Filtering the Navier-Stokes Equation

Size: px
Start display at page:

Download "Filtering the Navier-Stokes Equation"

Transcription

1 Filtering the Navier-Stokes Equation Andrew M Stuart1 1 Mathematics Institute and Centre for Scientific Computing University of Warwick Geometric Methods Brown, November 4th 11 Collaboration with C. Brett, A. Lam, K.J.H. Law, D. McCormick and M. Scott (Warwick). Funded by EPSRC, ERC and ONR

2 Outline 1 3 4

3 Outline 1 3 4

4 Forward Problem: Navier Stokes Equations Let f H. D Navier-Stokes as ODE on H : dv + νav + F (v ) = f, dt v () = u Here Z o n u dx =, norm H = u L (T ) u =, ZT n o V = u H 1 (T ) u =, u dx =, norm k k T Introduce semigroup notation in H (weak) or V (strong): v (t) = Ψ(u; t), Ψ(u) = Ψ(u; h), vj = Ψ(u; jh).

5 Forward Problem: Navier Stokes Equations Let f H. D Navier-Stokes as ODE on H : dv + νav + F (v ) = f, dt v () = u Here Z o n u dx =, norm H = u L (T ) u =, ZT n o V = u H 1 (T ) u =, u dx =, norm k k T Introduce semigroup notation in H (weak) or V (strong): v (t) = Ψ(u; t), Ψ(u) = Ψ(u; h), vj = Ψ(u; jh).

6 Forward Problem: Navier Stokes Equations Let f H. D Navier-Stokes as ODE on H : dv + νav + F (v ) = f, dt v () = u Here Z o n u dx =, norm H = u L (T ) u =, ZT n o V = u H 1 (T ) u =, u dx =, norm k k T Introduce semigroup notation in H (weak) or V (strong): v (t) = Ψ(u; t), Ψ(u) = Ψ(u; h), vj = Ψ(u; jh).

7 Inverse Problem: Navier Stokes Equations Orthogonal projections onto low and high divergence-free Fourier modes ϕk (eigenfunctions of A): Pλ : H 7 {ϕk (x), k λ}, Qλ : H 7 {ϕk (x), k > λ.} Observations: yj = Pλ vj + ξj, Yj = {yi }ji=1. Goal: find vj given data Yj. ξj N(, Γ)

8 Inverse Problem: Navier Stokes Equations Orthogonal projections onto low and high divergence-free Fourier modes ϕk (eigenfunctions of A): Pλ : H 7 {ϕk (x), k λ}, Qλ : H 7 {ϕk (x), k > λ.} Observations: yj = Pλ vj + ξj, Yj = {yi }ji=1. Goal: find vj given data Yj. ξj N(, Γ)

9 Inverse Problem: Navier Stokes Equations Orthogonal projections onto low and high divergence-free Fourier modes ϕk (eigenfunctions of A): Pλ : H 7 {ϕk (x), k λ}, Qλ : H 7 {ϕk (x), k > λ.} Observations: yj = Pλ vj + ξj, Yj = {yi }ji=1. Goal: find vj given data Yj. ξj N(, Γ)

10 3DVAR: Approximate Gaussian Filter Impose the (3DVAR) Gaussian approximation: b j, Cb P(vj Yj ) N m b j ), C. P(vj+1 Yj ) N Ψ(m Kalman Mean Update: b j+1 = BΨ(m b j ) + (I B)yj+1. m Kalman Covariance Update: Cb 1 = C 1 + Pλ Γ 1 Pλ, b 1. B = CC

11 3DVAR: Approximate Gaussian Filter Impose the (3DVAR) Gaussian approximation: b j, Cb P(vj Yj ) N m b j ), C. P(vj+1 Yj ) N Ψ(m Kalman Mean Update: b j+1 = BΨ(m b j ) + (I B)yj+1. m Kalman Covariance Update: Cb 1 = C 1 + Pλ Γ 1 Pλ, b 1. B = CC

12 3DVAR: Approximate Gaussian Filter Impose the (3DVAR) Gaussian approximation: b j, Cb P(vj Yj ) N m b j ), C. P(vj+1 Yj ) N Ψ(m Kalman Mean Update: b j+1 = BΨ(m b j ) + (I B)yj+1. m Kalman Covariance Update: Cb 1 = C 1 + Pλ Γ 1 Pλ, b 1. B = CC

13 Unstable 3DVAR, ν=.1, h=. 3DVAR, ν=.1, h=., Re(u1,) m.3 1 m(tn) u+(tn) tr(γ) tr[(i Bn)Γ(I Bn)*] 1 1 u+ yn step 1 3 t 4

14 Stabilized [3DVAR], ν=.1, h=., Re(u1,) [3DVAR], ν=.1, h=. m(tn) u+(tn) tr(γ) tr[(i Bn)Γ(I Bn)*] 1 m.3 u+ yn step t 1 1

15 Outline 1 3 4

16 Exemplar for Theorem C = δ A ζ (Model covariance); Γ = σ A β (Observation covariance); define η = σ /δ, α = ζ β; η is ratio of observation variance to model variance. b j+1 = BΨ(m b j ) + (I B)yj+1 m B = (I + η Aα ) 1 η Aα, B = I, on Qλ H. on Pλ H,

17 Stability Theorem Recall vj = Ψ(j) (u) = v (jh). Define supj 1 kξj k =. How does error in filter mean behave? Theorem (BLLMSS11) Assume that: b BV (, R); m λ sufficiently large and h sufficiently small. Then ηc = ηc (R) and r (, 1), c (, ) such that, for all η < ηc, b j vj k r j km b v k + c. km

18 Proof of Stability Theorem vj+1 = Ψ(vj ) vj+1 = BΨ(vj ) + (I B)Ψ(vj ) b j+1 = BΨ(m b j ) + (I B)yj+1 m b j+1 = BΨ(m b j ) + (I B)Ψ(vj ) + (I B)ξj. m ej+1 BDΨ vj )ej + (I B)ξj.

