Lattice Gauge Theory and the MaxwellKleinGordon equations


 Emma Hampton
 1 years ago
 Views:
Transcription
1 Lattice Gauge Theory and the MaxwellKleinGordon equations Tore G. Halvorsen Centre of Mathematics for Applications, UiO 19. February 2008
2 Abstract In this talk I will present a discretization of the MaxwellKleinGordon equations, motivated by Lattice Gauge Theory, which preserves the local gauge invariance. Due to this symmetry, the electric charge of the system is conserved, which is not the case when using a standard leapfrog discretization. Lastly, some numerical results will be presented.
3 Outline
4 The spacetime domain under consideration is Ω = R 3 R, (1) with coordinates x = (x,t) Ω, and Minkowski metric η µν =diag(1,1,1, 1) The unknowns are A complex scalar field x φ(x) C A real gauge potential x A µ (x) R, µ = 0,x,y,z.
5 We also introduce Field strenght F µν (x) = µ A ν (x) ν A µ (x), the covariant derivative µ := x µ (2) the electric and magnetic fields D µ = µ ia µ, (3) E i (x) = F i0 (x) B i (x) = 1 2 ε ijkf jk (x). (4)
6 The MKG equations are the EulerLagrange equations of the following action S[A,φ] = dx( 1 4 F µνf µν + (D µ φ)(d µ φ) + m 2 φ 2 ), (5) Ω and the Bianchi identity for the field strength ( Dµ D µ m 2) φ = 0 (6) ν F µν + J µ = 0, µ λ F µν + µ F νλ + ν F λµ = 0 (7) where J µ = i(φ D µ φ φd µ φ ).
7 Equation 7 can further be divided into evolution equations E t = curlb + J and constraint equations B t = curle, (8) dive + J 0 = 0, divb = 0. (9) These are the Maxwell s equations with source.
8 Invariance under local U(1) transformations φ(x) φ(x)e iλ(x) A µ (x) A µ (x) + µ λ(x), λ(x) R (10) The gauge symmetry can be viewed as an analogue to the equivalence principle in General Relativity. Noether s theorem implies that the constraint, is conserved 0 (dive + J 0 ) = 0. (11)
9 In the spirit of LGT, one can formulate a discrete gauge invariant theory for the MKG case. This prosess can be divided into three steps:
10 In the spirit of LGT, one can formulate a discrete gauge invariant theory for the MKG case. This prosess can be divided into three steps: Introduce a spacetime lattice, L, with lattice points x = (x,t) and lattice spacing a µ
11 In the spirit of LGT, one can formulate a discrete gauge invariant theory for the MKG case. This prosess can be divided into three steps: Introduce a spacetime lattice, L, with lattice points x = (x,t) and lattice spacing a µ Discretize the KleinGordon part of the action on the lattice as S[φ] = ((D µ φ)(d µ φ) + m 2 φ 2 ) h(a) L (D µ φ)(d µ φ) + m 2 φ 2 := S KG [φ,a] D µ φ(x) 1 ( ) φ(x + a µ ) e iaµaµ(x+ 1 2 aµ) φ(x), h(a) = a t ax 3 a i µ
12 e iaµaµ(x+ 1 2 aµ) is called a link variable and is introduced to compensate for the difference in phase transformations from one point to the next. If e iaµaµ(x+ 1 2 aµ) 1 + ia µ A µ (x a µ) derivatives are approximated by forward Euler and the coupling between A µ and φ is minimal.
