulouse

More information

Part 1. The diffusion equation

Part 1. The diffusion equation Differential Equations FMNN10 Graded Project #3 c G Söderlind 2016 2017 Published 2017-11-27. Instruction in computer lab 2017-11-30/2017-12-06/07. Project due date: Monday 2017-12-11 at 12:00:00. Goals.

More information

Gas Dynamics Equations: Computation

Gas Dynamics Equations: Computation Title: Name: Affil./Addr.: Gas Dynamics Equations: Computation Gui-Qiang G. Chen Mathematical Institute, University of Oxford 24 29 St Giles, Oxford, OX1 3LB, United Kingdom Homepage: http://people.maths.ox.ac.uk/chengq/

More information

The RAMSES code and related techniques 4. Source terms

The RAMSES code and related techniques 4. Source terms The RAMSES code and related techniques 4. Source terms Outline - Optically thin radiative hydrodynamics - Relaxation towards the diffusion limit - Hydrodynamics with gravity source term - Relaxation towards

More information

AMath 574 February 11, 2011

AMath 574 February 11, 2011 AMath 574 February 11, 2011 Today: Entropy conditions and functions Lax-Wendroff theorem Wednesday February 23: Nonlinear systems Reading: Chapter 13 R.J. LeVeque, University of Washington AMath 574, February

More information

On a class of numerical schemes. for compressible flows

On a class of numerical schemes. for compressible flows On a class of numerical schemes for compressible flows R. Herbin, with T. Gallouët, J.-C. Latché L. Gastaldo, D. Grapsas, W. Kheriji, T.T. N Guyen, N. Therme, C. Zaza. Aix-Marseille Université I.R.S.N.

More information

Non-linear Scalar Equations

Non-linear Scalar Equations Non-linear Scalar Equations Professor Dr. E F Toro Laboratory of Applied Mathematics University of Trento, Italy eleuterio.toro@unitn.it http://www.ing.unitn.it/toro August 24, 2014 1 / 44 Overview Here

More information