19 Proof of Stability Theorem vj+1 = Ψ(vj ) vj+1 = BΨ(vj ) + (I B)Ψ(vj ) b j+1 = BΨ(m b j ) + (I B)yj+1 m b j+1 = BΨ(m b j ) + (I B)Ψ(vj ) + (I B)ξj. m ej+1 BDΨ vj )ej + (I B)ξj.

20 Proof of Stability Theorem vj+1 = Ψ(vj ) vj+1 = BΨ(vj ) + (I B)Ψ(vj ) b j+1 = BΨ(m b j ) + (I B)yj+1 m b j+1 = BΨ(m b j ) + (I B)Ψ(vj ) + (I B)ξj. m ej+1 BDΨ vj )ej + (I B)ξj.

21 Proof of Stability Theorem (Continued) ej+1 BDΨ vj )ej + (I B)ξj. BDΨ( ) can be made a contraction on Qλ H by choice of λ; key estimate from Hayden, Olsen and Titi, PhysicaD, 11 BDΨ( ) can be made a contraction on Pλ H by choice of η sufficiently small: variance inflation.

22 Proof of Stability Theorem (Continued) ej+1 BDΨ vj )ej + (I B)ξj. BDΨ( ) can be made a contraction on Qλ H by choice of λ; key estimate from Hayden, Olsen and Titi, PhysicaD, 11 BDΨ( ) can be made a contraction on Pλ H by choice of η sufficiently small: variance inflation.

23 Proof of Stability Theorem (Continued) ej+1 BDΨ vj )ej + (I B)ξj. BDΨ( ) can be made a contraction on Qλ H by choice of λ; key estimate from Hayden, Olsen and Titi, PhysicaD, 11 BDΨ( ) can be made a contraction on Pλ H by choice of η sufficiently small: variance inflation.

24 Outline 1 3 4

25 The Context η is ratio of observation variance to model variance. Previous Theorem required η 1. Here we study the limit η 1. High frequency observation compensates.

26 Parameter Scalings C = ωσ A ζ ; Γ = h1 σ A β ; yj := zj+1 zj h ; yj = Pλ vj + ξj ; ξj σ N(, A β ). h

27 SPDE Limit Formal diffusion limit: b dm dz b + F (m) b + ωa α m b + νam = f, dt dt where the data z solves dz = vdt + σ A β dw, z() =. b b. m() =m

28 SPDE Stability u1, 1 m1, u14,.1.5 m14,.1.5 t 4 6 t u7,.1 m7, 4 6 m(t) u(t) / u(t) t 4 6 t 4 6

29 SPDE Stability 1. u1, m1, t 15. m14, u7, m7,.1 u14,.1 1 t 15 m(t) u(t) / u(t) t t 15

30 Outline 1 3 4

31 Conclusions Approximate filters are routinely used in geophysical applications. They fail to reproduce covariance but can accurately track the mean. They can exhibit instability on longer time-intervals. Variance inflation provably stabilizes. SPDE in high frequency limit. Future work: ExKF, EnKF.

32 Conclusions Approximate filters are routinely used in geophysical applications. They fail to reproduce covariance but can accurately track the mean. They can exhibit instability on longer time-intervals. Variance inflation provably stabilizes. SPDE in high frequency limit. Future work: ExKF, EnKF.

33 Conclusions Approximate filters are routinely used in geophysical applications. They fail to reproduce covariance but can accurately track the mean. They can exhibit instability on longer time-intervals. Variance inflation provably stabilizes. SPDE in high frequency limit. Future work: ExKF, EnKF.

34 Conclusions Approximate filters are routinely used in geophysical applications. They fail to reproduce covariance but can accurately track the mean. They can exhibit instability on longer time-intervals. Variance inflation provably stabilizes. SPDE in high frequency limit. Future work: ExKF, EnKF.

35 Conclusions Approximate filters are routinely used in geophysical applications. They fail to reproduce covariance but can accurately track the mean. They can exhibit instability on longer time-intervals. Variance inflation provably stabilizes. SPDE in high frequency limit. Future work: ExKF, EnKF.

36 Conclusions Approximate filters are routinely used in geophysical applications. They fail to reproduce covariance but can accurately track the mean. They can exhibit instability on longer time-intervals. Variance inflation provably stabilizes. SPDE in high frequency limit. Future work: ExKF, EnKF.