13 e iaµaµ(x+ 1 2 aµ) is called a link variable and is introduced to compensate for the difference in phase transformations from one point to the next. If e iaµaµ(x+ 1 2 aµ) 1 + ia µ A µ (x a µ) derivatives are approximated by forward Euler and the coupling between A µ and φ is minimal. Add a 2. order Yeetype action for the Maxwell part S Yee [A] = h(a) ( ) 1 4 F µνf µν, (12) L
14 F µν (x) = 1 a µ (A ν (x a ν + a µ ) A ν (x a ν)) 1 a ν (A µ (x a µ + a ν ) A µ (x a µ)) The discrete action we are using is hence S MKG [φ,a] = S KG [φ,a] + S Yee [A], (13) and we see that it is locally gauge invariant in the sence φ(x) φ(x)e iλ(x) A µ (x a µ) A µ (x a µ) + 1 a µ (λ(x + a µ ) λ(x)). (14)
15 This action gives the following discrete EL equations φ : 1 a 2 t 1 a 2 i ( ) φ(x + a t )e iata 0(x+ 1 2 at) + φ(x a t )e iata 0(x 1 2 at) 2φ(x) ( ) φ(x + a i )e ia ia i (x+ 1 2 ai) + φ(x a i )e ia ia i (x 1 2 ai) 2φ(x) + m 2 φ(x) = 0, (15)
16 A 0 : i 1 i F 0i (x)) + 1 ( i φ(x + a t )φ (x)e iata 0(x+ 1 2 at) a i a t φ(x)φ (x + a t )e iata 0(x+ 1 2 at)) = 0 (16) This equation represents the constraint equation dive + J 0 = 0 in the discrete case. Again it follows from Noether s theorem that this quantity is conserved
17 A i : 1 t F 0i (x) 1 j F ji (x)+ a t a j j ( 1 i φ(x + a i )φ (x)e ia ia i (x+ 1 2 ai) a i φ(x)φ (x + a i )e ia ia i (x+ 1 2 a i) ) = 0, (17) These equations together with the discrete Bianchi identity for the field strenght comprise the MKG equations in the discrete case.
18 Above described scheme, LeapFrog scheme Implemented on [0,1] 3 [0,1], N i = 30 with Periodic Boundary Conditions, N t = 100 Initialized as plane waves dive + J 0 L 2 and dive L 2
19 Figure: dive + J 0 L 2 and dive L 2 as a function of time 0.25 div E L 2 vs. div E + J 0 L div E L 2 vs. div E + J 0 L 2 div E+J 0 L div E L div E + J 0 L 2 div E L t t (a) Standard scheme (b) LGT scheme
20 Conclusion Gauge invariance conserved charge Discretization through link variables. General procedure, applicable to other equations with gauge symmetry
21 Conclusion Gauge invariance conserved charge Discretization through link variables. General procedure, applicable to other equations with gauge symmetry Convergence Formulation on a general Riemannian manifold Expand the scheme to the more general YangMillsHiggs equations
22 References Heinz J. Rothe; Lattice Gauge Theories: An Introduction; World Scientific Lecture Notes in Physics  Vol.74; 2005 M. Creutz; Quarks, gluons and lattices; Cambridge Monographs On Mathematical Physics; 1983 Kenneth G. Wilson, Confinement of quarks, Phys. Rev. D 10(8) 1974
A simplicial gauge theory on spacetime
A simplicial gauge theory on spacetime Tore G. Halvorsen, NTNU, Trondheim Norway. Joint work with Snorre H. Christiansen, UiO. 1 Abstract In this talk I will introduce the variational form of the SU(N)
More informationProblem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L
PHY 396 K. Solutions for problem set #. Problem 1a: As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as D µ D µ φ φ = 0. S.1 In particularly,
More informationPHY 396 K. Problem set #11, the last set this semester! Due December 1, 2016.
PHY 396 K. Problem set #11, the last set this semester! Due December 1, 2016. In my notations, the A µ and their components A a µ are the canonically normalized vector fields, while the A µ = ga µ and
More informationOutline. Basic Principles. Extended Lagrange and Hamilton Formalism for Point Mechanics and Covariant Hamilton Field Theory
Outline Outline Covariant Hamiltonian Formulation of Gauge Theories J. 1 GSI Struckmeier1,, D. Vasak3, J. Kirsch3, H. 1 Basics:,, General Relativity 3 Global symmetry of a dynamical system Local symmetry
More informationd 2 Area i K i0 ν 0 (S.2) when the integral is taken over the whole space, hence the second eq. (1.12).
