Two Fundamental Principles of Nature s Interactions

Size: px
Start display at page:

Download "Two Fundamental Principles of Nature s Interactions"

Transcription

1 Two Fundamental Principles of Nature s Interactions Tian Ma, Shouhong Wang Supported in part by NSF, ONR and Chinese NSF fluid I. Gravity and Principle of Interaction Dynamics PID) II. Principle of Representation Invariance PRI) III. Unified Field Theory 1

2 I. Gravity and Principle of Interaction Dynamics PID) General relativity Einstein, 1915): Postulated two basic principles: 1) the principle of general relativity, and 2) the principle of equivalence, which lead to the space-time manifold is a 4D Riemannian manifold M, g µν ) tensor fields transform under the transformation group: ϕ µ p) x ν )p M. Einstein field equations: R µν 1 2 g µνr = 8πG c 4 T µν, µ T µν = 0. are the Euler-Lagrangian equations of the Einstein-Hilbert functional L EH g µν ) = M R + 8πG ) gdx c 4 gµν S µν 2

3 Principle of Interaction Dynamics PID) Ma-Wang, 2012): Least action with energy-momentum conservation constraints. With PID, we derive the following gravitational field equations: L EH g µν ) = M R + 8πG ) gdx c 4 S δleh = R µν 1 2 g µνr + 8πG c 4 T µν δl EH g µν ), X) = 0 µ X µν = 0 = R µν 1 2 g µνr = 8πG c 4 T µν µ Φ ν ) 8πG D µ c 4 T µν + µ Φ ν = 0 Note: The new term µ Φ ν cannot be derived 1) from any existing fr) theories, and 2) from any scalar field theories. 3

4 The new vector particle field Φ µ is a spin-1 massless bosonic particle: Φ ν = e c A µ µ Φ ν + 8πG c 4 µ T µν The nonlinear interaction between this particle field Φ µ and the graviton leads to a unified theory of dark matter and dark energy and explains the acceleration of expanding universe. A spherically symmetric central matter field with mass M and radius r 0 exerts a force on an object with mass m. [ 1 F = m g 00 = mmg r 2 + k ] 0 r k 1r where k 0 = km 1, k 1 = km 3. Gravity can display both attractive and repulsive behaviors, and the new gravitational field equations give rise to a new unified theory for dark energy and dark matter. 4

5 Principle of Interaction Dynamics PID, MW-2012). 1. For all interactions in Nature, there exist a Lagrangian functional L{g µν }, A, ψ) = L{g µν }, A, ψ) gdx M 3. The interaction fields g µν, A, ψ) are extrema of L with div A -free constraints: δ δg µν L{g ij}, A, ψ) = µ + α b A b µ)φ ν, δ δa a µ L{g ij }, A, ψ) = µ + β a) b A b µ)φ a, δ δψ L{g ij}, A, ψ) = 0. PID offers a simpler way of introducing Higgs fields from first principles! 5

6 II. Principle of Representation Invariance PRI) Principle of gauge invariance, Maxwell 1861), Weyl 1919), Klein 1938), Yang-Mills 1954): Certain physical properties of fermionic particles Ψ are not distinguishable under the SUN) gauge transformations: gauge fields: A a µ a = 1,, N 2 1), connection: D µ = µ + iga a µτ a Dirac fields: Ψ = ψ 1,, ψ N) t curvature: F µν = F a µντ a = i g [D µ, D µ ] = µ A a ν ν A a µ + gλ a bca b µa c ν)τ a gauge transformation: Ux) = e iθa x)τ a SUN), Ψx) = Ux)Ψx), Ã a µτ a = i g µu)ψ + UA a µτ a U 1 where θ a = θ a x) 1 a N 2 1) are real parameters, and the traceless Hermitian matrices τ a are generators of SUN) with [τ a, τ b ] = τ a τ b τ b τ a = iλ c ab τ c. 6

7 Principle of Representation Invariance PRI) Ma-Wang, 2012): Physical laws for an SUN) gauge theory are independent of representations of SUN): Transformation of the generators τ a = {τ 1,, τ K }: τ a = x b aτ b, X = x b a). θ a, A a µ, and λ c ab are SUN)-tensors under this transformation. G ab = 1 4N λc ad λd cb = 1 2 Trτ aτ b ) is a symmetric positive definite 2nd-order covariant SUN)-tensor, which can be regarded as a Riemannian metric on SUN). The representation invariant action and gauge field equations are L = 1 4 G abg µα g νβ FµνF a αβ b + Ψ [ iγ µ µ + iga a µτ a ) m ] Ψ, M { [ Gab ν Fνµ b gλ b cdg αβ FαµA c d ] β g Ψγµ τ a Ψ = µ + α b A b µ)φ a, iγ µ D µ m)ψ = 0 Dirac eqs for fermions 7