37 http : // / masdr [CDRS9]: S.L. Cotter, M. Dashti and A.M.Stuart. "Bayesian inverse problems for functions and applications to fluid mechanics". Inverse Problems 5 (9) [LS11]: K.J.H.Law and A.M.Stuart. "Evaluating Data Assimilation Algorithms". [BLLMSS11]: C. Brett, A. Lam, K.J.H. Law, D. McCormick, M. Scott and A.M. Stuart. "Stability of Filters for the Navier-Stokes Equation. Bayesian Overview: A.M. Stuart "Inverse problems: a Bayesian perspective. Acta Numerica 19 (1), Data Assimilation Review: A. Apte, C.K.R.T. Jones, A.M. Stuart and J. Voss, Data assimilation: mathematical and statistical perspectives. Int. J. Num. Meth. Fluids 56(8),

38 General References 4DVAR: Bennett A. "Inverse modeling of the ocean and atmosphere." Cambridge. (). 3DVAR: Kalnay E. "Atmospheric modeling, data assimilation, and predictability." Cambridge Univ Pr. (3). FDF Majda A, Harlim J, Gershgorin B. "Mathematical strategies for filtering turbulent dynamical systems." Dynamical Systems 7(): (1) ExKF Jazwinski A. "Stochastic processes and filtering theory." Academic Pr. (197). EnKF Evensen G. "Data assimilation: the ensemble kalman filter." Springer Verlag. (9). Geophysical Applications Van Leeuwen, P.J. "Particle filtering in geophysical systems." Monthly Weather Review 137(9),

What do we know about EnKF?

What do we know about EnKF? What do we know about EnKF? David Kelly Kody Law Andrew Stuart Andrew Majda Xin Tong Courant Institute New York University New York, NY April 10, 2015 CAOS seminar, Courant. David Kelly (NYU) EnKF April

More information

arxiv: v2 [math.ds] 5 Apr 2013

arxiv: v2 [math.ds] 5 Apr 2013 Analysis of the 3DVAR Filter for the Partially Observed Lorenz 63 Model K. J. H. Law, A. Shukla and A. M. Stuart Warwick Mathematics Institute University of Warwick CV4 7AL, UK e-mail: k.j.h.law@warwick.ac.uk;

More information

Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows

Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows Laura Slivinski June, 3 Laura Slivinski (Brown University) Lagrangian Data Assimilation June, 3 / 3 Data Assimilation Setup:

More information

EnKF and filter divergence

EnKF and filter divergence EnKF and filter divergence David Kelly Andrew Stuart Kody Law Courant Institute New York University New York, NY dtbkelly.com December 12, 2014 Applied and computational mathematics seminar, NIST. David

More information

EnKF and Catastrophic filter divergence

EnKF and Catastrophic filter divergence EnKF and Catastrophic filter divergence David Kelly Kody Law Andrew Stuart Mathematics Department University of North Carolina Chapel Hill NC bkelly.com June 4, 2014 SIAM UQ 2014 Savannah. David Kelly

More information

Adaptive ensemble Kalman filtering of nonlinear systems

Adaptive ensemble Kalman filtering of nonlinear systems Adaptive ensemble Kalman filtering of nonlinear systems Tyrus Berry George Mason University June 12, 213 : Problem Setup We consider a system of the form: x k+1 = f (x k ) + ω k+1 ω N (, Q) y k+1 = h(x

More information

Ergodicity in data assimilation methods

Ergodicity in data assimilation methods Ergodicity in data assimilation methods David Kelly Andy Majda Xin Tong Courant Institute New York University New York NY www.dtbkelly.com April 15, 2016 ETH Zurich David Kelly (CIMS) Data assimilation

More information

State and Parameter Estimation in Stochastic Dynamical Models

State and Parameter Estimation in Stochastic Dynamical Models State and Parameter Estimation in Stochastic Dynamical Models Timothy DelSole George Mason University, Fairfax, Va and Center for Ocean-Land-Atmosphere Studies, Calverton, MD June 21, 2011 1 1 collaboration

More information

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations.

Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations. Estimation of State Noise for the Ensemble Kalman filter algorithm for 2D shallow water equations. May 6, 2009 Motivation Constitutive Equations EnKF algorithm Some results Method Navier Stokes equations

More information

Data assimilation in high dimensions

Data assimilation in high dimensions Data assimilation in high dimensions David Kelly Kody Law Andy Majda Andrew Stuart Xin Tong Courant Institute New York University New York NY www.dtbkelly.com February 3, 2016 DPMMS, University of Cambridge

More information

Sequential Monte Carlo Samplers for Applications in High Dimensions

Sequential Monte Carlo Samplers for Applications in High Dimensions Sequential Monte Carlo Samplers for Applications in High Dimensions Alexandros Beskos National University of Singapore KAUST, 26th February 2014 Joint work with: Dan Crisan, Ajay Jasra, Nik Kantas, Alex

More information

A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error

A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error Georg Gottwald, Lewis Mitchell, Sebastian Reich* University of Sydney, *Universität Potsdam Durham,

More information

Methods of Data Assimilation and Comparisons for Lagrangian Data

Methods of Data Assimilation and Comparisons for Lagrangian Data Methods of Data Assimilation and Comparisons for Lagrangian Data Chris Jones, Warwick and UNC-CH Kayo Ide, UCLA Andrew Stuart, Jochen Voss, Warwick Guillaume Vernieres, UNC-CH Amarjit Budiraja, UNC-CH