PHY 396 K. Solutions for prolem set #. Prolem 1a: Let T µν = λ K λµ ν. Regardless of the specific form of the K λµ ν φ, φ tensor, its antisymmetry with respect to its first two indices K λµ ν K µλ ν implies
More informationQuantum Field Theory Notes. Ryan D. Reece
Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation
More informationIntroduction to gauge theory
Introduction to gauge theory 2008 High energy lecture 1 장상현 연세대학교 September 24, 2008 장상현 ( 연세대학교 ) Introduction to gauge theory September 24, 2008 1 / 72 Table of Contents 1 Introduction 2 Dirac equation
More informationQuantum Field Theory II
Quantum Field Theory II T. Nguyen PHY 391 Independent Study Term Paper Prof. S.G. Rajeev University of Rochester April 2, 218 1 Introduction The purpose of this independent study is to familiarize ourselves
More information752 Final. April 16, Fadeev Popov Ghosts and NonAbelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian
752 Final April 16, 2010 Tim Wendler BYU Physics and Astronomy Fadeev Popov Ghosts and NonAbelian Gauge Fields The standard model Lagrangian L SM = L Y M + L W D + L Y u + L H The rst term, the Yang Mills
More informationPROBLEM SET 1 SOLUTIONS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.323: Relativistic Quantum Field Theory I Prof.Alan Guth February 29, 2008 PROBLEM SET 1 SOLUTIONS Problem 1: The energymomentum tensor for sourcefree
More informationÜbungen zur Elektrodynamik (T3)
Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Ivo Sachs SoSe 08 Übungen zur Elektrodynamik (T3) Lösungen zum Übungsblatt 7 Lorentz Force Calculate dx µ and ds explicitly in
More informationRenormalization according to Wilson
Renormalization according to Wilson Suppose we have integrated out fields with momenta > Λ. We have renormalized fields (at the scale Λ) and g(λ). Now we want to integrate out also fields with momenta
More informationParticle Physics I Lecture Exam Question Sheet
Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?
More informationAs usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14.
As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14 Majorana spinors March 15, 2012 So far, we have only considered massless, twocomponent
More informationLectures April 29, May
Lectures 2526 April 29, May 4 2010 Electromagnetism controls most of physics from the atomic to the planetary scale, we have spent nearly a year exploring the concrete consequences of Maxwell s equations
More informationQCD on the lattice  an introduction
QCD on the lattice  an introduction Mike Peardon School of Mathematics, Trinity College Dublin Currently on sabbatical leave at JLab HUGS 2008  Jefferson Lab, June 3, 2008 Mike Peardon (TCD) QCD on the
More informationNTNU Trondheim, Institutt for fysikk
NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables 1. Procca equation. 5 points A massive spin1
More informationNew Fundamental Wave Equation on Curved SpaceTime and its Cosmological Applications
New Fundamental Wave Equation on Curved SpaceTime and its Cosmological Applications Z.E. Musielak, J.L. Fry and T. Chang Department of Physics University of Texas at Arlington Flat SpaceTime with Minkowski
More informationJoint Undergraduate Lecture Tour Higgs Physics and the Mystery of Mass. Heather Logan
1 CAPCASCA Joint Undergraduate Lecture Tour 2009 Heather Logan With thanks to St. Mary s U., Acadia U., St. Francis Xavier U., Mount Allison U., & U. de Moncton 2 The Large Hadron Collider (LHC) is a
More informationProblem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L
PHY 396 K. Solutions for problem set #. Problem a: As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as D µ D µ φ φ = 0. S. In particularly,
More informationMSci EXAMINATION. Date: XX th May, Time: 14:3017:00
MSci EXAMINATION PHY415 (MSci 4242 Relativistic Waves and Quantum Fields Time Allowed: 2 hours 30 minutes Date: XX th May, 2010 Time: 14:3017:00 Instructions: Answer THREE QUESTIONS only. Each question
More informationNTNU Trondheim, Institutt for fysikk
NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 998971 Allowed tools: mathematical tables 1. Spin zero. Consider a real, scalar field
More informationetc., etc. Consequently, the Euler Lagrange equations for the Φ and Φ fields may be written in a manifestly covariant form as L Φ = m 2 Φ, (S.
