PHY 396 K. Problem set #11, the last set this semester! Due December 1, 2016.

Size: px
Start display at page:

Download "PHY 396 K. Problem set #11, the last set this semester! Due December 1, 2016."

Transcription

1 PHY 396 K. Problem set #11, the last set this semester! Due December 1, In my notations, the A µ and their components A a µ are the canonically normalized vector fields, while the A µ = ga µ and the A a µ = ga a µ are normalized by the symmetry action. Likewise, the tension fields F µν and their components Fµν a are canonically normalized while the F µν = gf µν and the Fµν a = gfµν a are normalized by the symmetry action. 1. In class, I have focused on the fundamental multiplet of the local SU(N) symmetry, i.e., a set of N fields (complex scalars or Dirac fermions) which transform as a complex N vector, Ψ (x) = U(x)Ψ(x) i. e. Ψ i (x) = j U i j(x)ψ j (x), i, j = 1, 2,..., N (1) where U(x) is an x dependent unitary N N matrix, det U(x) 1. Now consider N 2 1 real fields Φ a (x) forming an adjoint multiplet: In matrix form Φ(x) = a Φ a (x) λa 2 (2) is a traceless hermitian N N matrix which transforms under the local SU(N) symmetry according to Φ (x) = U(x)Φ(x)U (x). (3) Note that this transformation law preserves the Φ = Φ and tr(φ) = 0 conditions. The covariant derivatives D µ act on an adjoint multiplet of fields as D µ Φ(x) = µ Φ(x) + i[a µ (x), Φ(x)] µ Φ(x) + ia µ (x)φ(x) iφ(x)a µ (x), (4) or in components D µ Φ a (x) = µ Φ a (x) f abc A b µ(x)φ c (x). (5) (a) Verify that these derivatives are indeed covariant the D µ Φ(x) transforms under the local SU(N) symmetry exactly like the Φ(x) itself. 1

2 (b) Verify the Leibniz rule for the covariant derivatives of matrix products. Let Φ(x) and Ξ(x) be two adjoint multiplets while Ψ(x) is a fundamental multiplet and Ψ (x) is its hermitian conjugate (a row vector of Ψ i ). Show that D µ (ΦΞ) = (D µ Φ)Ξ + Φ(D µ Ξ), D µ (ΦΨ) = (D µ Φ)Ψ + Φ(D µ Ψ), (6) (c) Show that for an adjoint multiplet Φ(x), D µ (Ψ Ξ) = (D µ Ψ )Ξ + Ψ (D µ Ξ). [D µ, D ν ]Φ(x) = i[f µν (x), Φ(x)] = ig[f µν (x), Φ(x)] (7) or in components [D µ, D ν ]Φ a (x) = gf abc F b µν(x)φ c (x). In class, I have argued (using covariant derivatives) that the tension fields F µν (x) themselves transform according to eq. (3). In other words, the F a µν(x) form an adjoint multiplet of the SU(N) symmetry group. (d) Verify the F µν(x) = U(x)F µν (x)u (x) transformation law directly from the definition F µν def = µ A ν µ A ν + i[a µ, A ν ] and from the non-abelian gauge transform formula for the A µ fields. (e) Verify the Bianchi identity for the non-abelian tension fields F µν (x): Note the covariant derivatives in this equation. D λ F µν + D µ F νλ + D ν F λµ = 0. (8) Finally, consider the SU(N) Yang Mills theory the non-abelian gauge theory that does not have any fields except A a (x) and F a (x); its Lagrangian is L YM = 1 2g 2 tr( F µν F µν) = a 1 4 F a µνf aµν. (9) (f) Show that the Euler Lagrange field equations for the Yang Mills theory can be written in covariant form as D µ F µν = 0. Hint: first show that for an infinitesimal variation δa µ (x) of the non-abelian gauge fields, the tension fields vary according to δf µν (x) = D µ δa ν (x) D ν δa µ (x). 2

3 2. Continuing the previous problem, consider an SU(N) gauge theory in which N 2 1 vector fields A a µ(x) interact with some matter fields φ α (x), L = 1 2g 2 tr( F µν F µν) + L mat (φ, D µ φ). (10) For the moment, let me keep the matter fields completely generic they can be scalars, or vectors, or spinors, or whatever, and form any kind of a multiplet of the local SU(N) symmetry as long as such multiplet is complete and non-trivial. All we need to know right now is that there are well-defined covariant derivatives D µ φ that depend on the gauge fields A a µ, which give rise to the currents J aµ = L mat A a µ. (11) Collectively, these N 2 1 currents should form an adjoint multiplet J µ = a ( 1 2 λa )J aµ of the SU(N) symmetry. (a) Show that in this theory the equation of motion for the A a µ fields are D µ F aµν = J aν and that consistency of these equations requires the currents to be covariantly conserved, or in components, D µ J µ = µ J µ + ig[a µ, J µ ] = 0, (12) D µ J µa = µ J aµ gf abc A b µj cµ = 0. (13) Note: a covariantly conserved current does not lead to a conserved charge, (d/dt) d 3 x J a0 (x, t) 0! Now consider a simple example of matter fields a fundamental multiplet Ψ(x) of N Dirac fermions Ψ i (x), with a Lagrangian L mat = Ψ ( iγ µ D µ m)ψ, L net = L mat 1 2g 2 tr( F µν F µν). (14) (b) Derive the SU(N) currents J aµ for these fermions and verify that under the SU(N) symmetries they transform covariantly into each other as members of an adjoint multiplet. That is, the N N matrix J µ = a ( 1 2 λa )J aµ transforms according to eq. (3). 3