More information

Data assimilation in high dimensions

Data assimilation in high dimensions Data assimilation in high dimensions David Kelly Courant Institute New York University New York NY www.dtbkelly.com February 12, 2015 Graduate seminar, CIMS David Kelly (CIMS) Data assimilation February

More information

Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows

Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows SP and DSS for Filtering Sparse Geophysical Flows Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows Presented by Nan Chen, Michal Branicki and Chenyue

More information

Filtering Sparse Regular Observed Linear and Nonlinear Turbulent System

Filtering Sparse Regular Observed Linear and Nonlinear Turbulent System Filtering Sparse Regular Observed Linear and Nonlinear Turbulent System John Harlim, Andrew J. Majda Department of Mathematics and Center for Atmosphere Ocean Science Courant Institute of Mathematical

More information

Smoothers: Types and Benchmarks

Smoothers: Types and Benchmarks Smoothers: Types and Benchmarks Patrick N. Raanes Oxford University, NERSC 8th International EnKF Workshop May 27, 2013 Chris Farmer, Irene Moroz Laurent Bertino NERSC Geir Evensen Abstract Talk builds

More information

Nonlinear error dynamics for cycled data assimilation methods

Nonlinear error dynamics for cycled data assimilation methods Nonlinear error dynamics for cycled data assimilation methods A J F Moodey 1, A S Lawless 1,2, P J van Leeuwen 2, R W E Potthast 1,3 1 Department of Mathematics and Statistics, University of Reading, UK.

More information

Gaussian Filtering Strategies for Nonlinear Systems

Gaussian Filtering Strategies for Nonlinear Systems Gaussian Filtering Strategies for Nonlinear Systems Canonical Nonlinear Filtering Problem ~u m+1 = ~ f (~u m )+~ m+1 ~v m+1 = ~g(~u m+1 )+~ o m+1 I ~ f and ~g are nonlinear & deterministic I Noise/Errors

More information

A posteriori regularity of the three-dimensional Navier-Stokes equations from numerical computations

A posteriori regularity of the three-dimensional Navier-Stokes equations from numerical computations A posteriori regularity of the three-dimensional Navier-Stokes equations from numerical computations Sergei I. Chernyshenko, Aeronautics and Astronautics, School of Engineering Sciences, University of

More information

DATA ASSIMILATION FOR FLOOD FORECASTING

DATA ASSIMILATION FOR FLOOD FORECASTING DATA ASSIMILATION FOR FLOOD FORECASTING Arnold Heemin Delft University of Technology 09/16/14 1 Data assimilation is the incorporation of measurement into a numerical model to improve the model results

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

Local Ensemble Transform Kalman Filter

Local Ensemble Transform Kalman Filter Local Ensemble Transform Kalman Filter Brian Hunt 11 June 2013 Review of Notation Forecast model: a known function M on a vector space of model states. Truth: an unknown sequence {x n } of model states

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Centre for Computational Statistics and Machine Learning University College London c.archambeau@cs.ucl.ac.uk CSML

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Asynchronous data assimilation

Asynchronous data assimilation Ensemble Kalman Filter, lecture 2 Asynchronous data assimilation Pavel Sakov Nansen Environmental and Remote Sensing Center, Norway This talk has been prepared in the course of evita-enkf project funded

More information

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Background Data Assimilation Iterative process Forecast Analysis Background

More information

Hierarchical Bayesian Inversion

Hierarchical Bayesian Inversion Hierarchical Bayesian Inversion Andrew M Stuart Computing and Mathematical Sciences, Caltech cw/ S. Agapiou, J. Bardsley and O. Papaspiliopoulos SIAM/ASA JUQ 2(2014), pp. 511--544 cw/ M. Dunlop and M.

More information

Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows

Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows Superparameterization and Dynamic Stochastic Superresolution (DSS) for Filtering Sparse Geophysical Flows June 2013 Outline 1 Filtering Filtering: obtaining the best statistical estimation of a nature

More information

Relative Merits of 4D-Var and Ensemble Kalman Filter

Relative Merits of 4D-Var and Ensemble Kalman Filter Relative Merits of 4D-Var and Ensemble Kalman Filter Andrew Lorenc Met Office, Exeter International summer school on Atmospheric and Oceanic Sciences (ISSAOS) "Atmospheric Data Assimilation". August 29

More information

Correcting biased observation model error in data assimilation

Correcting biased observation model error in data assimilation Correcting biased observation model error in data assimilation Tyrus Berry Dept. of Mathematical Sciences, GMU PSU-UMD DA Workshop June 27, 217 Joint work with John Harlim, PSU BIAS IN OBSERVATION MODELS

More information

EnKF-based particle filters

EnKF-based particle filters EnKF-based particle filters Jana de Wiljes, Sebastian Reich, Wilhelm Stannat, Walter Acevedo June 20, 2017 Filtering Problem Signal dx t = f (X t )dt + 2CdW t Observations dy t = h(x t )dt + R 1/2 dv t.