PHY 396 K. Solutions for problem set #3. Problem 1a: Let s start with the scalar fields Φx and Φ x. Similar to the EM covariant derivatives, the nonabelian covariant derivatives may be integrated by parts
More informationarxiv:mathph/ v1 10 Oct 2005
DISCRETE MODELS O THE SELDUAL AND ANTISELDUAL EQUATIONS arxiv:mathph/0510041v1 10 Oct 2005 Volodymyr Sushch Lviv, Uraine; Koszalin, Poland Abstract. In the case of a gaugeinvariant discrete model
More informationLattice Gauge Theory: A NonPerturbative Approach to QCD
Lattice Gauge Theory: A NonPerturbative Approach to QCD Michael Dine Department of Physics University of California, Santa Cruz May 2011 NonPerturbative Tools in Quantum Field Theory Limited: 1 Semiclassical
More informationSymmetry and Duality FACETS Nemani Suryanarayana, IMSc
Symmetry and Duality FACETS 2018 Nemani Suryanarayana, IMSc What are symmetries and why are they important? Most useful concept in Physics. Best theoretical models of natural Standard Model & GTR are based
More informationLagrangian. µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0. field tensor. ν =
Lagrangian L = 1 4 F µνf µν j µ A µ where F µν = µ A ν ν A µ = F νµ. F µν = ν = 0 1 2 3 µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0 field tensor. Note that F µν = g µρ F ρσ g σν
More informationAs usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16
As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16 Masses for Vectors: the Higgs mechanism April 6, 2012 The momentumspace propagator
More informationNew representation of the field equations looking for a new vacuum solution for QMAG
New representation of the field equations looking for a new vacuum solution for QMAG Elvis Baraković University of Tuzla Department of Mathematics 19. rujna 2012. Structure of presentation Structure of
More informationIntegration of non linear conservation laws?
Integration of non linear conservation laws? Frédéric Hélein, Institut Mathématique de Jussieu, Paris 7 Advances in Surface Theory, Leicester, June 13, 2013 Harmonic maps Let (M, g) be an oriented Riemannian
More informationPhysics 582, Problem Set 1 Solutions
Physics 582, Problem Set 1 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 1. THE DIRAC EQUATION [20 PTS] Consider a fourcomponent fermion Ψ(x) in 3+1D, L[ Ψ, Ψ] = Ψ(i/ m)ψ, (1.1) where we use
More information8.821 String Theory Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 1: Boundary of AdS;
More informationContinuity Equations and the EnergyMomentum Tensor
Physics 4 Lecture 8 Continuity Equations and the EnergyMomentum Tensor Lecture 8 Physics 4 Classical Mechanics II October 8th, 007 We have finished the definition of Lagrange density for a generic spacetime
More informationConservation Theorem of Einstein Cartan Evans Field Theory
28 Conservation Theorem of Einstein Cartan Evans Field Theory by Myron W. Evans, Alpha Institute for Advanced Study, Civil List Scientist. (emyrone@aol.com and www.aias.us) Abstract The conservation theorems
More informationUnified Field Equations Coupling Four Forces and Theory of Dark Matter and Dark Energy
Unified Field Equations Coupling Four Forces and Theory of Dark Matter and Dark Energy Tian Ma, Shouhong Wang Supported in part by NSF and ONR http://www.indiana.edu/ fluid 1 Outline I. Motivations II.