8 III. Unified Field Theory The unified field model is derived based on the following principles: principles of general relativity and Lorentz invariance Einstein 1905, 1915) principle of gauge invariance, postulated by J. C. Maxwell 1861), H. Weyl 1919), O. Klein 1938), C. N. Yang & R. L. Mills 1954). spontaneous symmetry breaking by Y. Nambu 1960, Y. Nambu & G. Jona- Lasinio 1961 principle of interaction dynamics PID), M.-W. 2012) principle of representation invariance PRI), M.-W. 2012) Lagrangian action functional is the natural combination of the Einstein-Hilbert functional, the standard U1)-QED, SU2)-weak and SU3)-strong interaction actions. 8

9 Unified field model Ma-Wang, 2012): 1) 2) 3) 4) 5) R µν 1 2 g µνr + 8πG c 4 T µν = ν F νµ e ψγ µ ψ = G w ab G s kj [ ν W b νµ g w = [ ν S j νµ g s = [ µ eαe c A µ g wαa w c [ µ eαe c A µ g wαa w c ] c λb cdg αβ WαµW c β d g w Lγµ σ a L mh c ) 2 xµ eαe [ µ iγ µ Dµ m)ψ = 0. c Λj cd gαβ SαµS c β d [ µ + 1 mπ c 4 ] W a µ g sα s k c Sk µ c A µ g wαb w c g s qγ µ τ k q ) 2 xµ eαe c A µ g wαa w c W a µ g sα s k c Sk µ ] φ E, ] Φ ν, W µ b g sαk s ] c Sk µ φ w a, W µ a g sαj s ] c Sj µ φ s k, 9

10 Conclusions and Predictions of the Unified Field Model 1. Duality: The unified field model induces a natural duality: 6) {g µν } massless graviton) Φ µ, A µ photon) φ E, Wµ a massive bosons W ± & Z) φ w a for a = 1, 2, 3, Sµ k massless gluons) φ s k for k = 1,, Decoupling and Unification: An important characteristics is that the unified model can be easily decoupled. Namely, Both PID and PRI can be applied directly to individual interactions. For gravity alone, we have derived modified Einstein equations, leading to a unified theory for dark matter and dark energy. 10

11 3. Spontaneous symmetry breaking and mass generation mechanism: We obtained a much simpler mechanism for mass generation and energy creation, completely different from the classical Higgs mechanism. This new mechanism offers new insights on the origin of mass. 4. The two SU2) and SU3) constant vectors {αa w } and {αk s }, containing 11 parameters, represent the portions distributed to the gauge potentials by the weak charge g w and strong charge g s. We define, e.g., the total potential S µ : S µ = α s ks k µ ={S 0, S 1, S 2, S 3 } ={strong charge potential, strong rotational potential}. 11

12 5. Strong interaction Quantum Chromodynamics based on an SU3) gauge theory Yukawa, Yang- Mills, Gell-Mann, O. Greenberg,...) Layered strong interactions potentials Ma-Wang, 2012 & 13): based on two new principles: principle of interaction dynamics PID), and principle of representation invariance PRI): S 0 = g s ρ) [ 1 r A s ρ 1 + r ) ] e r/r ρw, g s ρ) = g s R ρ ) 3, where A s is a constant depending on the particle type, and R is the attracting radius of strong interactions given by { cm for w and quarks, R = cm for hadrons. 12

13 Φ r r These potentials match very well with experimental data. Again, strong interaction demonstrates both attraction and repelling behaviors. 13

14 Quark confinement: With these potentials, the binding energy of quarks can be estimated as 7) E q ρn ρ 0 ) 6 E n E n GeV, where E n 10 2 GeV is the binding energy of nucleons. This clearly explains the quark confinement. 14

15 Short-range nature of strong interaction: With the strong interaction potentials, at the atom/molecule scales, the ratio between strong force and electromagnetic attraction force is F a F e = 9g 2 s ρ0 ρ a ) 6 / e 2 { at the atomic level, at the molecular level. This demonstrates the short-range nature of strong interaction. 15