More information

The Ensemble Kalman Filter:

The Ensemble Kalman Filter: p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen 23, Ocean Dynamics, Vol 53, No 4 p.2 The Ensemble

More information

Ensembles and Particle Filters for Ocean Data Assimilation

Ensembles and Particle Filters for Ocean Data Assimilation DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ensembles and Particle Filters for Ocean Data Assimilation Robert N. Miller College of Oceanic and Atmospheric Sciences

More information

Many contemporary problems in science ranging from protein

Many contemporary problems in science ranging from protein Blended Particle Filters for Large Dimensional Chaotic Dynamical Systems Andrew J. Majda, Di Qi, Themistoklis P. Sapsis Department of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute

More information

Convergence of the Ensemble Kalman Filter in Hilbert Space

Convergence of the Ensemble Kalman Filter in Hilbert Space Convergence of the Ensemble Kalman Filter in Hilbert Space Jan Mandel Center for Computational Mathematics Department of Mathematical and Statistical Sciences University of Colorado Denver Parts based

More information

Bayesian Inverse problem, Data assimilation and Localization

Bayesian Inverse problem, Data assimilation and Localization Bayesian Inverse problem, Data assimilation and Localization Xin T Tong National University of Singapore ICIP, Singapore 2018 X.Tong Localization 1 / 37 Content What is Bayesian inverse problem? What is

More information

Sampling the posterior: An approach to non-gaussian data assimilation

Sampling the posterior: An approach to non-gaussian data assimilation Physica D 230 (2007) 50 64 www.elsevier.com/locate/physd Sampling the posterior: An approach to non-gaussian data assimilation A. Apte a, M. Hairer b, A.M. Stuart b,, J. Voss b a Department of Mathematics,

More information

Computational Complexity of Metropolis-Hastings Methods in High Dimensions

Computational Complexity of Metropolis-Hastings Methods in High Dimensions Computational Complexity of Metropolis-Hastings Methods in High Dimensions Alexandros Beskos and Andrew Stuart Abstract This article contains an overview of the literature concerning the computational

More information

A Note on the Particle Filter with Posterior Gaussian Resampling

A Note on the Particle Filter with Posterior Gaussian Resampling Tellus (6), 8A, 46 46 Copyright C Blackwell Munksgaard, 6 Printed in Singapore. All rights reserved TELLUS A Note on the Particle Filter with Posterior Gaussian Resampling By X. XIONG 1,I.M.NAVON 1,2 and

More information

Lagrangian data assimilation for point vortex systems

Lagrangian data assimilation for point vortex systems JOT J OURNAL OF TURBULENCE http://jot.iop.org/ Lagrangian data assimilation for point vortex systems Kayo Ide 1, Leonid Kuznetsov 2 and Christopher KRTJones 2 1 Department of Atmospheric Sciences and Institute

More information

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm Overview 1 2 3 Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation 6th EnKF Purpose EnKF equations localization After the 6th EnKF (2014), I decided with Prof. Zhang to summarize progress

More information

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance The Kalman Filter Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience Sarah Dance School of Mathematical and Physical Sciences, University of Reading s.l.dance@reading.ac.uk July

More information

Global well-posedness of the primitive equations of oceanic and atmospheric dynamics

Global well-posedness of the primitive equations of oceanic and atmospheric dynamics Global well-posedness of the primitive equations of oceanic and atmospheric dynamics Jinkai Li Department of Mathematics The Chinese University of Hong Kong Dynamics of Small Scales in Fluids ICERM, Feb

More information

Ensemble Kalman Filter

Ensemble Kalman Filter Ensemble Kalman Filter Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway, Nansen Environmental and Remote Sensing Center, Bergen, Norway The Ensemble Kalman Filter (EnKF) Represents

More information

Performance of ensemble Kalman filters with small ensembles

Performance of ensemble Kalman filters with small ensembles Performance of ensemble Kalman filters with small ensembles Xin T Tong Joint work with Andrew J. Majda National University of Singapore Sunday 28 th May, 2017 X.Tong EnKF performance 1 / 31 Content Ensemble

More information

Bred vectors: theory and applications in operational forecasting. Eugenia Kalnay Lecture 3 Alghero, May 2008

Bred vectors: theory and applications in operational forecasting. Eugenia Kalnay Lecture 3 Alghero, May 2008 Bred vectors: theory and applications in operational forecasting. Eugenia Kalnay Lecture 3 Alghero, May 2008 ca. 1974 Central theorem of chaos (Lorenz, 1960s): a) Unstable systems have finite predictability

More information

Wind and turbulence experience strong gradients in vegetation. How do we deal with this? We have to predict wind and turbulence profiles through the

Wind and turbulence experience strong gradients in vegetation. How do we deal with this? We have to predict wind and turbulence profiles through the 1 2 Wind and turbulence experience strong gradients in vegetation. How do we deal with this? We have to predict wind and turbulence profiles through the canopy. 3 Next we discuss turbulence in the canopy.