More informationTwo Fundamental Principles of Nature s Interactions
Two Fundamental Principles of Nature s Interactions Tian Ma, Shouhong Wang Supported in part by NSF, ONR and Chinese NSF http://www.indiana.edu/ fluid I. Gravity and Principle of Interaction Dynamics PID)
More informationUnified Field Equations Coupling Force Forces. Tian Ma, Shouhong Wang Supported in part by NSF and ONR
Unified Field Equations Coupling Force Forces Tian Ma, Shouhong Wang Supported in part by NSF and ONR http://www.indiana.edu/ fluid 1 Outline I. Motivations II. PID III. Unified Field Equations Coupling
More informationTowards particle physics models from fuzzy extra dimensions
Towards particle physics models from fuzzy extra dimensions Athanasios Chatzistavrakidis National Technical University and NCSR Demokritos, Athens Joint work with H.Steinacker and G.Zoupanos Particles
More informationElectrically and Magnetically Charged Solitons in Gauge Field Th
Electrically and Magnetically Charged Solitons in Gauge Field Theory Polytechnic Institute of New York University Talk at the conference Differential and Topological Problems in Modern Theoretical Physics,
More informationClassical Field Theory
Classical Field Theory Asaf Pe er 1 January 12, 2016 We begin by discussing various aspects of classical fields. We will cover only the bare minimum ground necessary before turning to the quantum theory,
More informationThe Conformal Algebra
The Conformal Algebra Dana Faiez June 14, 2017 Outline... Conformal Transformation/Generators 2D Conformal Algebra Global Conformal Algebra and Mobius Group Conformal Field Theory 2D Conformal Field Theory
More informationarxiv:hepth/ v2 13 Sep 2001
Compactification of gauge theories and the gauge invariance of massive modes. Amorim a and J. BarcelosNeto b Instituto de Física Universidade Federal do io de Janeiro J 2194597  Caixa Postal 68528 
More informationFinite Temperature Field Theory
Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermostatics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian
More informationA Brief Introduction to Relativistic Quantum Mechanics
A Brief Introduction to Relativistic Quantum Mechanics HsinChia Cheng, U.C. Davis 1 Introduction In Physics 215AB, you learned nonrelativistic quantum mechanics, e.g., Schrödinger equation, E = p2 2m
More informationg abφ b = g ab However, this is not true for a local, or spacetime dependant, transformations + g ab
YangMills theory Modern particle theories, such as the Standard model, are quantum Yang Mills theories. In a quantum field theory, spacetime fields with relativistic field equations are quantized and,
More informationLecturer: Bengt E W Nilsson
009 04 8 Lecturer: Bengt E W Nilsson Chapter 3: The closed quantised bosonic string. Generalised τ,σ gauges: n µ. For example n µ =,, 0,, 0).. X ±X ) =0. n x = α n p)τ n p)σ =π 0σ n P τ τ,σ )dσ σ 0, π]
More information...and the extradimensions quest
A brief introduction to the RandallSundrum Models...and the extradimensions quest Bruno BERTRAND Center for particle physics and phenomenology (CP3) CP3 Seminar : RandallSundrum models  Bruno BERTRAND
More informationLecturer: Bengt E W Nilsson
9 3 19 Lecturer: Bengt E W Nilsson Last time: Relativistic physics in any dimension. Lightcone coordinates, lightcone stuff. Extra dimensions compact extra dimensions (here we talked about fundamental
More informationTensors  Lecture 4. cos(β) sin(β) sin(β) cos(β) 0
1 Introduction Tensors  Lecture 4 The concept of a tensor is derived from considering the properties of a function under a transformation of the corrdinate system. As previously discussed, such transformations
More informationLecture 16 March 29, 2010
Lecture 16 March 29, 2010 We know Maxwell s equations the Lorentz force. Why more theory? Newton = = Hamiltonian = Quantum Mechanics Elegance! Beauty! Gauge Fields = NonAbelian Gauge Theory = Stard Model
More informationThe SU(2) quarkantiquark potential in the pseudoparticle approach
The SU(2) quarkantiquark potential in the pseudoparticle approach Marc Wagner mcwagner@theorie3.physik.unierlangen.de http://theorie3.physik.unierlangen.de/ mcwagner 3 th March 26 Outline PP = pseudoparticle
More informationScalar Fields and Gauge
Physics 411 Lecture 23 Scalar Fields and Gauge Lecture 23 Physics 411 Classical Mechanics II October 26th, 2007 We will discuss the use of multiple fields to expand our notion of symmetries and conservation.
More informationCosmic Strings and Topological Defects
Cosmic Strings and Topological Defects Jiawen Liu December 9, 2012 Abstract In this review article, we point out spontaneous symmetry breaking is closely related to the emergence of the topological defects.