4 Hint: for any complex N vectors ξ i and η j, ( η λ a ξ ) ( λ a) i = 2 η j j ξ i 2 ( η ξ ) δj i.. (15) N a (c) Finally, verify the covariant conservation D µ J aµ fermionic fields Ψ i (x) and Ψ i (x) obey their equations of motion. = 0 of these currents when the 3. This problem is about general multiplets of general gauge groups. Consider a Lie group G with generators ˆT a obeying commutation relations [ ˆT a, ˆT b ] = if abc ˆT c. Under an infinitesimal local symmetry G(x) = 1 + iλ a (x) ˆT a +, infinitesimal Λ a (x), (16) the gauge fields A a µ(x) transform as A a µ(x) A a µ(x) D µ Λ a (x) = A a µ(x) µ Λ a (x) f abc Λ b (x)a c µ(x). (17) Other fields of the gauge theory (scalar, spinor, or whatever) must form complete multiplets of the gauge group G. In any such multiplet (m), the generators ˆT a are represented by the size(m) size(m) matrices (T(m) a )α β satisfying similar commutation relations, [T(m) a, T (m) b ] = if abc T(m) c. The fields Ψα (x) belonging to such a multiplet transform under infinitesimal gauge transforms (16) as Ψ α (x) Ψ α (x) + iλ a (x)(t a (m) )α β Ψβ (x), (18) and the covariant derivatives D µ act on these fields as D µ Ψ α (x) = µ Ψ α (x) + ia a µ(x)(t a (m) )α β Ψβ (x). (19) Note different matrices T(m) a in the covariant derivatives of fields belonging to different multiplet (m). But the gauge fields A a µ are the same for all the matter fields of the same gauge theory! 4

5 Verify covariance of the derivatives (19) under infinitesimal gauge transforms (16). The derivatives (19) are covariant under any gauge transformations, infinitesional of finite. But proving the covariance under the finite gauge transforms is much harder, so your homework is limited to the infinitesimal case. 4. In the previous homework (set#10, problem#2), we had continuous global symmetry G = SU(N) L SU(N) R U(1) spontaneously broken down to H = SU(N) V. Now let s gauge the entire SU(N) L SU(N) R U(1) symmetry and work out the Higgs mechanism. The present theory comprises N 2 complex scalar fields Φ j i (x) organized into an N N matrix, and 2N 2 1 real vector fields B µ (x), L a µ(x), and Rµ(x), a the latter organized into traceless hermitian matrices L µ (x) = a La µ(x) 1 2 λa and R µ (x) = a Ra µ(x) 1 2 λa, where a = 1,..., (N 2 1) and λ a are the Gell-Mann matrices of SU(N). The Lagrangian is ( ) L = 1 4 B µνb µν 1 2 tr (L µνl µν ) 2 1 tr (R µνr µν ) + tr D µ Φ D µ Φ V (Φ Φ), (20) where B µν = µ B ν ν B µ, L µν = µ L ν ν L µ + ig[l µ, L ν ], R µν = µ R ν ν R µ + ig[r µ, R ν ], (21) D µ Φ = µ Φ + ig B µ Φ + igl µ Φ igφr µ, D µ Φ = (D µ Φ) = µ Φ ig B µ Φ + igr µ Φ igφ L µ. For simplicity, I assume equal gauge couplings g L = g R = g for the two SU(N) factors of the gauge group, but the abelian coupling g is different. The scalar potential V is precisely as in the previous homework, V = α 2 tr( Φ ΦΦ Φ ) + β 2 tr2( Φ Φ ) + m 2 tr ( Φ Φ ), α, β > 0, m 2 < 0, (22) hence similar VEVs of the scalar fields: up to a gauge symmetry, Φ = C 1 N N where C = m 2 α + Nβ, (23) 5

