Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF

Size: px
Start display at page:

Download "Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF"

Transcription

1 Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Javier Amezcua, Dr. Kayo Ide, Dr. Eugenia Kalnay 1

2 Outline Mean-Preserving Non-Symmetric Ensemble Transform Kalman Filter (MPNS-ETKF) Ensemble Square Root Filters (EnSRFs) Solutions of the ETKF The low order clustering problem Using the MPNS-ETKF to solve this problem Simple univariate nonlinear model Lorenz 1963 model Lorenz 1996 and the importance of symmetry in R-localization 2

3 Stochastic vs. deterministic filters Stochastic EnKF (Evensen, 1994; Burgers et al, 1996; Houtekamer and Mitchell, 1998) Perturbed observations, the covariance equation fulfilled only statistically. Deterministic (EnSRF: Tippett et al, 2003) Serial (Whitaker and Hamill, 2002) EAKF (Anderson, 2001) ETKF (Bishop et al, 2001), LETKF (Hunt et al, 2007) X a = X b W a, W a R M M 3

4 Ensemble Transform Kalman Filter The original formulation (Bishop et al, 2001) W a = C I + Γ 1 2 The columns of this matrix contains eigenvectors. Hence, it is an orthonormal matrix. CΓC T = YbT R 1 Y b M 1 Is a diagonal matrix with eigenvalues. The one-sided ETKF fulfills the covariance equation, but we also require the mean of the perturbations to be zero. X a 1 = 0 This solution doesn t fulfill this in general (Livings et al, 2007) and leads to bad performance (Sakov and Oke, 2008). 4

5 ETKFs that preserves the mean Spherical simplex (Wang et al, 2004) W a = C I + Γ 1 2C T Symmetric square root in the LETKF (Hunt et al, 2007) W a = I + CΓC T 1 2 Where CΓC T = Y bt R 1 Y b M 1. In this [symmetric] case W a is the closest to I; hence, X a is the closest to X b (Ott et al, 2004). 5

6 General solution to the ETKF A general ETKF is: W a = C I + Γ 1 2S T where S R M M must be orthonormal and meanpreserving. There are cheap ways to construct S (Bishop, pers. comm.). A particular form (which will be important in R-localization) is to rotate the symmetric solution: W a = C I + Γ 1 2C T Σ T where Σ T Σ = I and Σ T 1 = 1 Some choices: S = I gives the one sided S = C gives LETKF 6

7 Outline Mean-Preserving Non-Symmetric Ensemble Transform Kalman Filter (MPNS-ETKF) Ensemble Square Root Filters (EnSRFs) Solutions of the ETKF The low order clustering problem Using the MPNS-ETKF to solve this problem Simple univariate nonlinear model Lorenz 1963 model Lorenz 1996 and the importance of symmetry in R-localization 7

8 Kalman filtering The filtering problem linear x t = f x t 1 +w t y t o = h x t + v t Gaussian The conditions aren t usually perfectly fulfilled. How well they are approximated depends upon: The length of the assimilation window. The magnitude of the model error covariance and the observational error covariance. 8

9 The nonlinear effect of ensemble clustering Using the Ikeda model, Lawson and Hansen (2004) realized that the performance of the EnSRF (they used the serial) is more sensitive to nonlinearity. EnKF EnSRF M-1 members 1 member Background ensemble, Analysis ensemble Lawson and Hansen (2004) 9

10 The nonlinear effect of ensemble clustering The higher order moments are the most affected. EnKF linear EnSRF linear The analysis RMSE was not affected much. The spread is conserved. EnKF nonlinear EnSRF nonlinear The stochastic EnKF is more robust, but it introduces more sampling error (Whitaker and Hamill, 2002). 10 Lawson and Hansen (2004)

11 Outline Mean-Preserving Non-Symmetric Ensemble Transform Kalman Filter (MPNS-ETKF) Ensemble Square Root Filters (EnSRFs) Solutions of the ETKF The low order clustering problem Using the MPNS-ETKF to solve this problem Simple univariate nonlinear model Lorenz 1963 model Lorenz 1996 and the importance of symmetry in R-localization 11