More informationTHE QFT NOTES 5. Badis Ydri Department of Physics, Faculty of Sciences, Annaba University, Annaba, Algeria. December 9, 2011
THE QFT NOTES 5 Badis Ydri Department of Physics, Faculty of Sciences, Annaba University, Annaba, Algeria. December 9, 2011 Contents 1 The Electromagnetic Field 2 1.1 Covariant Formulation of Classical
More informationGravitation: Tensor Calculus
An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013
More informationThe Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten
Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local
More informationSolitons in the SU(3) FaddeevNiemi Model
Solitons in the SU(3) FaddeevNiemi Model Yuki Amari Tokyo University of Science amari.yuki.ph@gmail.com Based on arxiv:1805,10008 with PRD 97, 065012 (2018) In collaboration with Nobuyuki Sawado (TUS)
More informationA Lax Representation for the BornInfeld Equation
A Lax Representation for the BornInfeld Equation J. C. Brunelli Universidade Federal de Santa Catarina Departamento de Física CFM Campus Universitário Trindade C.P. 476, CEP 88040900 Florianópolis, SC
More informationQuantization of Scalar Field
Quantization of Scalar Field Wei Wang 2017.10.12 Wei Wang(SJTU) Lectures on QFT 2017.10.12 1 / 41 Contents 1 From classical theory to quantum theory 2 Quantization of real scalar field 3 Quantization of
More informationNote 1: Some Fundamental Mathematical Properties of the Tetrad.
Note 1: Some Fundamental Mathematical Properties of the Tetrad. As discussed by Carroll on page 88 of the 1997 notes to his book Spacetime and Geometry: an Introduction to General Relativity (AddisonWesley,
More informationOn the QCD of a Massive Vector Field in the Adjoint Representation
On the QCD of a Massive Vector Field in the Adjoint Representation Alfonso R. Zerwekh UTFSM December 9, 2012 Outlook 1 Motivation 2 A Gauge Theory for a Massive Vector Field Local Symmetry 3 Quantum Theory:
More informationGeneral Relativity (225A) Fall 2013 Assignment 2 Solutions
University of California at San Diego Department of Physics Prof. John McGreevy General Relativity 5A) Fall 13 Assignment Solutions Posted October 3, 13 Due Monday, October 15, 13 1. Special relativity
More informationThe adjoint potential in the pseudoparticle approach: string breaking and Casimir scaling
The adjoint potential in the pseudoparticle approach: string breaking and Casimir scaling Christian Szasz University of ErlangenNürnberg christian.szasz@theorie3.physik.unierlangen.de Marc Wagner Humboldt
More informationConnection Variables in General Relativity
Connection Variables in General Relativity Mauricio Bustamante Londoño Instituto de Matemáticas UNAM Morelia 28/06/2008 Mauricio Bustamante Londoño (UNAM) Connection Variables in General Relativity 28/06/2008
More informationConstruction of Field Theories
Physics 411 Lecture 24 Construction of Field Theories Lecture 24 Physics 411 Classical Mechanics II October 29th, 2007 We are beginning our final descent, and I ll take the opportunity to look at the freedom
More informationNonSUSY BSM: Lecture 1/2
NonSUSY BSM: Lecture 1/2 Generalities Benasque September 26, 2013 Mariano Quirós ICREA/IFAE Mariano Quirós (ICREA/IFAE) NonSUSY BSM: Lecture 1/2 1 / 31 Introduction Introduction There are a number of
More informationBrane Gravity from Bulk Vector Field
Brane Gravity from Bulk Vector Field Merab Gogberashvili Andronikashvili Institute of Physics, 6 Tamarashvili Str., Tbilisi 380077, Georgia Email: gogber@hotmail.com September 7, 00 Abstract It is shown
More informationRelation of the covariant and Lie derivatives and its application to Hydrodynamics
Relation of the covariant and Lie derivatives and its application to Hydrodynamics Yang Cao TU Darmstadt March 12, 2010 The Euler hydrodynamic equation on manifolds Let M denote a compact oriented Riemannian
More informationarxiv:quantph/ v5 1 Aug 2005
Constraints of the Dynamic Equations and Lagrangian required by Superposition of Field X. Sun a, Z. Yang b,c a Institute of High Energy Physics, Beijing 100039, China a Graduate University of the Chinese