6 which breaks the G = SU(N) L SU(N) R U(1) symmetry down to the SU(N) V subgroup. (a) The Higgs mechanism makes N 2 out of 2N 2 1 vector fields massive. Calculate their masses by plugging Φ for the Φ(x) into the tr(d µ Φ D µ Φ) term of the Lagrangian. In particular, show that the abelian gauge field B µ and the Xµ a = 1 2 (L a µ Rµ) a combinations of the SU(N) gauge fields become massive, while the Vµ a = 1 2 (L a µ+rµ) a combinations remain massless. (b) Find the effective Lagrangian for the massless vector fields Vµ a (x) by freezing all the other fields, i.e. setting B µ (x) 0, Xµ(x) a 0, and Φ(x) Φ. Show that this Lagrangian describes a Yang Mills theory with gauge group SU(N) V and gauge coupling g V = g/ 2. For extra challenge, allow for un-equal gauge coulings g L g R. Find which combinations of the L a µ(x) and Rµ(x) a fields remain massless in this case, then derive the effective Lagrangian for these massless fields by freezing everything else. As in part (b), you should get an SU(N) Yang Mills theory, but this time the gauge coupling is g v = g L g R. (24) gl 2 + g2 R 6

Problem 1(a): In matrix notations, the non-abelian gauge symmetries act on vector potentials A µ (x) according

Problem 1(a): In matrix notations, the non-abelian gauge symmetries act on vector potentials A µ (x) according PHY 396 K. Solutions for homework set #8. Problem 1a: In matrix notations, the non-abelian gauge symmetries act on vector potentials A µ x according to A µx = UxA µ xu x + i µ Ux U x. S.1 Taking F µν x

More information

Non Abelian Higgs Mechanism

Non Abelian Higgs Mechanism Non Abelian Higgs Mechanism When a local rather than global symmetry is spontaneously broken, we do not get a massless Goldstone boson. Instead, the gauge field of the broken symmetry becomes massive,

More information

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L PHY 396 K. Solutions for problem set #. Problem 1a: As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as D µ D µ φ φ = 0. S.1 In particularly,

More information

etc., etc. Consequently, the Euler Lagrange equations for the Φ and Φ fields may be written in a manifestly covariant form as L Φ = m 2 Φ, (S.

etc., etc. Consequently, the Euler Lagrange equations for the Φ and Φ fields may be written in a manifestly covariant form as L Φ = m 2 Φ, (S. PHY 396 K. Solutions for problem set #3. Problem 1a: Let s start with the scalar fields Φx and Φ x. Similar to the EM covariant derivatives, the non-abelian covariant derivatives may be integrated by parts

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14.

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14. As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14 Majorana spinors March 15, 2012 So far, we have only considered massless, two-component

More information

CHAPTER II: The QCD Lagrangian

CHAPTER II: The QCD Lagrangian CHAPTER II: The QCD Lagrangian.. Preparation: Gauge invariance for QED - 8 - Ã µ UA µ U i µ U U e U A µ i.5 e U µ U U Consider electrons represented by Dirac field ψx. Gauge transformation: Gauge field

More information

8.324 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 2010 Lecture 3

8.324 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 2010 Lecture 3 Lecture 3 8.324 Relativistic Quantum Field Theory II Fall 200 8.324 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 200 Lecture 3 We begin with some comments concerning

More information

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian 752 Final April 16, 2010 Tim Wendler BYU Physics and Astronomy Fadeev Popov Ghosts and Non-Abelian Gauge Fields The standard model Lagrangian L SM = L Y M + L W D + L Y u + L H The rst term, the Yang Mills

More information

Group Structure of Spontaneously Broken Gauge Theories

Group Structure of Spontaneously Broken Gauge Theories Group Structure of SpontaneouslyBroken Gauge Theories p. 1/25 Group Structure of Spontaneously Broken Gauge Theories Laura Daniel ldaniel@ucsc.edu Physics Department University of California, Santa Cruz

More information

Problem 1(a): The scalar potential part of the linear sigma model s Lagrangian (1) is. 8 i φ2 i f 2) 2 βλf 2 φ N+1,

Problem 1(a): The scalar potential part of the linear sigma model s Lagrangian (1) is. 8 i φ2 i f 2) 2 βλf 2 φ N+1, PHY 396 K. Solutions for problem set #10. Problem 1a): The scalar potential part of the linear sigma model s Lagrangian 1) is Vφ) = λ 8 i φ i f ) βλf φ N+1, S.1) where the last term explicitly breaks the

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16 As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16 Masses for Vectors: the Higgs mechanism April 6, 2012 The momentum-space propagator

More information

Quantum Field Theory and the Standard Model

Quantum Field Theory and the Standard Model Quantum Field Theory and the Standard Model José Ignacio Illana Taller de Altas Energías Benasque, September 2016 1 Outline 1. Quantum Field Theory: Gauge Theories B The symmetry principle B Quantization

More information

Two Fundamental Principles of Nature s Interactions

Two Fundamental Principles of Nature s Interactions Two Fundamental Principles of Nature s Interactions Tian Ma, Shouhong Wang Supported in part by NSF, ONR and Chinese NSF http://www.indiana.edu/ fluid I. Gravity and Principle of Interaction Dynamics PID)

More information

Show, for infinitesimal variations of nonabelian Yang Mills gauge fields:

Show, for infinitesimal variations of nonabelian Yang Mills gauge fields: Problem. Palatini Identity Show, for infinitesimal variations of nonabelian Yang Mills gauge fields: δf i µν = D µ δa i ν D ν δa i µ..) Begin by considering the following form of the field strength tensor