12 A univariate quadratic model Consider the following nonlinear ODE (similar to Anderson, 2010): x = x + bx 2 An Euler Forward discretization leads to the following map: x t+1 = 1 + x t + b x 2 t Time step for the integration: Nonlinearity coefficient 0,0.5 Let s consider the unstable fixed point x = 0 to be the truth. 12

13 Progressive deformation of the ensemble due to quadratic evolution b=0 b=0.2 T I M E x b=0.5 x b=0.7 x x 13

14 Experimental settings x t+1 = 1 + x t + b x t 2 Several combinations of settings were chosen, the results shown here use: M = 20 ensemble members. σ 2 = 1, observational error. The initial ensemble was centered in x = 0 with p 0 = 1. The observation/assimilation frequency was varied. The degree on nonlinearity was varied. 14

15 Observation/assimilation window: 2 ETKF b = 0 x x ETKF b = 0.2 When using the symmetric ETKF, the clustering appears as a consequence of the strong nonlinearity time 15

16 Observation/assimilation window: 2 x MPNS-ETKF b = 0 MPNS-ETKF b = 0.2 With the nonsymmetric ETKF, the clustering doesn t appear even in the presence of strong nonlinearity. x WHY? time 16

17 ensemble values ensemble values What happens in the assimilation? Nonlinear case with obs/assim window: 5 ETKF MPNS-ETKF Background ensemble Analysis ensemble assimilation cycle There is a constant scrambling of the ensemble that prevents any deformation (due to nonlinearities) in the ensemble to remain. 17

18 Experiments with Lorenz 1963 The system: x 1 = σ x 2 x 1 x 2 = x 1 r x 3 x 2 x 3 = x 1 x 2 bx 3 Solved with RK4 t = 0.01 Identical twin experiment observing all variables 18

19 skewness Higher order moments: skewness The figure is very similar for background and analysis. The figure for kurtosis is omitted since it is redundant. R = 2I, 8 steps R = 2I, 24 steps 19 S NS S NS S NS S NS M = 3 M = 10 M = 25 M = 40 S NS S NS S NS S NS M = 3 M = 10 M = 25 M = 40

20 How important is symmetry in R- Localization? In the LETKF, the symmetric solution guarantees a smooth transition in the analysis values among neighboring gridpoints. Using a different S (rotation matrix) for each gridpoint introduces noise to the system. S 1 S 2 S 3 Will using a fixed S F be enough? Each local analysis would be oriented in a different direction. NOT AUTOMATICALLY! 20

21 Symmetry and R-localization How smooth is the transition for the weights among neighboring gridpoints? Let s see for gridpoint 15. LETKF: W a = C I + Γ 1 2C T One-sided ETKF W a = C I + Γ 1 2 MPNSETKF W a = C I + Γ 1 T 2S F MPNSETKF W a = C I + Γ 1 T 2S variable The symmetric solution automatically guarantees smoothness! 21

22 Symmetry and R-localization The same is true for all gridpoints. LETKF: W a = C I + Γ 1 2C T One-sided ETKF W a = C I + Γ 1 2 MPNSETKF W a = C I + Γ 1 2S F T MPNSETKF W a = C I + Γ 1 2S variable T 22

23 Nonsymmetry and R-Localization An R-localized analysis must be locally symmetric. It can be globally rotated afterwards. W a = C I + Γ 1 2 C T Σ T S F T X a global = X b globalσ T This rotation can still bring benefits in the higher order moments. Skewness reduction 23

24 Conclusions Non-symmetric, in particular randomly rotated EnSRFs are a good alternative to stochastic filters when nonlinearity causes ensemble clustering. The process can be considered a type of resampling. Special care must be paid when using R-Localization. The symmetry is needed to form the local analyses, but the global analysis can be rotated afterwards. 24

