Asynchronous data assimilation

Size: px
Start display at page:

Download "Asynchronous data assimilation"

Transcription

1 Ensemble Kalman Filter, lecture 2 Asynchronous data assimilation Pavel Sakov Nansen Environmental and Remote Sensing Center, Norway This talk has been prepared in the course of evita-enkf project funded by RCN Summer data assimilation school, Sibiu 27 July - 7 August 2009 NERSC

2 Outline Asynchronous assimilation Reasoning Historical overview Asynchronous EnKF: formulation EnKF update and ensemble observations Evolution of corrections Parallel assimilation of asynchronous data with the AEnKF Other schemes EnKS 4DEnKF Asynchronous EnKF: resume

3 Synchronous and asynchronous assimilation Synchronous, or 3D assimilation = observations are assumed to be taken at the assimilation time Asynchronous, or 4D assimilation = observations can be taken at time different than the assimilation time

4 Synchronous and asynchronous assimilation Synchronous, or 3D assimilation = observations are assumed to be taken at the assimilation time Asynchronous, or 4D assimilation = observations can be taken at time different than the assimilation time observations updates (a) (b) (c) t 0 t 1 t2 t 0 t 1 t2 t 0 t 1 t2 (a) Synchronous assimilation at each observation time (b) Synchronous assimilation; asynchronous observations are assumed to be synchronous (c) Asynchronous assimilation

5 Reasoning 0-order correction: x 2 d δy 0 δy 1 Hx f 1 Hx f 0 x 1

6 Reasoning 0-order correction: x 2 d 1 δy 1 d 0 δy 0 Hx f 1 Hx f 0 x 1

7 Reasoning 0-order correction: 1-order correction: x 2 d 1 x 2 Hx t 1 δy 1 δy 1 d 0 δy 0 Hx f 1 Hx t 0 δy 0 Hx f 1 Hx f 0 Hx f 0 x 1 x 1

8 Reasoning 0-order correction: 1-order correction: x 2 d 1 δy 1 x 2 Hx t 1 d 1 δy 1 d 0 δy 0 Hx f 1 Hx t 0 d 0 δy 0 Hx f 1 Hx f 0 Hx f 0 x 1 x 1

9 Reasoning 0-order correction: 1-order correction: x 2 d 1 δy 1 x 2 x a 1 δx 1 d 0 δy 0 Hx f 1 x a 0 δx 0 x f 1 Hx f 0 x f 0 x 1 x 1

10 Historical overview Ensemble smoother (ES) (van Leeuwen and Evensen, 1996) Ensemble Kalman smoother (EnKS) (Evensen and van Leeuwen, 2000) 4DEnKF (Hunt et al., 2004) 4D-LETKF (Hunt et al., 2007)

11 Historical overview Ensemble smoother (ES) (van Leeuwen and Evensen, 1996) Ensemble Kalman smoother (EnKS) (Evensen and van Leeuwen, 2000) 4DEnKF (Hunt et al., 2004) 4D-LETKF (Hunt et al., 2007)

12 Historical overview Ensemble smoother (ES) (van Leeuwen and Evensen, 1996) Ensemble Kalman smoother (EnKS) (Evensen and van Leeuwen, 2000) 4DEnKF (Hunt et al., 2004) 4D-LETKF (Hunt et al., 2007)

13 Historical overview Ensemble smoother (ES) (van Leeuwen and Evensen, 1996) Ensemble Kalman smoother (EnKS) (Evensen and van Leeuwen, 2000) 4DEnKF (Hunt et al., 2004) 4D-LETKF (Hunt et al., 2007)

14 EnKF update and ensemble observations The linear update equations: x a x f δx = A f Gs, A a A f δa = A f T where s = R 1/2 (y Hx f )/ m 1 The gain writes as G = (I + S T S) 1 S T = S T (I + SS T ) 1 where S R 1/2 HA f / m 1. EnKF: T = G(D S) ETKF: T = (I + S T S) 1/2 I DEnKF: T = 1 2 GS HE f R y HA f Hx f S G T s

15 EnKF update and ensemble observations The linear update equations: x a x f δx = A f Gs, A a A f δa = A f T where s = R 1/2 (y Hx f )/ m 1 The gain writes as G = (I + S T S) 1 S T = S T (I + SS T ) 1 where S R 1/2 HA f / m 1. EnKF: T = G(D S) ETKF: T = (I + S T S) 1/2 I DEnKF: T = 1 2 GS HE f R y HA f Hx f S G T s

16 EnKF update and ensemble observations The linear update equations: x a x f δx = A f Gs, A a A f δa = A f T where s = R 1/2 (y Hx f )/ m 1 The gain writes as G = (I + S T S) 1 S T = S T (I + SS T ) 1 where S R 1/2 HA f / m 1. EnKF: T = G(D S) ETKF: T = (I + S T S) 1/2 I DEnKF: T = 1 2 GS HE f R y HA f Hx f S G T s

17 EnKF update and ensemble observations The linear update equations: x a x f δx = A f Gs, A a A f δa = A f T where s = R 1/2 (y Hx f )/ m 1 The gain writes as G = (I + S T S) 1 S T = S T (I + SS T ) 1 where S R 1/2 HA f / m 1. EnKF: T = G(D S) ETKF: T = (I + S T S) 1/2 I DEnKF: T = 1 2 GS HE f R y HA f Hx f S G T s

18 Evolution of corrections Let us assimilate observations at t 0 δx 0 = A f 0 G 0 s 0 δa 0 = A f 0 T 0 Let M 01 be the tangent linear propagator along the forecast system trajectory between t 0 and t 1 : δx 1 = M 01 δx 0 + O ( δx 0 2) At t 1 the corrections become: δx 1 M 01 δx 0 = M 01 A f 0G 0 s 0 A f 1 G 0 s 0 δa 1 M 01 δa 0 = M 01 A f 0T 0 A f 1 T 0