More information

Aula/Lecture 18 Non-Abelian Gauge theories The Higgs Mechanism The Standard Model: Part I

Aula/Lecture 18 Non-Abelian Gauge theories The Higgs Mechanism The Standard Model: Part I Física de Partículas Aula/Lecture 18 Non-Abelian Gauge theories The The : Part I Jorge C. Romão Instituto Superior Técnico, Departamento de Física & CFTP A. Rovisco Pais 1, 1049-001 Lisboa, Portugal 2016

More information

PHY 396 K. Solutions for problem set #6. Problem 1(a): Starting with eq. (3) proved in class and applying the Leibniz rule, we obtain

PHY 396 K. Solutions for problem set #6. Problem 1(a): Starting with eq. (3) proved in class and applying the Leibniz rule, we obtain PHY 396 K. Solutions for problem set #6. Problem 1(a): Starting with eq. (3) proved in class and applying the Leibniz rule, we obtain γ κ γ λ, S µν] = γ κ γ λ, S µν] + γ κ, S µν] γ λ = γ κ( ig λµ γ ν ig

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In the h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass

More information

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Burgess-Moore, Chapter Weiberg, Chapter 5 Donoghue, Golowich, Holstein Chapter 1, 1 Free field Lagrangians

More information

Non-Abelian Gauge Invariance Notes Physics 523, Quantum Field Theory II Presented Monday, 5 th April 2004

Non-Abelian Gauge Invariance Notes Physics 523, Quantum Field Theory II Presented Monday, 5 th April 2004 Non-Abelian Gauge Invariance Notes Physics 53 Quantum Field Theory II Presented Monday 5 th April 004 Jacob Bourjaily James Degenhardt & Matthew Ong Introduction and Motivation Until now all the theories

More information

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00 MSci EXAMINATION PHY-415 (MSci 4242 Relativistic Waves and Quantum Fields Time Allowed: 2 hours 30 minutes Date: XX th May, 2010 Time: 14:30-17:00 Instructions: Answer THREE QUESTIONS only. Each question

More information

d 2 Area i K i0 ν 0 (S.2) when the integral is taken over the whole space, hence the second eq. (1.12).

d 2 Area i K i0 ν 0 (S.2) when the integral is taken over the whole space, hence the second eq. (1.12). PHY 396 K. Solutions for prolem set #. Prolem 1a: Let T µν = λ K λµ ν. Regardless of the specific form of the K λµ ν φ, φ tensor, its antisymmetry with respect to its first two indices K λµ ν K µλ ν implies

More information

Functional determinants

Functional determinants Functional determinants based on S-53 We are going to discuss situations where a functional determinant depends on some other field and so it cannot be absorbed into the overall normalization of the path

More information

Lattice Gauge Theory and the Maxwell-Klein-Gordon equations

Lattice Gauge Theory and the Maxwell-Klein-Gordon equations Lattice Gauge Theory and the Maxwell-Klein-Gordon equations Tore G. Halvorsen Centre of Mathematics for Applications, UiO 19. February 2008 Abstract In this talk I will present a discretization of the

More information

Physics 582, Problem Set 1 Solutions

Physics 582, Problem Set 1 Solutions Physics 582, Problem Set 1 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 1. THE DIRAC EQUATION [20 PTS] Consider a four-component fermion Ψ(x) in 3+1D, L[ Ψ, Ψ] = Ψ(i/ m)ψ, (1.1) where we use

More information

1 Path Integral Quantization of Gauge Theory

1 Path Integral Quantization of Gauge Theory Quatization of gauge theory Ling fong Li; 1 Path Integral Quantization of Gauge Theory Canonical quantization of gauge theory is diffi cult because the gauge invariance implies that not all components

More information

Chapter 13. Local Symmetry

Chapter 13. Local Symmetry Chapter 13 Local Symmetry So far, we have discussed symmetries of the quantum mechanical states. A state is a global (non-local) object describing an amplitude everywhere in space. In relativistic physics,

More information

QFT 3 : Problem Set 1

QFT 3 : Problem Set 1 QFT 3 : Problem Set.) Peskin & Schroeder 5. (a.) The basis for the fundamental representation of SU(N) is formed by N N traceless Hermitian matrices. The number of such matrices is = N. For SU(3) this

More information

Lecture 6 The Super-Higgs Mechanism

Lecture 6 The Super-Higgs Mechanism Lecture 6 The Super-Higgs Mechanism Introduction: moduli space. Outline Explicit computation of moduli space for SUSY QCD with F < N and F N. The Higgs mechanism. The super-higgs mechanism. Reading: Terning

More information

Lecture 7: N = 2 supersymmetric gauge theory

Lecture 7: N = 2 supersymmetric gauge theory Lecture 7: N = 2 supersymmetric gauge theory José D. Edelstein University of Santiago de Compostela SUPERSYMMETRY Santiago de Compostela, November 22, 2012 José D. Edelstein (USC) Lecture 7: N = 2 supersymmetric

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 998971 Allowed tools: mathematical tables 1. Spin zero. Consider a real, scalar field

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model Lecture 8 September 21, 2017 Today General plan for construction of Standard Model theory Properties of SU(n) transformations (review) Choice of gauge symmetries for the Standard Model Use of Lagrangian

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables 1. Procca equation. 5 points A massive spin-1

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables Some formulas can be found on p.2. 1. Concepts.