Local Ensemble Transform Kalman Filter

Local Ensemble Transform Kalman Filter Local Ensemble Transform Kalman Filter Brian Hunt 11 June 2013 Review of Notation Forecast model: a known function M on a vector space of model states. Truth: an unknown sequence {x n } of model states

More information

A Unification of Ensemble Square Root Kalman Filters. and Wolfgang Hiller

A Unification of Ensemble Square Root Kalman Filters. and Wolfgang Hiller Generated using version 3.0 of the official AMS L A TEX template A Unification of Ensemble Square Root Kalman Filters Lars Nerger, Tijana Janjić, Jens Schröter, and Wolfgang Hiller Alfred Wegener Institute

More information

Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data

Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data John Harlim and Brian R. Hunt Department of Mathematics and Institute for Physical Science and Technology University

More information

Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model

Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model Shu-Chih Yang 1*, Eugenia Kalnay, and Brian Hunt 1. Department of Atmospheric Sciences, National Central

More information

Implications of the Form of the Ensemble Transformation in the Ensemble Square Root Filters

Implications of the Form of the Ensemble Transformation in the Ensemble Square Root Filters 1042 M O N T H L Y W E A T H E R R E V I E W VOLUME 136 Implications of the Form of the Ensemble Transformation in the Ensemble Square Root Filters PAVEL SAKOV AND PETER R. OKE CSIRO Marine and Atmospheric

More information

Relative Merits of 4D-Var and Ensemble Kalman Filter

Relative Merits of 4D-Var and Ensemble Kalman Filter Relative Merits of 4D-Var and Ensemble Kalman Filter Andrew Lorenc Met Office, Exeter International summer school on Atmospheric and Oceanic Sciences (ISSAOS) "Atmospheric Data Assimilation". August 29

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi 4th EnKF Workshop, April 2010 Relationship

More information

Gaussian Filtering Strategies for Nonlinear Systems

Gaussian Filtering Strategies for Nonlinear Systems Gaussian Filtering Strategies for Nonlinear Systems Canonical Nonlinear Filtering Problem ~u m+1 = ~ f (~u m )+~ m+1 ~v m+1 = ~g(~u m+1 )+~ o m+1 I ~ f and ~g are nonlinear & deterministic I Noise/Errors

More information

A Note on the Particle Filter with Posterior Gaussian Resampling

A Note on the Particle Filter with Posterior Gaussian Resampling Tellus (6), 8A, 46 46 Copyright C Blackwell Munksgaard, 6 Printed in Singapore. All rights reserved TELLUS A Note on the Particle Filter with Posterior Gaussian Resampling By X. XIONG 1,I.M.NAVON 1,2 and

More information

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Evan Kwiatkowski, Jan Mandel University of Colorado Denver December 11, 2014 OUTLINE 2 Data Assimilation Bayesian Estimation

More information

Kalman Filter and Ensemble Kalman Filter

Kalman Filter and Ensemble Kalman Filter Kalman Filter and Ensemble Kalman Filter 1 Motivation Ensemble forecasting : Provides flow-dependent estimate of uncertainty of the forecast. Data assimilation : requires information about uncertainty

More information

A Spectral Approach to Linear Bayesian Updating

A Spectral Approach to Linear Bayesian Updating A Spectral Approach to Linear Bayesian Updating Oliver Pajonk 1,2, Bojana V. Rosic 1, Alexander Litvinenko 1, and Hermann G. Matthies 1 1 Institute of Scientific Computing, TU Braunschweig, Germany 2 SPT

More information

Implications of Stochastic and Deterministic Filters as Ensemble-Based Data Assimilation Methods in Varying Regimes of Error Growth

Implications of Stochastic and Deterministic Filters as Ensemble-Based Data Assimilation Methods in Varying Regimes of Error Growth 1966 MONTHLY WEATHER REVIEW VOLUME 132 Implications of Stochastic and Deterministic Filters as Ensemble-Based Data Assimilation Methods in Varying Regimes of Error Growth W. GREGORY LAWSON AND JAMES A.