19 Evolution of corrections Let us assimilate observations at t 0 δx 0 = A f 0 G 0 s 0 δa 0 = A f 0 T 0 Let M 01 be the tangent linear propagator along the forecast system trajectory between t 0 and t 1 : δx 1 = M 01 δx 0 + O ( δx 0 2) At t 1 the corrections become: δx 1 M 01 δx 0 = M 01 A f 0G 0 s 0 A f 1 G 0 s 0 δa 1 M 01 δa 0 = M 01 A f 0T 0 A f 1 T 0

20 Evolution of corrections Let us assimilate observations at t 0 δx 0 = A f 0 G 0 s 0 δa 0 = A f 0 T 0 Let M 01 be the tangent linear propagator along the forecast system trajectory between t 0 and t 1 : δx 1 = M 01 δx 0 + O ( δx 0 2) At t 1 the corrections become: δx 1 M 01 δx 0 = M 01 A f 0G 0 s 0 A f 1 G 0 s 0 δa 1 M 01 δa 0 = M 01 A f 0T 0 A f 1 T 0

21 Parallel assimilation of asynchronous data with the EnKF s = [s T 1... st k ]T S = [S T 1...ST k ]T observations update E f HE f

22 EnKS k E a = E f X 5 (t i ), i=1 X 5 = 1 m 11T + (I 1 m 11T )(G δy1 T + T) observations t 1 t 2 t 3... t i... t k 1 t k update E f HE f experiments

23 EnKS k E a = E f X 5 (t i ), i=1 X 5 = 1 m 11T + (I 1 m 11T )(G δy1 T + T) observations t 1 t 2 t 3... t i... t k 1 t k update E f HE f experiments

24 4DEnKF 4DEnKF: Hx 0 HE 0 (E T 1 E 1 ) 1 E T 1 x 1, HA 0 HE 0 (E T 1 E 1 ) 1 E T 1 A 1, What is (E T E) 1 Ex doing? - It is a vector of coefficients of projection of x onto the range of E (E T 1 E 1) 1 E T 1 x 1 = 1/m E 0 (E T 1 E 1) 1 E T 1 x 1 = x 0 (E T 1 E 1) 1 E T 1 A 1 = I 11 T /m E 0 (E T 1 E 1) 1 E T 1 A 1 = A 0

25 4DEnKF 4DEnKF: Hx 0 HE 0 (E T 1 E 1 ) 1 E T 1 x 1, HA 0 HE 0 (E T 1 E 1 ) 1 E T 1 A 1, What is (E T E) 1 Ex doing? - It is a vector of coefficients of projection of x onto the range of E (E T 1 E 1) 1 E T 1 x 1 = 1/m E 0 (E T 1 E 1) 1 E T 1 x 1 = x 0 (E T 1 E 1) 1 E T 1 A 1 = I 11 T /m E 0 (E T 1 E 1) 1 E T 1 A 1 = A 0

26 4DEnKF 4DEnKF: Hx 0 HE 0 (E T 1 E 1 ) 1 E T 1 x 1, HA 0 HE 0 (E T 1 E 1 ) 1 E T 1 A 1, What is (E T E) 1 Ex doing? - It is a vector of coefficients of projection of x onto the range of E (E T 1 E 1) 1 E T 1 x 1 = 1/m E 0 (E T 1 E 1) 1 E T 1 x 1 = x 0 (E T 1 E 1) 1 E T 1 A 1 = I 11 T /m E 0 (E T 1 E 1) 1 E T 1 A 1 = A 0

27 Asynchronous assimilation: resume Recipe: use ensemble observations stored at observation times, as in 4D-LETKF description (Hunt et al., 2007) This method is scheme-independent It is essentially equivalent to the EnKS solution (Evensen and van Leeuwen, 2000) It is well suited for using with local analysis but not with covariance localisation No tangent linear or adjoint model required Do not use 4DEnKF (Hunt et al., 2004)

28 Asynchronous assimilation: resume Recipe: use ensemble observations stored at observation times, as in 4D-LETKF description (Hunt et al., 2007) This method is scheme-independent It is essentially equivalent to the EnKS solution (Evensen and van Leeuwen, 2000) It is well suited for using with local analysis but not with covariance localisation No tangent linear or adjoint model required Do not use 4DEnKF (Hunt et al., 2004)

29 Asynchronous assimilation: resume Recipe: use ensemble observations stored at observation times, as in 4D-LETKF description (Hunt et al., 2007) This method is scheme-independent It is essentially equivalent to the EnKS solution (Evensen and van Leeuwen, 2000) It is well suited for using with local analysis but not with covariance localisation No tangent linear or adjoint model required Do not use 4DEnKF (Hunt et al., 2004)

30 Asynchronous assimilation: resume Recipe: use ensemble observations stored at observation times, as in 4D-LETKF description (Hunt et al., 2007) This method is scheme-independent It is essentially equivalent to the EnKS solution (Evensen and van Leeuwen, 2000) It is well suited for using with local analysis but not with covariance localisation No tangent linear or adjoint model required Do not use 4DEnKF (Hunt et al., 2004)

31 Asynchronous assimilation: resume Recipe: use ensemble observations stored at observation times, as in 4D-LETKF description (Hunt et al., 2007) This method is scheme-independent It is essentially equivalent to the EnKS solution (Evensen and van Leeuwen, 2000) It is well suited for using with local analysis but not with covariance localisation No tangent linear or adjoint model required Do not use 4DEnKF (Hunt et al., 2004)

32 Asynchronous assimilation: resume Recipe: use ensemble observations stored at observation times, as in 4D-LETKF description (Hunt et al., 2007) This method is scheme-independent It is essentially equivalent to the EnKS solution (Evensen and van Leeuwen, 2000) It is well suited for using with local analysis but not with covariance localisation No tangent linear or adjoint model required Do not use 4DEnKF (Hunt et al., 2004)

33 References Evensen, G. and P. J. van Leeuwen, 2000: An ensemble Kalman smoother for nonlinear dynamics. Mon. Wea. Rev., 128, Hunt, B. R., E. Kalnay, E. J. Kostelich, E. Ott, D. J. Patil, T. Sauer, I. Szunyogh, J. A. Yorke, and A. V. Zimin, 2004: Four-dimensional ensemble Kalman filtering. Tellus, 56A, Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, Sakov, P., G. Evensen, and L. Bertino, 2009, submitted: Asynchronous data assimilation with the EnKF. Tellus A. van Leeuwen, P. J. and G. Evensen, 1996: Data assimilation and inverse methods in terms of a probabilistic formulation. Mon. Wea. Rev., 124,