More information

REVIEW. Quantum electrodynamics (QED) Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field:

REVIEW. Quantum electrodynamics (QED) Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field: Quantum electrodynamics (QED) based on S-58 Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field: Noether current of the lagrangian for a free Dirac

More information

Gauge Theory on a Lattice

Gauge Theory on a Lattice Gauge Theory on a Lattice One approach to field theory, in particular to aspects that are not well treated in perturbation theory, is to approximate the field defined on a spacetime continuum with a lattice

More information

Symmetries, Groups, and Conservation Laws

Symmetries, Groups, and Conservation Laws Chapter Symmetries, Groups, and Conservation Laws The dynamical properties and interactions of a system of particles and fields are derived from the principle of least action, where the action is a 4-dimensional

More information

Lectures April 29, May

Lectures April 29, May Lectures 25-26 April 29, May 4 2010 Electromagnetism controls most of physics from the atomic to the planetary scale, we have spent nearly a year exploring the concrete consequences of Maxwell s equations

More information

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple Symmetry Groups Symmetry plays an essential role in particle theory. If a theory is invariant under transformations by a symmetry group one obtains a conservation law and quantum numbers. For example,

More information

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L PHY 396 K. Solutions for problem set #. Problem a: As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as D µ D µ φ φ = 0. S. In particularly,

More information

Lorentz Invariance and Origin of Symmetries

Lorentz Invariance and Origin of Symmetries GUTPA/01/04/02 Lorentz Invariance and Origin of Symmetries J.L. Chkareuli Institute of Physics, Georgian Academy of Sciences, 380077 Tbilisi, Georgia C.D. Froggatt Department of Physics and Astronomy Glasgow

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Field Theory and Standard Model

Field Theory and Standard Model Field Theory and Standard Model W. HOLLIK CERN SCHOOL OF PHYSICS BAUTZEN, 15 26 JUNE 2009 p.1 Why Quantum Field Theory? (i) Fields: space time aspects field = quantity φ( x, t), defined for all points

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass rather

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Introduction to gauge theory

Introduction to gauge theory Introduction to gauge theory 2008 High energy lecture 1 장상현 연세대학교 September 24, 2008 장상현 ( 연세대학교 ) Introduction to gauge theory September 24, 2008 1 / 72 Table of Contents 1 Introduction 2 Dirac equation

More information

Problem 1(a): In N N matrix form, the local SU(N) symmetry acts on the adjoint matter field Φ(x) and the gauge field A µ (x) according to

Problem 1(a): In N N matrix form, the local SU(N) symmetry acts on the adjoint matter field Φ(x) and the gauge field A µ (x) according to PHY 396 K. Solutions for problem set #11. Problem 1: In N N mtrix form, the locl SUN symmetry cts on the djoint mtter field Φx nd the guge field A µ x ccording to Φ x = UxΦxU x, A µ x = UxA µxu x + i µ

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Parity P : x x, t t, (1.116a) Time reversal T : x x, t t. (1.116b)

Parity P : x x, t t, (1.116a) Time reversal T : x x, t t. (1.116b) 4 Version of February 4, 005 CHAPTER. DIRAC EQUATION (0, 0) is a scalar. (/, 0) is a left-handed spinor. (0, /) is a right-handed spinor. (/, /) is a vector. Before discussing spinors in detail, let us

More information

x 3 x 1 ix 2 x 1 + ix 2 x 3

x 3 x 1 ix 2 x 1 + ix 2 x 3 Peeter Joot peeterjoot@pm.me PHY2403H Quantum Field Theory. Lecture 19: Pauli matrices, Weyl spinors, SL2,c, Weyl action, Weyl equation, Dirac matrix, Dirac action, Dirac Lagrangian. Taught by Prof. Erich

More information

Towards particle physics models from fuzzy extra dimensions

Towards particle physics models from fuzzy extra dimensions Towards particle physics models from fuzzy extra dimensions Athanasios Chatzistavrakidis National Technical University and NCSR Demokritos, Athens Joint work with H.Steinacker and G.Zoupanos Particles

More information

Outline. Basic Principles. Extended Lagrange and Hamilton Formalism for Point Mechanics and Covariant Hamilton Field Theory

Outline. Basic Principles. Extended Lagrange and Hamilton Formalism for Point Mechanics and Covariant Hamilton Field Theory Outline Outline Covariant Hamiltonian Formulation of Gauge Theories J. 1 GSI Struckmeier1,, D. Vasak3, J. Kirsch3, H. 1 Basics:,, General Relativity 3 Global symmetry of a dynamical system Local symmetry