More information

Localization in the ensemble Kalman Filter

Localization in the ensemble Kalman Filter Department of Meteorology Localization in the ensemble Kalman Filter Ruth Elizabeth Petrie A dissertation submitted in partial fulfilment of the requirement for the degree of MSc. Atmosphere, Ocean and

More information

EnKF Localization Techniques and Balance

EnKF Localization Techniques and Balance EnKF Localization Techniques and Balance Steven Greybush Eugenia Kalnay, Kayo Ide, Takemasa Miyoshi, and Brian Hunt Weather Chaos Meeting September 21, 2009 Data Assimilation Equation Scalar form: x a

More information

P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES

P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES Xuguang Wang*, Thomas M. Hamill, Jeffrey S. Whitaker NOAA/CIRES

More information

Ensemble square-root filters

Ensemble square-root filters Ensemble square-root filters MICHAEL K. TIPPETT International Research Institute for climate prediction, Palisades, New Yor JEFFREY L. ANDERSON GFDL, Princeton, New Jersy CRAIG H. BISHOP Naval Research

More information

Ensemble 4DVAR for the NCEP hybrid GSI EnKF data assimilation system and observation impact study with the hybrid system

Ensemble 4DVAR for the NCEP hybrid GSI EnKF data assimilation system and observation impact study with the hybrid system Ensemble 4DVAR for the NCEP hybrid GSI EnKF data assimilation system and observation impact study with the hybrid system Xuguang Wang School of Meteorology University of Oklahoma, Norman, OK OU: Ting Lei,

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi ECODYC10, Dresden 28 January 2010 Relationship

More information

A Non-Gaussian Ensemble Filter Update for Data Assimilation

A Non-Gaussian Ensemble Filter Update for Data Assimilation 4186 M O N T H L Y W E A T H E R R E V I E W VOLUME 138 A Non-Gaussian Ensemble Filter Update for Data Assimilation JEFFREY L. ANDERSON NCAR Data Assimilation Research Section,* Boulder, Colorado (Manuscript

More information

Quarterly Journal of the Royal Meteorological Society

Quarterly Journal of the Royal Meteorological Society Quarterly Journal of the Royal Meteorological Society Effects of sequential or simultaneous assimilation of observations and localization methods on the performance of the ensemble Kalman filter Journal:

More information

A Comparative Study of 4D-VAR and a 4D Ensemble Kalman Filter: Perfect Model Simulations with Lorenz-96

A Comparative Study of 4D-VAR and a 4D Ensemble Kalman Filter: Perfect Model Simulations with Lorenz-96 Tellus 000, 000 000 (0000) Printed 20 October 2006 (Tellus LATEX style file v2.2) A Comparative Study of 4D-VAR and a 4D Ensemble Kalman Filter: Perfect Model Simulations with Lorenz-96 Elana J. Fertig

More information

Asynchronous data assimilation

Asynchronous data assimilation Ensemble Kalman Filter, lecture 2 Asynchronous data assimilation Pavel Sakov Nansen Environmental and Remote Sensing Center, Norway This talk has been prepared in the course of evita-enkf project funded

More information

A Moment Matching Particle Filter for Nonlinear Non-Gaussian. Data Assimilation. and Peter Bickel

A Moment Matching Particle Filter for Nonlinear Non-Gaussian. Data Assimilation. and Peter Bickel Generated using version 3.0 of the official AMS L A TEX template A Moment Matching Particle Filter for Nonlinear Non-Gaussian Data Assimilation Jing Lei and Peter Bickel Department of Statistics, University

More information

Four-Dimensional Ensemble Kalman Filtering

Four-Dimensional Ensemble Kalman Filtering Four-Dimensional Ensemble Kalman Filtering B.R. Hunt, E. Kalnay, E.J. Kostelich, E. Ott, D.J. Patil, T. Sauer, I. Szunyogh, J.A. Yorke, A.V. Zimin University of Maryland, College Park, MD 20742, USA Ensemble