Abstract 2. ENSEMBLE KALMAN FILTERS 1. INTRODUCTION

Abstract 2. ENSEMBLE KALMAN FILTERS 1. INTRODUCTION J5.4 4D ENSEMBLE KALMAN FILTERING FOR ASSIMILATION OF ASYNCHRONOUS OBSERVATIONS T. Sauer George Mason University, Fairfax, VA 22030 B.R. Hunt, J.A. Yorke, A.V. Zimin, E. Ott, E.J. Kostelich, I. Szunyogh,

More information

Four-Dimensional Ensemble Kalman Filtering

Four-Dimensional Ensemble Kalman Filtering Four-Dimensional Ensemble Kalman Filtering B.R. Hunt, E. Kalnay, E.J. Kostelich, E. Ott, D.J. Patil, T. Sauer, I. Szunyogh, J.A. Yorke, A.V. Zimin University of Maryland, College Park, MD 20742, USA Ensemble

More information

Adaptive ensemble Kalman filtering of nonlinear systems

Adaptive ensemble Kalman filtering of nonlinear systems Adaptive ensemble Kalman filtering of nonlinear systems Tyrus Berry George Mason University June 12, 213 : Problem Setup We consider a system of the form: x k+1 = f (x k ) + ω k+1 ω N (, Q) y k+1 = h(x

More information

Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data

Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data John Harlim and Brian R. Hunt Department of Mathematics and Institute for Physical Science and Technology University

More information

Four-dimensional ensemble Kalman filtering

Four-dimensional ensemble Kalman filtering Tellus (24), 56A, 273 277 Copyright C Blackwell Munksgaard, 24 Printed in UK. All rights reserved TELLUS Four-dimensional ensemble Kalman filtering By B. R. HUNT 1, E. KALNAY 1, E. J. KOSTELICH 2,E.OTT

More information

Ensemble Kalman Filter

Ensemble Kalman Filter Ensemble Kalman Filter Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway, Nansen Environmental and Remote Sensing Center, Bergen, Norway The Ensemble Kalman Filter (EnKF) Represents

More information

Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter

Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter Hong Li, Junjie Liu, and Elana Fertig E. Kalnay I. Szunyogh, E. J. Kostelich Weather and Chaos Group

More information

Finite-size ensemble Kalman filters (EnKF-N)

Finite-size ensemble Kalman filters (EnKF-N) Finite-size ensemble Kalman filters (EnKF-N) Marc Bocquet (1,2), Pavel Sakov (3,4) (1) Université Paris-Est, CEREA, joint lab École des Ponts ParisTech and EdF R&D, France (2) INRIA, Paris-Rocquencourt

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi 4th EnKF Workshop, April 2010 Relationship

More information

A Comparative Study of 4D-VAR and a 4D Ensemble Kalman Filter: Perfect Model Simulations with Lorenz-96

A Comparative Study of 4D-VAR and a 4D Ensemble Kalman Filter: Perfect Model Simulations with Lorenz-96 Tellus 000, 000 000 (0000) Printed 20 October 2006 (Tellus LATEX style file v2.2) A Comparative Study of 4D-VAR and a 4D Ensemble Kalman Filter: Perfect Model Simulations with Lorenz-96 Elana J. Fertig

More information

Optimal Localization for Ensemble Kalman Filter Systems

Optimal Localization for Ensemble Kalman Filter Systems Journal December of the 2014 Meteorological Society of Japan, Vol. Á. 92, PERIÁÑEZ No. 6, pp. et 585 597, al. 2014 585 DOI:10.2151/jmsj.2014-605 Optimal Localization for Ensemble Kalman Filter Systems

More information

Accelerating the spin-up of Ensemble Kalman Filtering

Accelerating the spin-up of Ensemble Kalman Filtering Accelerating the spin-up of Ensemble Kalman Filtering Eugenia Kalnay * and Shu-Chih Yang University of Maryland Abstract A scheme is proposed to improve the performance of the ensemble-based Kalman Filters

More information

Data assimilation in the geosciences An overview

Data assimilation in the geosciences An overview Data assimilation in the geosciences An overview Alberto Carrassi 1, Olivier Talagrand 2, Marc Bocquet 3 (1) NERSC, Bergen, Norway (2) LMD, École Normale Supérieure, IPSL, France (3) CEREA, joint lab École

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi ECODYC10, Dresden 28 January 2010 Relationship

More information

Some ideas for Ensemble Kalman Filter

Some ideas for Ensemble Kalman Filter Some ideas for Ensemble Kalman Filter Former students and Eugenia Kalnay UMCP Acknowledgements: UMD Chaos-Weather Group: Brian Hunt, Istvan Szunyogh, Ed Ott and Jim Yorke, Kayo Ide, and students Former

More information

A Unification of Ensemble Square Root Kalman Filters. and Wolfgang Hiller

A Unification of Ensemble Square Root Kalman Filters. and Wolfgang Hiller Generated using version 3.0 of the official AMS L A TEX template A Unification of Ensemble Square Root Kalman Filters Lars Nerger, Tijana Janjić, Jens Schröter, and Wolfgang Hiller Alfred Wegener Institute

More information

Introduction to ensemble forecasting. Eric J. Kostelich

Introduction to ensemble forecasting. Eric J. Kostelich Introduction to ensemble forecasting Eric J. Kostelich SCHOOL OF MATHEMATICS AND STATISTICS MSRI Climate Change Summer School July 21, 2008 Co-workers: Istvan Szunyogh, Brian Hunt, Edward Ott, Eugenia