More information

An extended standard model and its Higgs geometry from the matrix model

An extended standard model and its Higgs geometry from the matrix model An extended standard model and its Higgs geometry from the matrix model Jochen Zahn Universität Wien based on arxiv:1401.2020 joint work with Harold Steinacker Bayrischzell, May 2014 Motivation The IKKT

More information

Plan for the rest of the semester. ψ a

Plan for the rest of the semester. ψ a Plan for the rest of the semester ϕ ψ a ϕ(x) e iα(x) ϕ(x) 167 Representations of Lorentz Group based on S-33 We defined a unitary operator that implemented a Lorentz transformation on a scalar field: and

More information

Hamilton-Jacobi Formulation of A Non-Abelian Yang-Mills Theories

Hamilton-Jacobi Formulation of A Non-Abelian Yang-Mills Theories EJTP 5, No. 17 (2008) 65 72 Electronic Journal of Theoretical Physics Hamilton-Jacobi Formulation of A Non-Abelian Yang-Mills Theories W. I. Eshraim and N. I. Farahat Department of Physics Islamic University

More information

On the QCD of a Massive Vector Field in the Adjoint Representation

On the QCD of a Massive Vector Field in the Adjoint Representation On the QCD of a Massive Vector Field in the Adjoint Representation Alfonso R. Zerwekh UTFSM December 9, 2012 Outlook 1 Motivation 2 A Gauge Theory for a Massive Vector Field Local Symmetry 3 Quantum Theory:

More information

m f f unchanged under the field redefinition (1), the complex mass matrix m should transform into

m f f unchanged under the field redefinition (1), the complex mass matrix m should transform into PHY 396 T: SUSY Solutions or problem set #8. Problem (a): To keep the net quark mass term L QCD L mass = ψ α c m ψ c α + hermitian conjugate (S.) unchanged under the ield redeinition (), the complex mass

More information

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz Michael Dine Department of Physics University of California, Santa Cruz October 2013 Lorentz Transformation Properties of the Dirac Field First, rotations. In ordinary quantum mechanics, ψ σ i ψ (1) is

More information

THE STANDARD MODEL AND THE GENERALIZED COVARIANT DERIVATIVE

THE STANDARD MODEL AND THE GENERALIZED COVARIANT DERIVATIVE THE STANDAD MODEL AND THE GENEALIZED COVAIANT DEIVATIVE arxiv:hep-ph/9907480v Jul 999 M. Chaves and H. Morales Escuela de Física, Universidad de Costa ica San José, Costa ica E-mails: mchaves@cariari.ucr.ac.cr,

More information

QED and the Standard Model Autumn 2014

QED and the Standard Model Autumn 2014 QED and the Standard Model Autumn 2014 Joel Goldstein University of Bristol Joel.Goldstein@bristol.ac.uk These lectures are designed to give an introduction to the gauge theories of the standard model

More information

Massive Gauge Field Theory without Higgs Mechanism

Massive Gauge Field Theory without Higgs Mechanism Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 2, 965 972 Massive Gauge Field heory without Higgs Mechanism Junchen SU Center for heoretical Physics, Department of Physics,

More information

Fundamental Physics: Quantum Field Theory

Fundamental Physics: Quantum Field Theory Mobolaji Williams (mwilliams@physics.harvard.edu x) First Version: June 1, 216 Fundamental Physics: Quantum Field Theory What is the topic? Quantum field theory refers to the quantum theory of fields in

More information

Symmetries, Fields and Particles 2013 Solutions

Symmetries, Fields and Particles 2013 Solutions Symmetries, Fields and Particles 03 Solutions Yichen Shi July 9, 04. a Define the groups SU and SO3, and find their Lie algebras. Show that these Lie algebras, including their bracket structure, are isomorphic.

More information

Symmetries, Fields and Particles. Examples 1.

Symmetries, Fields and Particles. Examples 1. Symmetries, Fields and Particles. Examples 1. 1. O(n) consists of n n real matrices M satisfying M T M = I. Check that O(n) is a group. U(n) consists of n n complex matrices U satisfying U U = I. Check

More information

Higgs-Field Gravity. H. Dehnen and H. Frommert. Fakultät für Physik Universität Konstanz 7750 Konstanz Postfach West Germany

Higgs-Field Gravity. H. Dehnen and H. Frommert. Fakultät für Physik Universität Konstanz 7750 Konstanz Postfach West Germany Higgs-Field Gravity. H. Dehnen and H. Frommert Fakultät für Physik Universität Konstanz 7750 Konstanz Postfach 55 60 West Germany Summary It is shown that any excited Higgs-field mediates an attractive

More information

Quantum Electrodynamics and the Higgs Mechanism

Quantum Electrodynamics and the Higgs Mechanism Quantum Electrodynamics and the Higgs Mechanism Jakob Jark Jørgensen 4. januar 009 QED and the Higgs Mechanism INDHOLD Indhold 1 Introduction Quantum Electrodynamics 3.1 Obtaining a Gauge Theory..........................