More information

Adaptive ensemble Kalman filtering of nonlinear systems

Adaptive ensemble Kalman filtering of nonlinear systems Adaptive ensemble Kalman filtering of nonlinear systems Tyrus Berry George Mason University June 12, 213 : Problem Setup We consider a system of the form: x k+1 = f (x k ) + ω k+1 ω N (, Q) y k+1 = h(x

More information

ABSTRACT. Sabrina Rainwater Doctor of Philosophy, Professor Brian R. Hunt Department of Mathematics and

ABSTRACT. Sabrina Rainwater Doctor of Philosophy, Professor Brian R. Hunt Department of Mathematics and ABSTRACT Title of dissertation: NONLINEAR AND MULTIRESOLUTION ERROR COVARIANCE ESTIMATION IN ENSEMBLE DATA ASSIMILATION Sabrina Rainwater Doctor of Philosophy, 2012 Dissertation directed by: Professor

More information

4D-Var or Ensemble Kalman Filter? TELLUS A, in press

4D-Var or Ensemble Kalman Filter? TELLUS A, in press 4D-Var or Ensemble Kalman Filter? Eugenia Kalnay 1 *, Hong Li 1, Takemasa Miyoshi 2, Shu-Chih Yang 1, and Joaquim Ballabrera-Poy 3 1 University of Maryland, College Park, MD, 20742-2425 2 Numerical Prediction

More information

Hybrid Variational Ensemble Data Assimilation for Tropical Cyclone

Hybrid Variational Ensemble Data Assimilation for Tropical Cyclone Hybrid Variational Ensemble Data Assimilation for Tropical Cyclone Forecasts Xuguang Wang School of Meteorology University of Oklahoma, Norman, OK Acknowledgement: OU: Ting Lei, Yongzuo Li, Kefeng Zhu,

More information

Ensemble Kalman Filter potential

Ensemble Kalman Filter potential Ensemble Kalman Filter potential Former students (Shu-Chih( Yang, Takemasa Miyoshi, Hong Li, Junjie Liu, Chris Danforth, Ji-Sun Kang, Matt Hoffman), and Eugenia Kalnay University of Maryland Acknowledgements:

More information

DART_LAB Tutorial Section 2: How should observations impact an unobserved state variable? Multivariate assimilation.

DART_LAB Tutorial Section 2: How should observations impact an unobserved state variable? Multivariate assimilation. DART_LAB Tutorial Section 2: How should observations impact an unobserved state variable? Multivariate assimilation. UCAR 2014 The National Center for Atmospheric Research is sponsored by the National

More information

How 4DVAR can benefit from or contribute to EnKF (a 4DVAR perspective)

How 4DVAR can benefit from or contribute to EnKF (a 4DVAR perspective) How 4DVAR can benefit from or contribute to EnKF (a 4DVAR perspective) Dale Barker WWRP/THORPEX Workshop on 4D-Var and Ensemble Kalman Filter Intercomparisons Sociedad Cientifica Argentina, Buenos Aires,

More information

Abstract 2. ENSEMBLE KALMAN FILTERS 1. INTRODUCTION

Abstract 2. ENSEMBLE KALMAN FILTERS 1. INTRODUCTION J5.4 4D ENSEMBLE KALMAN FILTERING FOR ASSIMILATION OF ASYNCHRONOUS OBSERVATIONS T. Sauer George Mason University, Fairfax, VA 22030 B.R. Hunt, J.A. Yorke, A.V. Zimin, E. Ott, E.J. Kostelich, I. Szunyogh,

More information

Some ideas for Ensemble Kalman Filter

Some ideas for Ensemble Kalman Filter Some ideas for Ensemble Kalman Filter Former students and Eugenia Kalnay UMCP Acknowledgements: UMD Chaos-Weather Group: Brian Hunt, Istvan Szunyogh, Ed Ott and Jim Yorke, Kayo Ide, and students Former

More information

Multivariate Correlations: Applying a Dynamic Constraint and Variable Localization in an Ensemble Context