More information

ESTIMATING CORRELATIONS FROM A COASTAL OCEAN MODEL FOR LOCALIZING AN ENSEMBLE TRANSFORM KALMAN FILTER

ESTIMATING CORRELATIONS FROM A COASTAL OCEAN MODEL FOR LOCALIZING AN ENSEMBLE TRANSFORM KALMAN FILTER ESTIMATING CORRELATIONS FROM A COASTAL OCEAN MODEL FOR LOCALIZING AN ENSEMBLE TRANSFORM KALMAN FILTER Jonathan Poterjoy National Weather Center Research Experiences for Undergraduates, Norman, Oklahoma

More information

Smoothers: Types and Benchmarks

Smoothers: Types and Benchmarks Smoothers: Types and Benchmarks Patrick N. Raanes Oxford University, NERSC 8th International EnKF Workshop May 27, 2013 Chris Farmer, Irene Moroz Laurent Bertino NERSC Geir Evensen Abstract Talk builds

More information

Enhanced Ocean Prediction using Ensemble Kalman Filter Techniques

Enhanced Ocean Prediction using Ensemble Kalman Filter Techniques Enhanced Ocean Prediction using Ensemble Kalman Filter Techniques Dr Peter R. Oke CSIRO Marine and Atmospheric Research and Wealth from Oceans Flagship Program GPO Box 1538 Hobart TAS 7001 Australia phone:

More information

Local Ensemble Transform Kalman Filter

Local Ensemble Transform Kalman Filter Local Ensemble Transform Kalman Filter Brian Hunt 11 June 2013 Review of Notation Forecast model: a known function M on a vector space of model states. Truth: an unknown sequence {x n } of model states

More information

The Ensemble Kalman Filter:

The Ensemble Kalman Filter: p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen 23, Ocean Dynamics, Vol 53, No 4 p.2 The Ensemble

More information

Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF

Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Javier Amezcua, Dr. Kayo Ide, Dr. Eugenia Kalnay 1 Outline

More information

The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich. Main topics

The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich. Main topics The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich Arizona State University Co-workers: Istvan Szunyogh, Brian Hunt, Ed Ott, Eugenia Kalnay, Jim Yorke, and many others http://www.weatherchaos.umd.edu

More information

Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model

Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model Shu-Chih Yang 1*, Eugenia Kalnay, and Brian Hunt 1. Department of Atmospheric Sciences, National Central

More information

Estimating observation impact without adjoint model in an ensemble Kalman filter

Estimating observation impact without adjoint model in an ensemble Kalman filter QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 134: 1327 1335 (28) Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 1.12/qj.28 Estimating observation

More information

Advances and Challenges in Ensemblebased Data Assimilation in Meteorology. Takemasa Miyoshi

Advances and Challenges in Ensemblebased Data Assimilation in Meteorology. Takemasa Miyoshi January 18, 2013, DA Workshop, Tachikawa, Japan Advances and Challenges in Ensemblebased Data Assimilation in Meteorology Takemasa Miyoshi RIKEN Advanced Institute for Computational Science Takemasa.Miyoshi@riken.jp

More information

The Local Ensemble Transform Kalman Filter and its implementation on the NCEP global model at the University of Maryland

The Local Ensemble Transform Kalman Filter and its implementation on the NCEP global model at the University of Maryland The Local Ensemble Transform Kalman Filter and its implementation on the NCEP global model at the University of Maryland Istvan Szunyogh (*), Elizabeth A. Satterfield (*), José A. Aravéquia (**), Elana

More information

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006 Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems Eric Kostelich Data Mining Seminar, Feb. 6, 2006 kostelich@asu.edu Co-Workers Istvan Szunyogh, Gyorgyi Gyarmati, Ed Ott, Brian

More information

The Local Ensemble Transform Kalman Filter and its implementation on the NCEP global model at the University of Maryland

The Local Ensemble Transform Kalman Filter and its implementation on the NCEP global model at the University of Maryland The Local Ensemble Transform Kalman Filter and its implementation on the NCEP global model at the University of Maryland Istvan Szunyogh (*), Elizabeth A. Satterfield (*), José A. Aravéquia (**), Elana

More information

Ensemble Kalman Filter potential

Ensemble Kalman Filter potential Ensemble Kalman Filter potential Former students (Shu-Chih( Yang, Takemasa Miyoshi, Hong Li, Junjie Liu, Chris Danforth, Ji-Sun Kang, Matt Hoffman), and Eugenia Kalnay University of Maryland Acknowledgements:

More information

Development of the Local Ensemble Transform Kalman Filter

Development of the Local Ensemble Transform Kalman Filter Development of the Local Ensemble Transform Kalman Filter Istvan Szunyogh Institute for Physical Science and Technology & Department of Atmospheric and Oceanic Science AOSC Special Seminar September 27,

More information

Quarterly Journal of the Royal Meteorological Society !"#$%&'&(&)"&'*'+'*%(,#$,-$#*'."(/'*0'"(#"(1"&)23$)(4#$2#"( 5'$*)6!

Quarterly Journal of the Royal Meteorological Society !#$%&'&(&)&'*'+'*%(,#$,-$#*'.(/'*0'(#(1&)23$)(4#$2#( 5'$*)6! !"#$%&'&(&)"&'*'+'*%(,#$,-$#*'."(/'*0'"(#"("&)$)(#$#"( '$*)! "#$%&'()!!"#$%&$'()*+"$,#')+-)%.&)/+(#')0&%&+$+'+#')+&%(! *'&$+,%-./!0)! "! :-(;%/-,(;! '/;!?$@A-//;B!@

More information

4DEnVar. Four-Dimensional Ensemble-Variational Data Assimilation. Colloque National sur l'assimilation de données

4DEnVar. Four-Dimensional Ensemble-Variational Data Assimilation. Colloque National sur l'assimilation de données Four-Dimensional Ensemble-Variational Data Assimilation 4DEnVar Colloque National sur l'assimilation de données Andrew Lorenc, Toulouse France. 1-3 décembre 2014 Crown copyright Met Office 4DEnVar: Topics

More information

Analysis sensitivity calculation in an Ensemble Kalman Filter

Analysis sensitivity calculation in an Ensemble Kalman Filter Analysis sensitivity calculation in an Ensemble Kalman Filter Junjie Liu 1, Eugenia Kalnay 2, Takemasa Miyoshi 2, and Carla Cardinali 3 1 University of California, Berkeley, CA, USA 2 University of Maryland,