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

HIGHER SPIN PROBLEM IN FIELD THEORY

HIGHER SPIN PROBLEM IN FIELD THEORY HIGHER SPIN PROBLEM IN FIELD THEORY I.L. Buchbinder Tomsk I.L. Buchbinder (Tomsk) HIGHER SPIN PROBLEM IN FIELD THEORY Wroclaw, April, 2011 1 / 27 Aims Brief non-expert non-technical review of some old

More information

Vacuum Energy and Effective Potentials

Vacuum Energy and Effective Potentials Vacuum Energy and Effective Potentials Quantum field theories have badly divergent vacuum energies. In perturbation theory, the leading term is the net zero-point energy E zeropoint = particle species

More information

UNIFIED FIELD THEORY AND PRINCIPLE OF REPRESENTATION INVARIANCE

UNIFIED FIELD THEORY AND PRINCIPLE OF REPRESENTATION INVARIANCE UNIFIED FIELD THEORY AND PRINCIPLE OF REPRESENTATION INVARIANCE TIAN MA AND SHOUHONG WANG Abstract. This is part of a research program to establish a unified field model for interactions in nature. The

More information

Lecture 5: Sept. 19, 2013 First Applications of Noether s Theorem. 1 Translation Invariance. Last Latexed: September 18, 2013 at 14:24 1

Lecture 5: Sept. 19, 2013 First Applications of Noether s Theorem. 1 Translation Invariance. Last Latexed: September 18, 2013 at 14:24 1 Last Latexed: September 18, 2013 at 14:24 1 Lecture 5: Sept. 19, 2013 First Applications of Noether s Theorem Copyright c 2005 by Joel A. Shapiro Now it is time to use the very powerful though abstract

More information

PAPER 51 ADVANCED QUANTUM FIELD THEORY

PAPER 51 ADVANCED QUANTUM FIELD THEORY MATHEMATICAL TRIPOS Part III Tuesday 5 June 2007 9.00 to 2.00 PAPER 5 ADVANCED QUANTUM FIELD THEORY Attempt THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

Magnetic Charge as a Hidden Gauge Symmetry. Abstract

Magnetic Charge as a Hidden Gauge Symmetry. Abstract Magnetic Charge as a Hidden Gauge Symmetry D. Singleton Department of Physics, University of Virginia, Charlottesville, VA 901 (January 14, 1997) Abstract A theory containing both electric and magnetic

More information

Spinor Formulation of Relativistic Quantum Mechanics

Spinor Formulation of Relativistic Quantum Mechanics Chapter Spinor Formulation of Relativistic Quantum Mechanics. The Lorentz Transformation of the Dirac Bispinor We will provide in the following a new formulation of the Dirac equation in the chiral representation

More information

Gauge Symmetry in QED

Gauge Symmetry in QED Gauge Symmetry in QED The Lagrangian density for the free e.m. field is L em = 1 4 F µνf µν where F µν is the field strength tensor F µν = µ A ν ν A µ = Thus L em = 1 (E B ) 0 E x E y E z E x 0 B z B y

More information

Lie Algebra and Representation of SU(4)

Lie Algebra and Representation of SU(4) EJTP, No. 8 9 6 Electronic Journal of Theoretical Physics Lie Algebra and Representation of SU() Mahmoud A. A. Sbaih, Moeen KH. Srour, M. S. Hamada and H. M. Fayad Department of Physics, Al Aqsa University,

More information

L = 1 2 µφ µ φ m2 2 φ2 λ 0

L = 1 2 µφ µ φ m2 2 φ2 λ 0 Physics 6 Homework solutions Renormalization Consider scalar φ 4 theory, with one real scalar field and Lagrangian L = µφ µ φ m φ λ 4 φ4. () We have seen many times that the lowest-order matrix element

More information

YANG-MILLS THEORY. This theory will be invariant under the following U(1) phase transformations

YANG-MILLS THEORY. This theory will be invariant under the following U(1) phase transformations YANG-MILLS THEORY TOMAS HÄLLGREN Abstract. We give a short introduction to classical Yang-Mills theory. Starting from Abelian symmetries we motivate the transformation laws, the covariant derivative and

More information

THE STANDARD MODEL. Thomas Teubner. Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, U.K.