16 6. Weak interactions An SU2) gauge theory Ma-Wang, 2012 & 2013: Layered gauge weak interaction potentials: W 0 = g w ρ)e r/r 0 [ 1 r A w ρ 1 + 2r ) ] e r/r ρw 0, g w ρ) = g w r 0 ρ ) 3 where ρ w and ρ are the radii of the constituent weakton and the particle, A w is a constant depending on the types of particles, and r cm is the radius of weak interaction. The potentials show that the weak interaction is also short-ranged The weak interaction/force demonstrates both attraction and repelling behaviors. 16

17 7. Stability of matters The attraction and repelling nature of all four forces leads to the stability of the matter in the universe. 17

Physical Laws of Nature vs Fundamental First Principles

Physical Laws of Nature vs Fundamental First Principles Physical Laws of Nature vs Fundamental First Principles Tian Ma, Shouhong Wang Supported in part by NSF, ONR and Chinese NSF http://www.indiana.edu/ fluid I. Laws of Gravity, Dark Matter and Dark Energy

More information

Unified Field Equations Coupling Force Forces. Tian Ma, Shouhong Wang Supported in part by NSF and ONR

Unified Field Equations Coupling Force Forces. Tian Ma, Shouhong Wang Supported in part by NSF and ONR Unified Field Equations Coupling Force Forces Tian Ma, Shouhong Wang Supported in part by NSF and ONR http://www.indiana.edu/ fluid 1 Outline I. Motivations II. PID III. Unified Field Equations Coupling

More information

UNIFIED FIELD EQUATIONS COUPLING FOUR FORCES AND PRINCIPLE OF INTERACTION DYNAMICS

UNIFIED FIELD EQUATIONS COUPLING FOUR FORCES AND PRINCIPLE OF INTERACTION DYNAMICS UNIFIED FIELD EQUATIONS COUPLING FOUR FORCES AND PRINCIPLE OF INTERACTION DYNAICS TIAN A AND SHOUHONG WANG Abstract. The main objective of this article is to postulate a principle of interaction dynamics

More information

UNIFIED FIELD THEORY AND PRINCIPLE OF REPRESENTATION INVARIANCE

UNIFIED FIELD THEORY AND PRINCIPLE OF REPRESENTATION INVARIANCE UNIFIED FIELD THEORY AND PRINCIPLE OF REPRESENTATION INVARIANCE TIAN MA AND SHOUHONG WANG Abstract. This is part of a research program to establish a unified field model for interactions in nature. The

More information

Unified Field Equations Coupling Four Forces and Theory of Dark Matter and Dark Energy

Unified Field Equations Coupling Four Forces and Theory of Dark Matter and Dark Energy Unified Field Equations Coupling Four Forces and Theory of Dark Matter and Dark Energy Tian Ma, Shouhong Wang Supported in part by NSF and ONR http://www.indiana.edu/ fluid 1 Outline I. Motivations II.

More information

THE INSTITUTE FOR SCIENTIFIC COMPUTING AND APPLIED MATHEMATICS

THE INSTITUTE FOR SCIENTIFIC COMPUTING AND APPLIED MATHEMATICS Field Theory for Multi-Particle System Tian Ma and Shouhong Wang July 16, 2014 Preprint No.: 1404 THE INSTITUTE FOR SCIENTIFIC COMPUTING AND APPLIED MATHEMATICS INDIANA UNIVERSITY FIELD THEORY FOR MULTI-PARTICLE

More information

Law of Gravity and Gravitational Radiation

Law of Gravity and Gravitational Radiation Law of Gravity and Gravitational Radiation Tian Ma, Shouhong Wang Supported in part by NSF and ONR http://www.indiana.edu/ fluid Blog: https://physicalprinciples.wordpress.com I. Laws of Gravity, Dark

More information

Law of Gravity, Dark Matter and Dark Energy

Law of Gravity, Dark Matter and Dark Energy Law of Gravity, Dark Matter and Dark Energy Tian Ma, Shouhong Wang Supported in part by NSF, ONR and Chinese NSF Blog: http://www.indiana.edu/~fluid https://physicalprinciples.wordpress.com I. Laws of

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

New Blackhole Theorem and its Applications to Cosmology and Astrophysics

New Blackhole Theorem and its Applications to Cosmology and Astrophysics New Blackhole Theorem and its Applications to Cosmology and Astrophysics I. New Blackhole Theorem II. Structure of the Universe III. New Law of Gravity IV. PID-Cosmological Model Tian Ma, Shouhong Wang