More information

A Matrix-Free Posterior Ensemble Kalman Filter Implementation Based on a Modified Cholesky Decomposition

A Matrix-Free Posterior Ensemble Kalman Filter Implementation Based on a Modified Cholesky Decomposition atmosphere Article A Matrix-Free Posterior Ensemble Kalman Filter Implementation Based on a Modified Cholesky Decomposition Elias D. Nino-Ruiz Applied Math and Computational Science Laboratory, Department

More information

arxiv: v1 [physics.ao-ph] 23 Jan 2009

arxiv: v1 [physics.ao-ph] 23 Jan 2009 A Brief Tutorial on the Ensemble Kalman Filter Jan Mandel arxiv:0901.3725v1 [physics.ao-ph] 23 Jan 2009 February 2007, updated January 2009 Abstract The ensemble Kalman filter EnKF) is a recursive filter

More information

Simple Doppler Wind Lidar adaptive observation experiments with 3D-Var. and an ensemble Kalman filter in a global primitive equations model

Simple Doppler Wind Lidar adaptive observation experiments with 3D-Var. and an ensemble Kalman filter in a global primitive equations model 1 2 3 4 Simple Doppler Wind Lidar adaptive observation experiments with 3D-Var and an ensemble Kalman filter in a global primitive equations model 5 6 7 8 9 10 11 12 Junjie Liu and Eugenia Kalnay Dept.

More information

P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES

P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES Xuguang Wang*, Thomas M. Hamill, Jeffrey S. Whitaker NOAA/CIRES

More information

Analysis Scheme in the Ensemble Kalman Filter

Analysis Scheme in the Ensemble Kalman Filter JUNE 1998 BURGERS ET AL. 1719 Analysis Scheme in the Ensemble Kalman Filter GERRIT BURGERS Royal Netherlands Meteorological Institute, De Bilt, the Netherlands PETER JAN VAN LEEUWEN Institute or Marine

More information

Monthly Weather Review The Hybrid Local Ensemble Transform Kalman Filter

Monthly Weather Review The Hybrid Local Ensemble Transform Kalman Filter Monthly Weather Review The Hybrid Local Ensemble Transform Kalman Filter --Manuscript Draft-- Manuscript Number: Full Title: Article Type: Corresponding Author: Corresponding Author's Institution: First

More information

4D-Var or Ensemble Kalman Filter?

4D-Var or Ensemble Kalman Filter? 4D-Var or Ensemble Kalman Filter? Eugenia Kalnay, Shu-Chih Yang, Hong Li, Junjie Liu, Takemasa Miyoshi,Chris Danforth Department of AOS and Chaos/Weather Group University of Maryland Chaos/Weather group

More information

A data-driven method for improving the correlation estimation in serial ensemble Kalman filter

A data-driven method for improving the correlation estimation in serial ensemble Kalman filter A data-driven method for improving the correlation estimation in serial ensemble Kalman filter Michèle De La Chevrotière, 1 John Harlim 2 1 Department of Mathematics, Penn State University, 2 Department

More information

Practical Aspects of Ensemble-based Kalman Filters

Practical Aspects of Ensemble-based Kalman Filters Practical Aspects of Ensemble-based Kalman Filters Lars Nerger Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany and Bremen Supercomputing Competence Center BremHLR Bremen, Germany

More information

4D-Var or Ensemble Kalman Filter? TELLUS A, in press

4D-Var or Ensemble Kalman Filter? TELLUS A, in press 4D-Var or Ensemble Kalman Filter? Eugenia Kalnay 1 *, Hong Li 1, Takemasa Miyoshi 2, Shu-Chih Yang 1, and Joaquim Ballabrera-Poy 3 1 University of Maryland, College Park, MD, 20742-2425 2 Numerical Prediction

More information

A Gaussian Resampling Particle Filter

A Gaussian Resampling Particle Filter A Gaussian Resampling Particle Filter By X. Xiong 1 and I. M. Navon 1 1 School of Computational Science and Department of Mathematics, Florida State University, Tallahassee, FL 3236, USA 14 July ABSTRACT

More information

An Ensemble Kalman Smoother for Nonlinear Dynamics

An Ensemble Kalman Smoother for Nonlinear Dynamics 1852 MONTHLY WEATHER REVIEW VOLUME 128 An Ensemble Kalman Smoother or Nonlinear Dynamics GEIR EVENSEN Nansen Environmental and Remote Sensing Center, Bergen, Norway PETER JAN VAN LEEUWEN Institute or Marine

More information

WRF-LETKF The Present and Beyond

WRF-LETKF The Present and Beyond November 12, 2012, Weather-Chaos meeting WRF-LETKF The Present and Beyond Takemasa Miyoshi and Masaru Kunii University of Maryland, College Park miyoshi@atmos.umd.edu Co-investigators and Collaborators:

More information

Comparisons between 4DEnVar and 4DVar on the Met Office global model

Comparisons between 4DEnVar and 4DVar on the Met Office global model Comparisons between 4DEnVar and 4DVar on the Met Office global model David Fairbairn University of Surrey/Met Office 26 th June 2013 Joint project by David Fairbairn, Stephen Pring, Andrew Lorenc, Neill

More information

Assimilating Nonlocal Observations using a Local Ensemble Kalman Filter

Assimilating Nonlocal Observations using a Local Ensemble Kalman Filter Tellus 000, 000 000 (0000) Printed 16 February 2007 (Tellus LATEX style file v2.2) Assimilating Nonlocal Observations using a Local Ensemble Kalman Filter Elana J. Fertig 1, Brian R. Hunt 1, Edward Ott

More information

On the Kalman Filter error covariance collapse into the unstable subspace

On the Kalman Filter error covariance collapse into the unstable subspace Nonlin. Processes Geophys., 18, 243 250, 2011 doi:10.5194/npg-18-243-2011 Author(s) 2011. CC Attribution 3.0 License. Nonlinear Processes in Geophysics On the Kalman Filter error covariance collapse into