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tyrus Berry George Mason University NJIT Feb. 28, 2017 Postdoc supported by NSF This work is in collaboration with: Tim Sauer, GMU Franz Hamilton, Postdoc, NCSU

More information

6 Sequential Data Assimilation for Nonlinear Dynamics: The Ensemble Kalman Filter

6 Sequential Data Assimilation for Nonlinear Dynamics: The Ensemble Kalman Filter 6 Sequential Data Assimilation for Nonlinear Dynamics: The Ensemble Kalman Filter GEIR EVENSEN Nansen Environmental and Remote Sensing Center, Bergen, Norway 6.1 Introduction Sequential data assimilation

More information

Systematic strategies for real time filtering of turbulent signals in complex systems

Systematic strategies for real time filtering of turbulent signals in complex systems Systematic strategies for real time filtering of turbulent signals in complex systems Statistical inversion theory for Gaussian random variables The Kalman Filter for Vector Systems: Reduced Filters and

More information

A mechanism for catastrophic filter divergence in data assimilation for sparse observation networks

A mechanism for catastrophic filter divergence in data assimilation for sparse observation networks Manuscript prepared for Nonlin. Processes Geophys. with version 5. of the L A TEX class copernicus.cls. Date: 5 August 23 A mechanism for catastrophic filter divergence in data assimilation for sparse

More information

On the convergence of (ensemble) Kalman filters and smoothers onto the unstable subspace

On the convergence of (ensemble) Kalman filters and smoothers onto the unstable subspace On the convergence of (ensemble) Kalman filters and smoothers onto the unstable subspace Marc Bocquet CEREA, joint lab École des Ponts ParisTech and EdF R&D, Université Paris-Est, France Institut Pierre-Simon

More information

CONNECTIONS BETWEEN A CONJECTURE OF SCHIFFER S AND INCOMPRESSIBLE FLUID MECHANICS

CONNECTIONS BETWEEN A CONJECTURE OF SCHIFFER S AND INCOMPRESSIBLE FLUID MECHANICS CONNECTIONS BETWEEN A CONJECTURE OF SCHIFFER S AND INCOMPRESSIBLE FLUID MECHANICS JAMES P. KELLIHER Abstract. We demonstrate connections that exists between a conjecture of Schiffer s (which is equivalent

More information

A new approach to the study of the 3D-Navier-Stokes System

A new approach to the study of the 3D-Navier-Stokes System Contemporary Mathematics new approach to the study of the 3D-Navier-Stokes System Yakov Sinai Dedicated to M Feigenbaum on the occasion of his 6 th birthday bstract In this paper we study the Fourier transform

More information

Spectral and morphing ensemble Kalman filters

Spectral and morphing ensemble Kalman filters Spectral and morphing ensemble Kalman filters Department of Mathematical and Statistical Sciences University of Colorado Denver 91st American Meteorological Society Annual Meeting Seattle, WA, January

More information

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006 Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems Eric Kostelich Data Mining Seminar, Feb. 6, 2006 kostelich@asu.edu Co-Workers Istvan Szunyogh, Gyorgyi Gyarmati, Ed Ott, Brian

More information

Chapter 6: Ensemble Forecasting and Atmospheric Predictability. Introduction

Chapter 6: Ensemble Forecasting and Atmospheric Predictability. Introduction Chapter 6: Ensemble Forecasting and Atmospheric Predictability Introduction Deterministic Chaos (what!?) In 1951 Charney indicated that forecast skill would break down, but he attributed it to model errors

More information

Observability, a Problem in Data Assimilation

Observability, a Problem in Data Assimilation Observability, Data Assimilation with the Extended Kalman Filter 1 Observability, a Problem in Data Assimilation Chris Danforth Department of Applied Mathematics and Scientific Computation, UMD March 10,

More information

Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter

Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter Jon Poterjoy, Ryan Sobash, and Jeffrey Anderson National Center for Atmospheric Research

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi ECODYC10, Dresden 28 January 2010 Relationship

More information

Data assimilation Schrödinger s perspective

Data assimilation Schrödinger s perspective Data assimilation Schrödinger s perspective Sebastian Reich (www.sfb1294.de) Universität Potsdam/ University of Reading IMS NUS, August 3, 218 Universität Potsdam/ University of Reading 1 Core components

More information

Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model

Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model Shu-Chih Yang 1*, Eugenia Kalnay, and Brian Hunt 1. Department of Atmospheric Sciences, National Central

More information

The Diffusion Kernel Filter. Applied to Lagrangian Data Assimilation

The Diffusion Kernel Filter. Applied to Lagrangian Data Assimilation The Diffusion Kernel Filter Applied to Lagrangian Data Assimilation Paul Krause 1 Juan M. Restrepo 1,2 1 Department of Mathematics University of Arizona Tucson, AZ 85721 U.S.A. 2 Department of Physics

More information

Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data

Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data John Harlim and Brian R. Hunt Department of Mathematics and Institute for Physical Science and Technology University

More information

A Stochastic Collocation based. for Data Assimilation

A Stochastic Collocation based. for Data Assimilation A Stochastic Collocation based Kalman Filter (SCKF) for Data Assimilation Lingzao Zeng and Dongxiao Zhang University of Southern California August 11, 2009 Los Angeles Outline Introduction SCKF Algorithm

More information

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Weiguang Chang and Isztar Zawadzki Department of Atmospheric and Oceanic Sciences Faculty

More information

Fundamentals of Data Assimilation

Fundamentals of Data Assimilation National Center for Atmospheric Research, Boulder, CO USA GSI Data Assimilation Tutorial - June 28-30, 2010 Acknowledgments and References WRFDA Overview (WRF Tutorial Lectures, H. Huang and D. Barker)