More information

Unified Theory of Dark Energy and Dark Matter

Unified Theory of Dark Energy and Dark Matter Unified Theory of Dark Energy and Dark Matter Tian Ma, 1 Shouhong Wang 2 1 Department of Mathematics, Sichuan University, Chengdu, P. R. China 2 Department of Mathematics, Indiana University, Bloomington,

More information

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Burgess-Moore, Chapter Weiberg, Chapter 5 Donoghue, Golowich, Holstein Chapter 1, 1 Free field Lagrangians

More information

3.3 Lagrangian and symmetries for a spin- 1 2 field

3.3 Lagrangian and symmetries for a spin- 1 2 field 3.3 Lagrangian and symmetries for a spin- 1 2 field The Lagrangian for the free spin- 1 2 field is The corresponding Hamiltonian density is L = ψ(i/ µ m)ψ. (3.31) H = ψ( γ p + m)ψ. (3.32) The Lagrangian

More information

PHY 396 K. Problem set #11, the last set this semester! Due December 1, 2016.

PHY 396 K. Problem set #11, the last set this semester! Due December 1, 2016. PHY 396 K. Problem set #11, the last set this semester! Due December 1, 2016. In my notations, the A µ and their components A a µ are the canonically normalized vector fields, while the A µ = ga µ and

More information

REVIEW. Quantum electrodynamics (QED) Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field:

REVIEW. Quantum electrodynamics (QED) Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field: Quantum electrodynamics (QED) based on S-58 Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field: Noether current of the lagrangian for a free Dirac

More information

A short overview on strong interaction and quantum chromodynamics

A short overview on strong interaction and quantum chromodynamics A short overview on strong interaction and quantum chromodynamics Christoph Klein Universität Siegen Doktorandenseminar 08.10.2008 Christoph Klein (Universität Siegen) QCD and strong interaction Doktorandenseminar

More information

Yang-Mills Gravity and Accelerated Cosmic Expansion* (Based on a Model with Generalized Gauge Symmetry)

Yang-Mills Gravity and Accelerated Cosmic Expansion* (Based on a Model with Generalized Gauge Symmetry) review research Yang-Mills Gravity and Accelerated Cosmic Expansion* (Based on a Model with Generalized Gauge Symmetry) Jong-Ping Hsu Physics Department, Univ. of Massachusetts Dartmouth, North Dartmouth,

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

A brief introduction to modified theories of gravity

A brief introduction to modified theories of gravity (Vinc)Enzo Vitagliano CENTRA, Lisboa May, 14th 2015 IV Amazonian Workshop on Black Holes and Analogue Models of Gravity Belém do Pará The General Theory of Relativity dynamics of the Universe behavior

More information

Elementary particles and typical scales in high energy physics

Elementary particles and typical scales in high energy physics Elementary particles and typical scales in high energy physics George Jorjadze Free University of Tbilisi Zielona Gora - 23.01.2017 GJ Elementary particles and typical scales in HEP Lecture 1 1/18 Contents

More information

Lectures April 29, May

Lectures April 29, May Lectures 25-26 April 29, May 4 2010 Electromagnetism controls most of physics from the atomic to the planetary scale, we have spent nearly a year exploring the concrete consequences of Maxwell s equations

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14.

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14. As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14 Majorana spinors March 15, 2012 So far, we have only considered massless, two-component

More information

arxiv:hep-ph/ v1 1 Feb 2005

arxiv:hep-ph/ v1 1 Feb 2005 Vector Goldstone Boson and Lorentz Invariance arxiv:hep-ph/050011v1 1 Feb 005 Ling-Fong Li Department of Physics, Carnegie Mellon University, Pittsburgh, PA 1513 January 5, 018 Abstract Spontanous symmetry

More information

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model Lecture 8 September 21, 2017 Today General plan for construction of Standard Model theory Properties of SU(n) transformations (review) Choice of gauge symmetries for the Standard Model Use of Lagrangian

More information

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple Symmetry Groups Symmetry plays an essential role in particle theory. If a theory is invariant under transformations by a symmetry group one obtains a conservation law and quantum numbers. For example,

More information

PAPER 305 THE STANDARD MODEL

PAPER 305 THE STANDARD MODEL MATHEMATICAL TRIPOS Part III Tuesday, 6 June, 017 9:00 am to 1:00 pm PAPER 305 THE STANDARD MODEL Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