More information

Data assimilation; comparison of 4D-Var and LETKF smoothers

Data assimilation; comparison of 4D-Var and LETKF smoothers Data assimilation; comparison of 4D-Var and LETKF smoothers Eugenia Kalnay and many friends University of Maryland CSCAMM DAS13 June 2013 Contents First part: Forecasting the weather - we are really getting

More information

An Iterative EnKF for Strongly Nonlinear Systems

An Iterative EnKF for Strongly Nonlinear Systems 1988 M O N T H L Y W E A T H E R R E V I E W VOLUME 140 An Iterative EnKF for Strongly Nonlinear Systems PAVEL SAKOV Nansen Environmental and Remote Sensing Center, Bergen, Norway DEAN S. OLIVER Uni Centre

More information

The Ensemble Kalman Filter:

The Ensemble Kalman Filter: p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen, Ocean Dynamics, Vol 5, No p. The Ensemble

More information

Local Predictability of the Performance of an. Ensemble Forecast System

Local Predictability of the Performance of an. Ensemble Forecast System Local Predictability of the Performance of an Ensemble Forecast System Elizabeth Satterfield Istvan Szunyogh University of Maryland, College Park, Maryland To be submitted to JAS Corresponding author address:

More information

An ETKF approach for initial state and parameter estimation in ice sheet modelling

An ETKF approach for initial state and parameter estimation in ice sheet modelling An ETKF approach for initial state and parameter estimation in ice sheet modelling Bertrand Bonan University of Reading DARC Seminar, Reading October 30, 2013 DARC Seminar (Reading) ETKF for ice sheet

More information

Application of a Localization Scheme in Estimating Groundwater Level Using Deterministic Ensemble Kalman Filter

Application of a Localization Scheme in Estimating Groundwater Level Using Deterministic Ensemble Kalman Filter Application of a Localization Scheme in Estimating Groundwater Level Using Deterministic Ensemble Kalman Filter Mohammad Mehdi Bateni, S. Eslamian, S. Mousavi, E. Zia Hosseinipour To cite this version:

More information

Can hybrid-4denvar match hybrid-4dvar?

Can hybrid-4denvar match hybrid-4dvar? Comparing ensemble-variational assimilation methods for NWP: Can hybrid-4denvar match hybrid-4dvar? WWOSC, Montreal, August 2014. Andrew Lorenc, Neill Bowler, Adam Clayton, David Fairbairn and Stephen

More information

Comparison between Local Ensemble Transform Kalman Filter and PSAS in the NASA finite volume GCM: perfect model experiments

Comparison between Local Ensemble Transform Kalman Filter and PSAS in the NASA finite volume GCM: perfect model experiments Comparison between Local Ensemble Transform Kalman Filter and PSAS in the NASA finite volume GCM: perfect model experiments Junjie Liu 1*, Elana Judith Fertig 1, and Hong Li 1 Eugenia Kalnay 1, Brian R.

More information

Kalman Filter and Ensemble Kalman Filter

Kalman Filter and Ensemble Kalman Filter Kalman Filter and Ensemble Kalman Filter 1 Motivation Ensemble forecasting : Provides flow-dependent estimate of uncertainty of the forecast. Data assimilation : requires information about uncertainty

More information

Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter

Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 135: 523 533 (2009) Published online 3 February 2009 in Wiley InterScience (www.interscience.wiley.com).371 Simultaneous estimation

More information

An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation

An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation A. Shah 1,2, M. E. Gharamti 1, L. Bertino 1 1 Nansen Environmental and Remote Sensing Center 2 University of Bergen

More information

Weight interpolation for efficient data assimilation with the Local Ensemble Transform Kalman Filter

Weight interpolation for efficient data assimilation with the Local Ensemble Transform Kalman Filter Weight interpolation for efficient data assimilation with the Local Ensemble Transform Kalman Filter Shu-Chih Yang 1,2, Eugenia Kalnay 1,3, Brian Hunt 1,3 and Neill E. Bowler 4 1 Department of Atmospheric

More information

A simpler formulation of forecast sensitivity to observations: application to ensemble Kalman filters

A simpler formulation of forecast sensitivity to observations: application to ensemble Kalman filters PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM SERIES A DYNAMIC METEOROLOGY AND OCEANOGRAPHY A simpler formulation of forecast sensitivity to observations: application to ensemble

More information

Guo-Yuan Lien*, Eugenia Kalnay, and Takemasa Miyoshi University of Maryland, College Park, Maryland 2. METHODOLOGY

Guo-Yuan Lien*, Eugenia Kalnay, and Takemasa Miyoshi University of Maryland, College Park, Maryland 2. METHODOLOGY 9.2 EFFECTIVE ASSIMILATION OF GLOBAL PRECIPITATION: SIMULATION EXPERIMENTS Guo-Yuan Lien*, Eugenia Kalnay, and Takemasa Miyoshi University of Maryland, College Park, Maryland 1. INTRODUCTION * Precipitation

More information

A Note on the Particle Filter with Posterior Gaussian Resampling

A Note on the Particle Filter with Posterior Gaussian Resampling Tellus (6), 8A, 46 46 Copyright C Blackwell Munksgaard, 6 Printed in Singapore. All rights reserved TELLUS A Note on the Particle Filter with Posterior Gaussian Resampling By X. XIONG 1,I.M.NAVON 1,2 and

More information

Fundamentals of Data Assimilation

Fundamentals of Data Assimilation National Center for Atmospheric Research, Boulder, CO USA GSI Data Assimilation Tutorial - June 28-30, 2010 Acknowledgments and References WRFDA Overview (WRF Tutorial Lectures, H. Huang and D. Barker)

More information

Comparison between Local Ensemble Transform Kalman Filter and PSAS in the NASA finite volume GCM perfect model experiments

Comparison between Local Ensemble Transform Kalman Filter and PSAS in the NASA finite volume GCM perfect model experiments Nonlin. Processes Geophys., 15, 645 659, 2008 Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Nonlinear Processes in Geophysics Comparison between Local Ensemble