More informationSpaceTime FiniteElement Exterior Calculus and Variational Discretizations of Gauge Field Theories
21st International Symposium on Mathematical Theory of Networks and Systems July 711, 2014. SpaceTime FiniteElement Exterior Calculus and Variational Discretizations of Gauge Field Theories Joe Salamon
More informationThe Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab
The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab Lecture I: Incarnations of Symmetry Noether s Theorem is as important to us now as the Pythagorean Theorem
More informationThe θ term. In particle physics and condensed matter physics. Anna Hallin. 601:SSP, Rutgers Anna Hallin The θ term 601:SSP, Rutgers / 18
The θ term In particle physics and condensed matter physics Anna Hallin 601:SSP, Rutgers 2017 Anna Hallin The θ term 601:SSP, Rutgers 2017 1 / 18 1 Preliminaries 2 The θ term in general 3 The θ term in
More informationVector Fields. It is standard to define F µν = µ ϕ ν ν ϕ µ, so that the action may be written compactly as
Vector Fields The most general Poincaréinvariant local quadratic action for a vector field with no more than first derivatives on the fields (ensuring that classical evolution is determined based on the
More informationAs usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12
As usual, these notes are intended for use by class participants only, and are not for circulation Week 6: Lectures, The Dirac equation and algebra March 5, 0 The Lagrange density for the Dirac equation
More informationt Hooft Loops and SDuality
t Hooft Loops and SDuality Jaume Gomis KITP, Dualities in Physics and Mathematics with T. Okuda and D. Trancanelli Motivation 1) Quantum Field Theory Provide the path integral definition of all operators
More informationarxiv: v1 [grqc] 12 Sep 2018
The gravity of lightwaves arxiv:1809.04309v1 [grqc] 1 Sep 018 J.W. van Holten Nikhef, Amsterdam and Leiden University Netherlands Abstract Light waves carry along their own gravitational field; for simple
More informationA New Regulariation of N = 4 Super YangMills Theory
A New Regulariation of N = 4 Super YangMills Theory Humboldt Universität zu Berlin Institut für Physik 10.07.2009 F. Alday, J. Henn, J. Plefka and T. Schuster, arxiv:0908.0684 Outline 1 Motivation Why
More informationThe Hamiltonian formulation of gauge theories
The Hamiltonian formulation of gauge theories I [p, q] = dt p i q i H(p, q) " # q i = @H @p i =[q i, H] ṗ i = @H =[p @q i i, H] 1. Symplectic geometry, HamiltonJacobi theory,... 2. The first (general)
More informationWeek 1, solution to exercise 2
Week 1, solution to exercise 2 I. THE ACTION FOR CLASSICAL ELECTRODYNAMICS A. Maxwell s equations in relativistic form Maxwell s equations in vacuum and in natural units (c = 1) are, E=ρ, B t E=j (inhomogeneous),
More informationLecture: Lorentz Invariant Dynamics
Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown
More informationElectroweak Theory & Neutrino Scattering
Electroweak Theory & 01.12.2005 Electroweak Theory & Contents GlashowWeinbergSalamModel Electroweak Theory & Contents GlashowWeinbergSalamModel Electroweak Theory & Contents GlashowWeinbergSalamModel
More informationIntercollegiate postgraduate course in High Energy Physics. Paper 1: The Standard Model
Brunel University Queen Mary, University of London Royal Holloway, University of London University College London Intercollegiate postgraduate course in High Energy Physics Paper 1: The Standard Model
More informationNTNU Trondheim, Institutt for fysikk
FY3464 Quantum Field Theory II Final exam 0..0 NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory II Contact: Kåre Olaussen, tel. 735 9365/4543770 Allowed tools: mathematical
More informationMass Components of Mesons from Lattice QCD
Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.B. Yang, M. Gong, K.F. Liu, T. Draper, Z. Liu, J.P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.