Fundamental Forces. David Morrissey. Key Concepts, March 15, 2013

Fundamental Forces. David Morrissey. Key Concepts, March 15, 2013 Fundamental Forces David Morrissey Key Concepts, March 15, 2013 Not a fundamental force... Also not a fundamental force... What Do We Mean By Fundamental? Example: Electromagnetism (EM) electric forces

More information

Higgs-Field Gravity. H. Dehnen and H. Frommert. Fakultät für Physik Universität Konstanz 7750 Konstanz Postfach West Germany

Higgs-Field Gravity. H. Dehnen and H. Frommert. Fakultät für Physik Universität Konstanz 7750 Konstanz Postfach West Germany Higgs-Field Gravity. H. Dehnen and H. Frommert Fakultät für Physik Universität Konstanz 7750 Konstanz Postfach 55 60 West Germany Summary It is shown that any excited Higgs-field mediates an attractive

More information

QED and the Standard Model Autumn 2014

QED and the Standard Model Autumn 2014 QED and the Standard Model Autumn 2014 Joel Goldstein University of Bristol Joel.Goldstein@bristol.ac.uk These lectures are designed to give an introduction to the gauge theories of the standard model

More information

Introduction to gauge theory

Introduction to gauge theory Introduction to gauge theory 2008 High energy lecture 1 장상현 연세대학교 September 24, 2008 장상현 ( 연세대학교 ) Introduction to gauge theory September 24, 2008 1 / 72 Table of Contents 1 Introduction 2 Dirac equation

More information

An Introduction to the Standard Model of Particle Physics

An Introduction to the Standard Model of Particle Physics An Introduction to the Standard Model of Particle Physics W. N. COTTINGHAM and D. A. GREENWOOD Ж CAMBRIDGE UNIVERSITY PRESS Contents Preface. page xiii Notation xv 1 The particle physicist's view of Nature

More information

Spontaneous symmetry breaking in particle physics: a case of cross fertilization. Giovanni Jona-Lasinio

Spontaneous symmetry breaking in particle physics: a case of cross fertilization. Giovanni Jona-Lasinio Spontaneous symmetry breaking in particle physics: a case of cross fertilization Giovanni Jona-Lasinio QUARK MATTER ITALIA, 22-24 aprile 2009 1 / 38 Spontaneous (dynamical) symmetry breaking Figure: Elastic

More information

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L PHY 396 K. Solutions for problem set #. Problem 1a: As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as D µ D µ φ φ = 0. S.1 In particularly,

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Geometry and Physics. Amer Iqbal. March 4, 2010

Geometry and Physics. Amer Iqbal. March 4, 2010 March 4, 2010 Many uses of Mathematics in Physics The language of the physical world is mathematics. Quantitative understanding of the world around us requires the precise language of mathematics. Symmetries

More information

Week 9: Einstein s field equations

Week 9: Einstein s field equations Week 9: Einstein s field equations Riemann tensor and curvature We are looking for an invariant characterisation of an manifold curved by gravity. As the discussion of normal coordinates showed, the first

More information

Aspects of Spontaneous Lorentz Violation

Aspects of Spontaneous Lorentz Violation Aspects of Spontaneous Lorentz Violation Robert Bluhm Colby College IUCSS School on CPT & Lorentz Violating SME, Indiana University, June 2012 Outline: I. Review & Motivations II. Spontaneous Lorentz Violation

More information

HIGHER SPIN PROBLEM IN FIELD THEORY

HIGHER SPIN PROBLEM IN FIELD THEORY HIGHER SPIN PROBLEM IN FIELD THEORY I.L. Buchbinder Tomsk I.L. Buchbinder (Tomsk) HIGHER SPIN PROBLEM IN FIELD THEORY Wroclaw, April, 2011 1 / 27 Aims Brief non-expert non-technical review of some old

More information

PHY 396 K. Solutions for problem set #6. Problem 1(a): Starting with eq. (3) proved in class and applying the Leibniz rule, we obtain

PHY 396 K. Solutions for problem set #6. Problem 1(a): Starting with eq. (3) proved in class and applying the Leibniz rule, we obtain PHY 396 K. Solutions for problem set #6. Problem 1(a): Starting with eq. (3) proved in class and applying the Leibniz rule, we obtain γ κ γ λ, S µν] = γ κ γ λ, S µν] + γ κ, S µν] γ λ = γ κ( ig λµ γ ν ig

More information

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab Lecture I: Incarnations of Symmetry Noether s Theorem is as important to us now as the Pythagorean Theorem

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian 752 Final April 16, 2010 Tim Wendler BYU Physics and Astronomy Fadeev Popov Ghosts and Non-Abelian Gauge Fields The standard model Lagrangian L SM = L Y M + L W D + L Y u + L H The rst term, the Yang Mills

More information

Cornell University, Department of Physics

Cornell University, Department of Physics Cornell University, Department of Physics May 18th, 2017 PHYS 4444, Particle physics, Final exam You have two and a half hours for the exam. The questions are short and do not require long calculations.