More information

A Spectral Approach to Linear Bayesian Updating

A Spectral Approach to Linear Bayesian Updating A Spectral Approach to Linear Bayesian Updating Oliver Pajonk 1,2, Bojana V. Rosic 1, Alexander Litvinenko 1, and Hermann G. Matthies 1 1 Institute of Scientific Computing, TU Braunschweig, Germany 2 SPT

More information

Nonlinear variational inverse problems

Nonlinear variational inverse problems 6 Nonlinear variational inverse problems This chapter considers highly nonlinear variational inverse problems and their properties. More general inverse formulations for nonlinear dynamical models will

More information

ESSE 4020 / ESS 5020 Time Series and Spectral Analysis Notes 6 26 November 2018 State Space Models

ESSE 4020 / ESS 5020 Time Series and Spectral Analysis Notes 6 26 November 2018 State Space Models ESSE 4020 / ESS 5020 Time Series and Spectral Analysis Notes 6 26 November 2018 State Space Models SS2011/2017 Chapter 6 State Space Models - Kalman Filtering or 2016 at https://www.stat.pitt.edu/stoffer/tsa4/chapter6.pdf

More information

arxiv: v1 [physics.ao-ph] 23 Jan 2009

arxiv: v1 [physics.ao-ph] 23 Jan 2009 A Brief Tutorial on the Ensemble Kalman Filter Jan Mandel arxiv:0901.3725v1 [physics.ao-ph] 23 Jan 2009 February 2007, updated January 2009 Abstract The ensemble Kalman filter EnKF) is a recursive filter

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tim Sauer George Mason University Parameter estimation and UQ U. Pittsburgh Mar. 5, 2017 Partially supported by NSF Most of this work is due to: Tyrus Berry,

More information

Data Assimilation for Dispersion Models

Data Assimilation for Dispersion Models Data Assimilation for Dispersion Models K. V. Umamaheswara Reddy Dept. of Mechanical and Aerospace Engg. State University of New Yor at Buffalo Buffalo, NY, U.S.A. venatar@buffalo.edu Yang Cheng Dept.

More information

An introduction to data assimilation. Eric Blayo University of Grenoble and INRIA

An introduction to data assimilation. Eric Blayo University of Grenoble and INRIA An introduction to data assimilation Eric Blayo University of Grenoble and INRIA Data assimilation, the science of compromises Context characterizing a (complex) system and/or forecasting its evolution,

More information

Robust Ensemble Filtering With Improved Storm Surge Forecasting

Robust Ensemble Filtering With Improved Storm Surge Forecasting Robust Ensemble Filtering With Improved Storm Surge Forecasting U. Altaf, T. Buttler, X. Luo, C. Dawson, T. Mao, I.Hoteit Meteo France, Toulouse, Nov 13, 2012 Project Ensemble data assimilation for storm

More information

Semi-implicit methods, nonlinear balance, and regularized equations

Semi-implicit methods, nonlinear balance, and regularized equations ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 8: 1 6 (7 Published online 9 January 7 in Wiley InterScience (www.interscience.wiley.com.1 Semi-implicit methods, nonlinear balance, and regularized equations

More information

Bayesian inverse problems with Laplacian noise

Bayesian inverse problems with Laplacian noise Bayesian inverse problems with Laplacian noise Remo Kretschmann Faculty of Mathematics, University of Duisburg-Essen Applied Inverse Problems 2017, M27 Hangzhou, 1 June 2017 1 / 33 Outline 1 Inverse heat

More information

Practical Aspects of Ensemble-based Kalman Filters

Practical Aspects of Ensemble-based Kalman Filters Practical Aspects of Ensemble-based Kalman Filters Lars Nerger Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany and Bremen Supercomputing Competence Center BremHLR Bremen, Germany

More information

Kalman Filter and Ensemble Kalman Filter

Kalman Filter and Ensemble Kalman Filter Kalman Filter and Ensemble Kalman Filter 1 Motivation Ensemble forecasting : Provides flow-dependent estimate of uncertainty of the forecast. Data assimilation : requires information about uncertainty

More information

Stability of Ensemble Kalman Filters

Stability of Ensemble Kalman Filters Stability of Ensemble Kalman Filters Idrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen, John Bardsley, Heikki Haario and Tuomo Kauranne Lappeenranta University of Technology University of

More information

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier Miscellaneous Regarding reading materials Reading materials will be provided as needed If no assigned reading, it means I think the material from class is sufficient Should be enough for you to do your

More information

Minimal periods of semilinear evolution equations with Lipschitz nonlinearity

Minimal periods of semilinear evolution equations with Lipschitz nonlinearity Minimal periods of semilinear evolution equations with Lipschitz nonlinearity James C. Robinson a Alejandro Vidal-López b a Mathematics Institute, University of Warwick, Coventry, CV4 7AL, U.K. b Departamento

More information

Four-Dimensional Ensemble Kalman Filtering

Four-Dimensional Ensemble Kalman Filtering Four-Dimensional Ensemble Kalman Filtering B.R. Hunt, E. Kalnay, E.J. Kostelich, E. Ott, D.J. Patil, T. Sauer, I. Szunyogh, J.A. Yorke, A.V. Zimin University of Maryland, College Park, MD 20742, USA Ensemble