THE STANDARD MODEL. Thomas Teubner. Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, U.K. THE STANDARD MODEL Thomas Teubner Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, U.K. Lectures presented at the School for Young High Energy Physicists, Somerville College,

More information

Gauge Theory on a Lattice

Gauge Theory on a Lattice Gauge Theory on a Lattice One approach to field theory, in particular to aspects that are not well treated in perturbation theory, is to approximate the field defined on a spacetime continuum with a lattice

More information

Supersymmetric field theories

Supersymmetric field theories Supersymmetric field theories Antoine Van Proeyen KU Leuven Summer school on Differential Geometry and Supersymmetry, September 10-14, 2012, Hamburg Based on some chapters of the book Supergravity Wess,

More information

Lecture 12 Holomorphy: Gauge Theory

Lecture 12 Holomorphy: Gauge Theory Lecture 12 Holomorphy: Gauge Theory Outline SUSY Yang-Mills theory as a chiral theory: the holomorphic coupling and the holomorphic scale. Nonrenormalization theorem for SUSY YM: the gauge coupling runs

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

Gauge Invariance. 1.1 Introduction

Gauge Invariance. 1.1 Introduction 1 1 Gauge Invariance 1.1 Introduction Gauge field theories have revolutionized our understanding of elementary particle interactions during the second half of the twentieth century. There is now in place

More information

arxiv:hep-ph/ v3 27 Mar 2007

arxiv:hep-ph/ v3 27 Mar 2007 FIUN-GCP-07/3 W-gauge boson condensation via background currents arxiv:hep-ph/07036v3 7 Mar 007 C. A. Peña and C. J. Quimbay Departamento de Física, Universidad Nacional de Colombia Ciudad Universitaria,

More information

THE STANDARD MODEL. II. Lagrangians 7 A. Scalars 9 B. Fermions 10 C. Fermions and scalars 10

THE STANDARD MODEL. II. Lagrangians 7 A. Scalars 9 B. Fermions 10 C. Fermions and scalars 10 THE STANDARD MODEL Contents I. Introduction to the Standard Model 2 A. Interactions and particles 2 B. Problems of the Standard Model 4 C. The Scale of New Physics 5 II. Lagrangians 7 A. Scalars 9 B. Fermions

More information

arxiv:hep-th/ v2 13 Sep 2001

arxiv:hep-th/ v2 13 Sep 2001 Compactification of gauge theories and the gauge invariance of massive modes. Amorim a and J. Barcelos-Neto b Instituto de Física Universidade Federal do io de Janeiro J 21945-97 - Caixa Postal 68528 -

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

Electroweak physics and the LHC an introduction to the Standard Model

Electroweak physics and the LHC an introduction to the Standard Model Electroweak physics and the LHC an introduction to the Standard Model Paolo Gambino INFN Torino LHC School Martignano 12-18 June 2006 Outline Prologue on weak interactions Express review of gauge theories

More information

SUSY QCD. Consider a SUSY SU(N) with F flavors of quarks and squarks

SUSY QCD. Consider a SUSY SU(N) with F flavors of quarks and squarks SUSY gauge theories SUSY QCD Consider a SUSY SU(N) with F flavors of quarks and squarks Q i = (φ i, Q i, F i ), i = 1,..., F, where φ is the squark and Q is the quark. Q i = (φ i, Q i, F i ), in the antifundamental

More information

A Higgs Mechanism for Gravity

A Higgs Mechanism for Gravity A Higgs Mechanism for Gravity C.S.P. Wever January 19, 2009 Master s Thesis Institute for Theoretical Physics Utrecht University, The Netherlands Supervisor: Prof. dr. Gerard t Hooft Abstract We start

More information

arxiv:hep-th/ v1 21 Mar 2000

arxiv:hep-th/ v1 21 Mar 2000 arxiv:hep-th/0003189v1 21 Mar 2000 - X-Sun-Data-Type: default X-Sun-Data-Description: default X-Sun-Data-Name: qgroups1 Sun-Charset: us-ascii X-Sun-Content-Lines: 527 UCLA/99/TEP/47 February 2000 QUANTUM

More information

Symmetries, Fields and Particles 2013 Solutions

Symmetries, Fields and Particles 2013 Solutions Symmetries, Fields and Particles 013 Solutions Yichen Shi Easter 014 1. (a) Define the groups SU() and SO(3), and find their Lie algebras. Show that these Lie algebras, including their bracket structure,

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

Chapter 2 The Higgs Boson in the Standard Model of Particle Physics

Chapter 2 The Higgs Boson in the Standard Model of Particle Physics Chapter The Higgs Boson in the Standard Model of Particle Physics.1 The Principle of Gauge Symmetries The principle of gauge symmetries can be motivated by the Lagrangian density of the free Dirac field,

More information

Intercollegiate post-graduate course in High Energy Physics. Paper 1: The Standard Model

Intercollegiate post-graduate course in High Energy Physics. Paper 1: The Standard Model Brunel University Queen Mary, University of London Royal Holloway, University of London University College London Intercollegiate post-graduate course in High Energy Physics Paper 1: The Standard Model

More information

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS 1.1 PARTICLES AND FIELDS The two great structures of theoretical physics, the theory of special relativity and quantum mechanics, have been combined

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Fermi Fields without Tears

Fermi Fields without Tears Fermi Fields without Tears Peter Cahill and Kevin Cahill cahill@unm.edu http://dna.phys.unm.edu/ Abstract One can construct Majorana and Dirac fields from fields that are only slightly more complicated

More information