More information

Fundamental Particles and Forces

Fundamental Particles and Forces Fundamental Particles and Forces A Look at the Standard Model and Interesting Theories André Gras PHYS 3305 SMU 1 Overview Introduction to Fundamental Particles and Forces Brief History of Discovery The

More information

Aula/Lecture 18 Non-Abelian Gauge theories The Higgs Mechanism The Standard Model: Part I

Aula/Lecture 18 Non-Abelian Gauge theories The Higgs Mechanism The Standard Model: Part I Física de Partículas Aula/Lecture 18 Non-Abelian Gauge theories The The : Part I Jorge C. Romão Instituto Superior Técnico, Departamento de Física & CFTP A. Rovisco Pais 1, 1049-001 Lisboa, Portugal 2016

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

THE INSTITUTE FOR SCIENTIFIC COMPUTING AND APPLIED MATHEMATICS

THE INSTITUTE FOR SCIENTIFIC COMPUTING AND APPLIED MATHEMATICS Color Algebra in Quantum Chromodynamics Tian Ma and Shouhong Wang December 30,2013 Preprint No.: 1401 THE INSTITUTE FOR SCIENTIFIC COMPUTING AND APPLIED MATHEMATICS INDIANA UNIVERSITY COLOR ALGEBRA IN

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

arxiv:gr-qc/ v1 3 Sep 1996

arxiv:gr-qc/ v1 3 Sep 1996 Propagating torsion from first principles Alberto Saa Departamento de Matemática Aplicada IMECC UNICAMP, C.P. 6065, 13081-970 Campinas, SP, Brazil arxiv:gr-qc/9609011v1 3 Sep 1996 Abstract A propagating

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Massive Photon and Cosmology

Massive Photon and Cosmology Massive Photon and Cosmology Phillial Oh Sungkyunkwan University KIAS 2014. 6. Contents I. Introduction II. Massive QED and Cosmology III. Massive Dark Photon and Cosmology IV. Conslusions Massive Photon:

More information

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON FACULTY OF SCIENCE High Energy Physics WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON AIM: To explore nature on the smallest length scales we can achieve Current status (10-20 m)

More information

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry Particle Physics JJ Thompson discovered electrons in 1897 Rutherford discovered the atomic nucleus in 1911 and the proton in 1919 (idea of gold foil expt) All science is either physics or stamp collecting

More information

Implication of Graviton-Graviton Interaction to dark matter

Implication of Graviton-Graviton Interaction to dark matter Implication of Graviton-Graviton Interaction to dark matter A dark universe Dark matter (Dark energy) A. Deur Estimating Graviton-Graviton interaction effects Application to galaxy and cluster dynamics

More information

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Fall 2015 1 Course Overview Lecture 1: Introduction, Decay Rates and Cross Sections Lecture 2: The Dirac Equation and Spin

More information

Functional determinants

Functional determinants Functional determinants based on S-53 We are going to discuss situations where a functional determinant depends on some other field and so it cannot be absorbed into the overall normalization of the path

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In the h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass

More information

Part I. Many-Body Systems and Classical Field Theory

Part I. Many-Body Systems and Classical Field Theory Part I. Many-Body Systems and Classical Field Theory 1. Classical and Quantum Mechanics of Particle Systems 3 1.1 Introduction. 3 1.2 Classical Mechanics of Mass Points 4 1.3 Quantum Mechanics: The Harmonic

More information

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst Electroweak Physics Krishna S. Kumar University of Massachusetts, Amherst Acknowledgements: M. Grunewald, C. Horowitz, W. Marciano, C. Quigg, M. Ramsey-Musolf, www.particleadventure.org Electroweak Physics

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

This means that n or p form a doublet under isospin transformation. Isospin invariance simply means that. [T i, H s ] = 0

This means that n or p form a doublet under isospin transformation. Isospin invariance simply means that. [T i, H s ] = 0 1 QCD 1.1 Quark Model 1. Isospin symmetry In early studies of nuclear reactions, it was found that, to a good approximation, nuclear force is independent of the electromagnetic charge carried by the nucleons

More information

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are.