More information

Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF

Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Javier Amezcua, Dr. Kayo Ide, Dr. Eugenia Kalnay 1 Outline

More information

Model error and parameter estimation

Model error and parameter estimation Model error and parameter estimation Chiara Piccolo and Mike Cullen ECMWF Annual Seminar, 11 September 2018 Summary The application of interest is atmospheric data assimilation focus on EDA; A good ensemble

More information

Using Observations at Different Spatial. Scales in Data Assimilation for. Environmental Prediction. Joanne A. Waller

Using Observations at Different Spatial. Scales in Data Assimilation for. Environmental Prediction. Joanne A. Waller UNIVERSITY OF READING DEPARTMENT OF MATHEMATICS AND STATISTICS Using Observations at Different Spatial Scales in Data Assimilation for Environmental Prediction Joanne A. Waller Thesis submitted for the

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi 4th EnKF Workshop, April 2010 Relationship

More information

Numerical Weather Prediction: Data assimilation. Steven Cavallo

Numerical Weather Prediction: Data assimilation. Steven Cavallo Numerical Weather Prediction: Data assimilation Steven Cavallo Data assimilation (DA) is the process estimating the true state of a system given observations of the system and a background estimate. Observations

More information

Lagrangian Data Assimilation and its Applications to Geophysical Fluid Flows

Lagrangian Data Assimilation and its Applications to Geophysical Fluid Flows Lagrangian Data Assimilation and its Applications to Geophysical Fluid Flows by Laura Slivinski B.S., University of Maryland; College Park, MD, 2009 Sc.M, Brown University; Providence, RI, 2010 A dissertation

More information

A data-driven method for improving the correlation estimation in serial ensemble Kalman filter

A data-driven method for improving the correlation estimation in serial ensemble Kalman filter A data-driven method for improving the correlation estimation in serial ensemble Kalman filter Michèle De La Chevrotière, 1 John Harlim 2 1 Department of Mathematics, Penn State University, 2 Department

More information

The role of additive and multiplicative noise in filtering complex dynamical systems

The role of additive and multiplicative noise in filtering complex dynamical systems The role of additive and multiplicative noise in filtering complex dynamical systems By Georg A. Gottwald 1 and John Harlim 2 1 School of Mathematics and Statistics, University of Sydney, NSW 26, Australia,

More information

A State Space Model for Wind Forecast Correction

A State Space Model for Wind Forecast Correction A State Space Model for Wind Forecast Correction Valrie Monbe, Pierre Ailliot 2, and Anne Cuzol 1 1 Lab-STICC, Université Européenne de Bretagne, France (e-mail: valerie.monbet@univ-ubs.fr, anne.cuzol@univ-ubs.fr)

More information

Semiparametric modeling: correcting low-dimensional model error in parametric models

Semiparametric modeling: correcting low-dimensional model error in parametric models Semiparametric modeling: correcting low-dimensional model error in parametric models Tyrus Berry a,, John Harlim a,b a Department of Mathematics, the Pennsylvania State University, 09 McAllister Building,

More information

Scalable algorithms for optimal experimental design for infinite-dimensional nonlinear Bayesian inverse problems

Scalable algorithms for optimal experimental design for infinite-dimensional nonlinear Bayesian inverse problems Scalable algorithms for optimal experimental design for infinite-dimensional nonlinear Bayesian inverse problems Alen Alexanderian (Math/NC State), Omar Ghattas (ICES/UT-Austin), Noémi Petra (Applied Math/UC

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

A Comparative Study of 4D-VAR and a 4D Ensemble Kalman Filter: Perfect Model Simulations with Lorenz-96

A Comparative Study of 4D-VAR and a 4D Ensemble Kalman Filter: Perfect Model Simulations with Lorenz-96 Tellus 000, 000 000 (0000) Printed 20 October 2006 (Tellus LATEX style file v2.2) A Comparative Study of 4D-VAR and a 4D Ensemble Kalman Filter: Perfect Model Simulations with Lorenz-96 Elana J. Fertig

More information

Low Froude Number Limit of the Rotating Shallow Water and Euler Equations

Low Froude Number Limit of the Rotating Shallow Water and Euler Equations Low Froude Number Limit of the Rotating Shallow Water and Euler Equations Kung-Chien Wu Department of Pure Mathematics and Mathematical Statistics University of Cambridge, Wilberforce Road Cambridge, CB3

More information

Ensemble square-root filters

Ensemble square-root filters Ensemble square-root filters MICHAEL K. TIPPETT International Research Institute for climate prediction, Palisades, New Yor JEFFREY L. ANDERSON GFDL, Princeton, New Jersy CRAIG H. BISHOP Naval Research

More information

An Ensemble Kalman Smoother for Nonlinear Dynamics

An Ensemble Kalman Smoother for Nonlinear Dynamics 1852 MONTHLY WEATHER REVIEW VOLUME 128 An Ensemble Kalman Smoother or Nonlinear Dynamics GEIR EVENSEN Nansen Environmental and Remote Sensing Center, Bergen, Norway PETER JAN VAN LEEUWEN Institute or Marine

More information