More information

A Stochastic Collocation based. for Data Assimilation

A Stochastic Collocation based. for Data Assimilation A Stochastic Collocation based Kalman Filter (SCKF) for Data Assimilation Lingzao Zeng and Dongxiao Zhang University of Southern California August 11, 2009 Los Angeles Outline Introduction SCKF Algorithm

More information

Localization in the ensemble Kalman Filter

Localization in the ensemble Kalman Filter Department of Meteorology Localization in the ensemble Kalman Filter Ruth Elizabeth Petrie A dissertation submitted in partial fulfilment of the requirement for the degree of MSc. Atmosphere, Ocean and

More information

Generating climatological forecast error covariance for Variational DAs with ensemble perturbations: comparison with the NMC method

Generating climatological forecast error covariance for Variational DAs with ensemble perturbations: comparison with the NMC method Generating climatological forecast error covariance for Variational DAs with ensemble perturbations: comparison with the NMC method Matthew Wespetal Advisor: Dr. Eugenia Kalnay UMD, AOSC Department March

More information

Error (E) Covariance Diagnostics. in Ensemble Data Assimilation. Kayo Ide, Daryl Kleist, Adam Kubaryk University of Maryland

Error (E) Covariance Diagnostics. in Ensemble Data Assimilation. Kayo Ide, Daryl Kleist, Adam Kubaryk University of Maryland Error (E) Covariance Diagnostics in Ensemble Data Assimilation Kayo Ide, Daryl Kleist, Adam Kubaryk University of Maryland 7 th EnKF Data Assimilation Workshop May 2016 Outline Part I. Background: E-diagnostics

More information

DATA ASSIMILATION FOR FLOOD FORECASTING

DATA ASSIMILATION FOR FLOOD FORECASTING DATA ASSIMILATION FOR FLOOD FORECASTING Arnold Heemin Delft University of Technology 09/16/14 1 Data assimilation is the incorporation of measurement into a numerical model to improve the model results

More information

Estimation of positive sum-to-one constrained parameters with ensemble-based Kalman filters: application to an ocean ecosystem model

Estimation of positive sum-to-one constrained parameters with ensemble-based Kalman filters: application to an ocean ecosystem model Estimation of positive sum-to-one constrained parameters with ensemble-based Kalman filters: application to an ocean ecosystem model Ehouarn Simon 1, Annette Samuelsen 1, Laurent Bertino 1 Dany Dumont

More information

On the convergence of (ensemble) Kalman filters and smoothers onto the unstable subspace

On the convergence of (ensemble) Kalman filters and smoothers onto the unstable subspace On the convergence of (ensemble) Kalman filters and smoothers onto the unstable subspace Marc Bocquet CEREA, joint lab École des Ponts ParisTech and EdF R&D, Université Paris-Est, France Institut Pierre-Simon

More information

Multivariate Correlations: Applying a Dynamic Constraint and Variable Localization in an Ensemble Context

Multivariate Correlations: Applying a Dynamic Constraint and Variable Localization in an Ensemble Context Multivariate Correlations: Applying a Dynamic Constraint and Variable Localization in an Ensemble Context Catherine Thomas 1,2,3, Kayo Ide 1 Additional thanks to Daryl Kleist, Eugenia Kalnay, Takemasa

More information

Gaussian Filtering Strategies for Nonlinear Systems

Gaussian Filtering Strategies for Nonlinear Systems Gaussian Filtering Strategies for Nonlinear Systems Canonical Nonlinear Filtering Problem ~u m+1 = ~ f (~u m )+~ m+1 ~v m+1 = ~g(~u m+1 )+~ o m+1 I ~ f and ~g are nonlinear & deterministic I Noise/Errors

More information

Interpreting Adjoint and Ensemble Sensitivity toward the Development of Optimal Observation Targeting Strategies

Interpreting Adjoint and Ensemble Sensitivity toward the Development of Optimal Observation Targeting Strategies Interpreting Adjoint and Ensemble Sensitivity toward the Development of Optimal Observation Targeting Strategies Brian C. Ancell 1, and Gregory J Hakim University of Washington, Seattle, WA Submitted to

More information

R. E. Petrie and R. N. Bannister. Department of Meteorology, Earley Gate, University of Reading, Reading, RG6 6BB, United Kingdom

R. E. Petrie and R. N. Bannister. Department of Meteorology, Earley Gate, University of Reading, Reading, RG6 6BB, United Kingdom A method for merging flow-dependent forecast error statistics from an ensemble with static statistics for use in high resolution variational data assimilation R. E. Petrie and R. N. Bannister Department

More information

ABSTRACT. from a few minutes (e.g. cumulus convection) to years (e.g. El Niño). Fast time

ABSTRACT. from a few minutes (e.g. cumulus convection) to years (e.g. El Niño). Fast time ABSTRACT Title of dissertation: DATA ASSIMILATION EXPERIMENTS WITH A SIMPLE COUPLED OCEAN-ATMOSPHERE MODEL Tamara Singleton, Doctor of Philosophy, 2011 Dissertation co-directed by: Professors Eugenia Kalnay

More information

Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter

Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter Jon Poterjoy, Ryan Sobash, and Jeffrey Anderson National Center for Atmospheric Research

More information

Implications of the Form of the Ensemble Transformation in the Ensemble Square Root Filters

Implications of the Form of the Ensemble Transformation in the Ensemble Square Root Filters 1042 M O N T H L Y W E A T H E R R E V I E W VOLUME 136 Implications of the Form of the Ensemble Transformation in the Ensemble Square Root Filters PAVEL SAKOV AND PETER R. OKE CSIRO Marine and Atmospheric

More information

Ensemble Kalman Filters for WRF-ARW. Chris Snyder MMM and IMAGe National Center for Atmospheric Research

Ensemble Kalman Filters for WRF-ARW. Chris Snyder MMM and IMAGe National Center for Atmospheric Research Ensemble Kalman Filters for WRF-ARW Chris Snyder MMM and IMAGe National Center for Atmospheric Research Preliminaries Notation: x = modelʼs state w.r.t. some discrete basis, e.g. grid-pt values y = Hx

More information

It is advisable to refer to the publisher s version if you intend to cite from the work.