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are. GRAVITATION F0 S. G. RAJEEV Lecture. Maxwell s Equations in Curved Space-Time.. Recall that Maxwell equations in Lorentz covariant form are. µ F µν = j ν, F µν = µ A ν ν A µ... They follow from the variational

More information

arxiv:quant-ph/ v5 1 Aug 2005

arxiv:quant-ph/ v5 1 Aug 2005 Constraints of the Dynamic Equations and Lagrangian required by Superposition of Field X. Sun a, Z. Yang b,c a Institute of High Energy Physics, Beijing 100039, China a Graduate University of the Chinese

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16 As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16 Masses for Vectors: the Higgs mechanism April 6, 2012 The momentum-space propagator

More information

UNIFICATION OF GRAVITATIONAL AND STRONG NUCLEAR FIELDS. Alpha Institute for Advanced Study Received 19 October 2003

UNIFICATION OF GRAVITATIONAL AND STRONG NUCLEAR FIELDS. Alpha Institute for Advanced Study   Received 19 October 2003 UNIFICATION OF GRAVITATIONAL AND STRONG NUCLEAR FIELDS M. W. Evans Alpha Institute for Advanced Study E-mail: emyrone@aol.com Received 19 October 2003 Using the recently derived Evans wave equation of

More information

An extended standard model and its Higgs geometry from the matrix model

An extended standard model and its Higgs geometry from the matrix model An extended standard model and its Higgs geometry from the matrix model Jochen Zahn Universität Wien based on arxiv:1401.2020 joint work with Harold Steinacker Bayrischzell, May 2014 Motivation The IKKT

More information

arxiv:gr-qc/ v1 28 Sep 1993

arxiv:gr-qc/ v1 28 Sep 1993 IFUSP/P-1072 September, 1993 Einstein-Cartan theory of gravity revisited Alberto Saa Instituto de Física arxiv:gr-qc/9309027v1 28 Sep 1993 Universidade de São Paulo, Caixa Postal 20516 01498-970 São Paulo,

More information

Curiosités géométriques et physique de l'univers

Curiosités géométriques et physique de l'univers Curiosités géométriques et physique de l'univers MidiSciences, Grenoble, 05/2010 String Theory & Invisible Dimensions Ecole Normale Supérieure de Lyon plan fundamental interactions standard model vs. general

More information

CHAPTER II: The QCD Lagrangian

CHAPTER II: The QCD Lagrangian CHAPTER II: The QCD Lagrangian.. Preparation: Gauge invariance for QED - 8 - Ã µ UA µ U i µ U U e U A µ i.5 e U µ U U Consider electrons represented by Dirac field ψx. Gauge transformation: Gauge field

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables 1. Procca equation. 5 points A massive spin-1

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are;

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are; Lecture 4 - Relativistic wave equations Postulates Relativistic wave equations must satisfy several general postulates. These are;. The equation is developed for a field amplitude function, ψ 2. The normal

More information

Elementary Particles II

Elementary Particles II Elementary Particles II S Higgs: A Very Short Introduction Higgs Field, Higgs Boson, Production, Decays First Observation 1 Reminder - I Extend Abelian Higgs model to non-abelian gauge symmetry: ( x) +

More information

Gravitational Renormalization in Large Extra Dimensions

Gravitational Renormalization in Large Extra Dimensions Gravitational Renormalization in Large Extra Dimensions Humboldt Universität zu Berlin Institut für Physik October 1, 2009 D. Ebert, J. Plefka, and AR J. High Energy Phys. 0902 (2009) 028. T. Schuster

More information

Joint Undergraduate Lecture Tour Higgs Physics and the Mystery of Mass. Heather Logan

Joint Undergraduate Lecture Tour Higgs Physics and the Mystery of Mass. Heather Logan 1 CAP-CASCA Joint Undergraduate Lecture Tour 2009 Heather Logan With thanks to St. Mary s U., Acadia U., St. Francis Xavier U., Mount Allison U., & U. de Moncton 2 The Large Hadron Collider (LHC) is a

More information

Quantum Field Theory for hypothetical fifth force

Quantum Field Theory for hypothetical fifth force June 18, 2012 Quantum Field Theory for hypothetical fifth force Patrick Linker Contact information: Rheinstrasse 13 61206 Woellstadt Germany Phone: +49 (0)6034 905296 E-Mail: Patrick.Linker@t-online.de