More informationSolutions to gauge hierarchy problem. SS 10, Uli Haisch
Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally
More informationt, H = 0, E = H E = 4πρ, H df = 0, δf = 4πJ.
Lecture 3 Cohomologies, curvatures Maxwell equations The Maxwell equations for electromagnetic fields are expressed as E = H t, H = 0, E = 4πρ, H E t = 4π j. These equations can be simplified if we use
More informationQuantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams
Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The
More informationPath Integral Quantization of the Electromagnetic Field Coupled to A Spinor
EJTP 6, No. 22 (2009) 189 196 Electronic Journal of Theoretical Physics Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor Walaa. I. Eshraim and Nasser. I. Farahat Department of
More informationarxiv:hepth/ v1 21 Jan 1997
SOGANGHEP 209/96 December 996(revised) The Quantization of the Chiral Schwinger Model Based on the BFT BFV Formalism arxiv:hepth/97002v 2 Jan 997 Won T. Kim, YongWan Kim, MuIn Park, and YoungJai Park
More informationEmergence of Yang Mills theory from the NonAbelian Nambu Model
Journal of Physics: Conference Series PPER OPEN CCESS Emergence of Yang Mills theory from the Nonbelian Nambu Model To cite this article: C.. Escobar and L. F. Urrutia 2016 J. Phys.: Conf. Ser. 761 012058
More informationTopological Solitons from Geometry
Topological Solitons from Geometry Maciej Dunajski Department of Applied Mathematics and Theoretical Physics University of Cambridge Atiyah, Manton, Schroers. Geometric models of matter. arxiv:1111.2934.
More informationChapter 2 The Euler Lagrange Equations and Noether s Theorem
Chapter 2 The Euler Lagrange Equations and Noether s Theorem Abstract Stationary action principle and the general form of the Euler Lagrange equations. Notion of symmetry in classical field theory. Noether
More informationLecture notes for FYS610 Many particle Quantum Mechanics
UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Lecture notes for FYS610 Many particle Quantum Mechanics Note 20, 19.4 2017 Additions and comments to Quantum Field Theory and the Standard
More informationOn angular momentum operator in quantum field theory
On angular momentum operator in quantum field theory Bozhidar Z. Iliev Short title: Angular momentum operator in QFT Basic ideas: July October, 2001 Began: November 1, 2001 Ended: November 15, 2001 Initial
More informationMagnetic Charge as a Hidden Gauge Symmetry. Abstract
Magnetic Charge as a Hidden Gauge Symmetry D. Singleton Department of Physics, University of Virginia, Charlottesville, VA 901 (January 14, 1997) Abstract A theory containing both electric and magnetic
More informationLECTURE 3: Quantization and QFT
LECTURE 3: Quantization and QFT Robert Oeckl IQGFAU & CCMUNAM IQG FAU ErlangenNürnberg 14 November 2013 Outline 1 Classical field theory 2 SchrödingerFeynman quantization 3 KleinGordon Theory Classical
More informationarxiv: v2 [grqc] 7 Jan 2019
Classical Double Copy: KerrSchildKundt metrics from YangMills Theory arxiv:1810.03411v2 [grqc] 7 Jan 2019 Metin Gürses 1, and Bayram Tekin 2, 1 Department of Mathematics, Faculty of Sciences Bilkent
More informationScalar Electrodynamics. The principle of local gauge invariance. Lowerdegree conservation
. Lowerdegree conservation laws. Scalar Electrodynamics Let us now explore an introduction to the field theory called scalar electrodynamics, in which one considers a coupled system of Maxwell and charged
More informationCHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS
CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS 1.1 PARTICLES AND FIELDS The two great structures of theoretical physics, the theory of special relativity and quantum mechanics, have been combined
More informationTopological reduction of supersymmetric gauge theories and Sduality
Topological reduction of supersymmetric gauge theories and Sduality Anton Kapustin California Institute of Technology Topological reduction of supersymmetric gauge theories and Sduality p. 1/2 Outline
More information