It is advisable to refer to the publisher s version if you intend to cite from the work. A comparison of the equivalent weights particle filter and the local ensemble transform Kalman filter in application to the barotropic vorticity equation Article Accepted Version Creative Commons: Attribution

More information

Organization. I MCMC discussion. I project talks. I Lecture.

Organization. I MCMC discussion. I project talks. I Lecture. Organization I MCMC discussion I project talks. I Lecture. Content I Uncertainty Propagation Overview I Forward-Backward with an Ensemble I Model Reduction (Intro) Uncertainty Propagation in Causal Systems

More information

Ensemble square-root filters

Ensemble square-root filters Ensemble square-root filters MICHAEL K. TIPPETT International Research Institute for climate prediction, Palisades, New Yor JEFFREY L. ANDERSON GFDL, Princeton, New Jersy CRAIG H. BISHOP Naval Research

More information

Weight interpolation for efficient data assimilation with the Local Ensemble Transform Kalman Filter

Weight interpolation for efficient data assimilation with the Local Ensemble Transform Kalman Filter QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Published online 17 December 2008 in Wiley InterScience (www.interscience.wiley.com).353 Weight interpolation for efficient data assimilation with

More information

Comparing the SEKF with the DEnKF on a land surface model

Comparing the SEKF with the DEnKF on a land surface model Comparing the SEKF with the DEnKF on a land surface model David Fairbairn, Alina Barbu, Emiliano Gelati, Jean-Francois Mahfouf and Jean-Christophe Caret CNRM - Meteo France Partly funded by European Union

More information

Zentrum für Technomathematik

Zentrum für Technomathematik Zentrum für Technomathematik Fachbereich 3 Mathematik und Informatik On the influence of model nonlinearity and localization on ensemble Kalman smoothing Lars Nerger Svenja Schulte Angelika Bunse-Gerstner

More information

Data Assimilation Working Group

Data Assimilation Working Group Data Assimilation Working Group Dylan Jones (U. Toronto) Kevin Bowman (JPL) Daven Henze (CU Boulder) IGC7 4 May 2015 1 Chemical Data Assimilation Methodology State optimization: x is the model state (e.g.,

More information

Ensemble-based Data Assimilation of TRMM/GPM Precipitation Measurements

Ensemble-based Data Assimilation of TRMM/GPM Precipitation Measurements January 16, 2014, JAXA Joint PI Workshop, Tokyo Ensemble-based Data Assimilation of TRMM/GPM Precipitation Measurements PI: Takemasa Miyoshi RIKEN Advanced Institute for Computational Science Takemasa.Miyoshi@riken.jp

More information

J9.4 ERRORS OF THE DAY, BRED VECTORS AND SINGULAR VECTORS: IMPLICATIONS FOR ENSEMBLE FORECASTING AND DATA ASSIMILATION

J9.4 ERRORS OF THE DAY, BRED VECTORS AND SINGULAR VECTORS: IMPLICATIONS FOR ENSEMBLE FORECASTING AND DATA ASSIMILATION J9.4 ERRORS OF THE DAY, BRED VECTORS AND SINGULAR VECTORS: IMPLICATIONS FOR ENSEMBLE FORECASTING AND DATA ASSIMILATION Shu-Chih Yang 1, Matteo Corazza and Eugenia Kalnay 1 1 University of Maryland, College

More information

EARLY ONLINE RELEASE

EARLY ONLINE RELEASE AMERICAN METEOROLOGICAL SOCIETY Monthly Weather Review EARLY ONLINE RELEASE This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it

More information

Ensemble 4DVAR for the NCEP hybrid GSI EnKF data assimilation system and observation impact study with the hybrid system

Ensemble 4DVAR for the NCEP hybrid GSI EnKF data assimilation system and observation impact study with the hybrid system Ensemble 4DVAR for the NCEP hybrid GSI EnKF data assimilation system and observation impact study with the hybrid system Xuguang Wang School of Meteorology University of Oklahoma, Norman, OK OU: Ting Lei,

More information

Preliminary Test of Glider Data Assimilation Along the Labrador Sea Shelf Break

Preliminary Test of Glider Data Assimilation Along the Labrador Sea Shelf Break Preliminary Test of Glider Data Assimilation Along the Labrador Sea Shelf Break Third Annual VITALS Science Meeting October 19, 2015 Changheng Chen, K. Andrea Scott Department of Systems Design Engineering

More information

Assimilation des Observations et Traitement des Incertitudes en Météorologie

Assimilation des Observations et Traitement des Incertitudes en Météorologie Assimilation des Observations et Traitement des Incertitudes en Météorologie Olivier Talagrand Laboratoire de Météorologie Dynamique, Paris 4èmes Rencontres Météo/MathAppli Météo-France, Toulouse, 25 Mars

More information

We honor Ed Lorenz ( ) who started the whole new science of predictability

We honor Ed Lorenz ( ) who started the whole new science of predictability Atmospheric Predictability: From Basic Theory to Forecasting Practice. Eugenia Kalnay Alghero, May 2008, Lecture 1 We honor Ed Lorenz (1917-2008) who started the whole new science of predictability Ed

More information

Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter

Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter arxiv:physics/0511236v2 [physics.data-an] 29 Dec 2006 Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter Brian R. Hunt Institute for Physical Science and Technology

More information

Coupled Global-Regional Data Assimilation Using Joint States

Coupled Global-Regional Data Assimilation Using Joint States DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Coupled Global-Regional Data Assimilation Using Joint States Istvan Szunyogh Texas A&M University, Department of Atmospheric

More information

An iterative ensemble Kalman filter in presence of additive model error

An iterative ensemble Kalman filter in presence of additive model error An iterative ensemble Kalman filter in presence of additive model error Pavel Sakov, Jean-Matthieu Haussaire, Marc Bocquet To cite this version: Pavel Sakov, Jean-Matthieu Haussaire, Marc Bocquet. An iterative

More information