More information

PAPER 45 THE STANDARD MODEL

PAPER 45 THE STANDARD MODEL MATHEMATICAL TRIPOS Part III Friday, 6 June, 014 1:0 pm to 4:0 pm PAPER 45 THE STANDARD MODEL Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

g abφ b = g ab However, this is not true for a local, or space-time dependant, transformations + g ab

g abφ b = g ab However, this is not true for a local, or space-time dependant, transformations + g ab Yang-Mills theory Modern particle theories, such as the Standard model, are quantum Yang- Mills theories. In a quantum field theory, space-time fields with relativistic field equations are quantized and,

More information

Particle Physics. experimental insight. Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002

Particle Physics. experimental insight. Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002 experimental insight e + e - W + W - µνqq Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002 Lund University I. Basic concepts Particle physics

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

9 Quantum Field Theory for Children

9 Quantum Field Theory for Children 101 9 Quantum Field Theory for Children The theories (known and hypothetical) needed to describe the (very) early universe are quantum field theories (QFT). The fundamental entities of these theories are

More information

Lecture notes for FYS610 Many particle Quantum Mechanics

Lecture notes for FYS610 Many particle Quantum Mechanics UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Lecture notes for FYS610 Many particle Quantum Mechanics Note 20, 19.4 2017 Additions and comments to Quantum Field Theory and the Standard

More information

A Brief Introduction to Relativistic Quantum Mechanics

A Brief Introduction to Relativistic Quantum Mechanics A Brief Introduction to Relativistic Quantum Mechanics Hsin-Chia Cheng, U.C. Davis 1 Introduction In Physics 215AB, you learned non-relativistic quantum mechanics, e.g., Schrödinger equation, E = p2 2m

More information

Théorie des cordes: quelques applications. Cours IV: 11 février 2011

Théorie des cordes: quelques applications. Cours IV: 11 février 2011 Particules Élémentaires, Gravitation et Cosmologie Année 2010-11 Théorie des cordes: quelques applications Cours IV: 11 février 2011 Résumé des cours 2009-10: quatrième partie 11 février 2011 G. Veneziano,

More information

Field Theory and Standard Model

Field Theory and Standard Model Field Theory and Standard Model W. HOLLIK CERN SCHOOL OF PHYSICS BAUTZEN, 15 26 JUNE 2009 p.1 Why Quantum Field Theory? (i) Fields: space time aspects field = quantity φ( x, t), defined for all points

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Lecture 16 V2. October 24, 2017

Lecture 16 V2. October 24, 2017 Lecture 16 V2 October 24, 2017 Recap: gamma matrices Recap: pion decay properties Unifying the weak and electromagnetic interactions Ø Recap: QED Lagrangian for U Q (1) gauge symmetry Ø Introduction of

More information

Introduction to the SM (5)

Introduction to the SM (5) Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 1 Introduction to the SM (5) Yuval Grossman Cornell Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 2 Yesterday... Yesterday: Symmetries Today SSB the

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner Lecture 3 Pions as Goldstone Bosons of Chiral Symmetry Breaking Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and

More information

A GENERALLY COVARIANT FIELD EQUATION FOR GRAVITATION AND ELECTROMAGNETISM. Institute for Advanced Study Alpha Foundation

A GENERALLY COVARIANT FIELD EQUATION FOR GRAVITATION AND ELECTROMAGNETISM. Institute for Advanced Study Alpha Foundation A GENERALLY COVARIANT FIELD EQUATION FOR GRAVITATION AND ELECTROMAGNETISM Myron W. Evans Institute for Advanced Study Alpha Foundation E-mail: emyrone@aol.com Received 17 April 2003; revised 1 May 2003

More information

THE STANDARD MODEL. Thomas Teubner. Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, U.K.

THE STANDARD MODEL. Thomas Teubner. Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, U.K. THE STANDARD MODEL Thomas Teubner Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, U.K. Lectures presented at the School for Young High Energy Physicists, Somerville College,

More information

Gravitational Čerenkov Notes

Gravitational Čerenkov Notes Gravitational Čerenkov Notes These notes were presented at the IUCSS Summer School on the Lorentz- and CPT-violating Standard-Model Extension. They are based Ref. [1]. There are no new results here, and

More information

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016 3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 016 Corrections and suggestions should be emailed to B.C.Allanach@damtp.cam.ac.uk. Starred questions may be handed in to your supervisor for feedback

More information