Multivariate Correlations: Applying a Dynamic Constraint and Variable Localization in an Ensemble Context Multivariate Correlations: Applying a Dynamic Constraint and Variable Localization in an Ensemble Context Catherine Thomas 1,2,3, Kayo Ide 1 Additional thanks to Daryl Kleist, Eugenia Kalnay, Takemasa

More information

A Moment Matching Ensemble Filter for Nonlinear Non-Gaussian Data Assimilation

A Moment Matching Ensemble Filter for Nonlinear Non-Gaussian Data Assimilation 3964 M O N T H L Y W E A T H E R R E V I E W VOLUME 139 A Moment Matching Ensemble Filter for Nonlinear Non-Gaussian Data Assimilation JING LEI AND PETER BICKEL Department of Statistics, University of

More information

Practical Aspects of Ensemble-based Kalman Filters

Practical Aspects of Ensemble-based Kalman Filters Practical Aspects of Ensemble-based Kalman Filters Lars Nerger Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany and Bremen Supercomputing Competence Center BremHLR Bremen, Germany

More information

Review of Covariance Localization in Ensemble Filters

Review of Covariance Localization in Ensemble Filters NOAA Earth System Research Laboratory Review of Covariance Localization in Ensemble Filters Tom Hamill NOAA Earth System Research Lab, Boulder, CO tom.hamill@noaa.gov Canonical ensemble Kalman filter update

More information

Ensemble Data Assimilation and Uncertainty Quantification

Ensemble Data Assimilation and Uncertainty Quantification Ensemble Data Assimilation and Uncertainty Quantification Jeff Anderson National Center for Atmospheric Research pg 1 What is Data Assimilation? Observations combined with a Model forecast + to produce

More information

Accounting for model error due to unresolved scales within ensemble Kalman filtering

Accounting for model error due to unresolved scales within ensemble Kalman filtering Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. (24) DOI:.2/qj.245 Accounting for model error due to unresolved scales within ensemble Kalman filtering Lewis Mitchell a,b

More information

4DEnVar. Four-Dimensional Ensemble-Variational Data Assimilation. Colloque National sur l'assimilation de données

4DEnVar. Four-Dimensional Ensemble-Variational Data Assimilation. Colloque National sur l'assimilation de données Four-Dimensional Ensemble-Variational Data Assimilation 4DEnVar Colloque National sur l'assimilation de données Andrew Lorenc, Toulouse France. 1-3 décembre 2014 Crown copyright Met Office 4DEnVar: Topics

More information

Optimal Localization for Ensemble Kalman Filter Systems

Optimal Localization for Ensemble Kalman Filter Systems Journal December of the 2014 Meteorological Society of Japan, Vol. Á. 92, PERIÁÑEZ No. 6, pp. et 585 597, al. 2014 585 DOI:10.2151/jmsj.2014-605 Optimal Localization for Ensemble Kalman Filter Systems

More information

A data-driven method for improving the correlation estimation in serial ensemble Kalman filter

A data-driven method for improving the correlation estimation in serial ensemble Kalman filter A data-driven method for improving the correlation estimation in serial ensemble Kalman filter Michèle De La Chevrotière, 1 John Harlim 2 1 Department of Mathematics, Penn State University, 2 Department

More information

Improving GFS 4DEnVar Hybrid Data Assimilation System Using Time-lagged Ensembles

Improving GFS 4DEnVar Hybrid Data Assimilation System Using Time-lagged Ensembles Improving GFS 4DEnVar Hybrid Data Assimilation System Using Time-lagged Ensembles Bo Huang and Xuguang Wang School of Meteorology University of Oklahoma, Norman, OK, USA Acknowledgement: Junkyung Kay (OU);

More information

Enhanced Ocean Prediction using Ensemble Kalman Filter Techniques

Enhanced Ocean Prediction using Ensemble Kalman Filter Techniques Enhanced Ocean Prediction using Ensemble Kalman Filter Techniques Dr Peter R. Oke CSIRO Marine and Atmospheric Research and Wealth from Oceans Flagship Program GPO Box 1538 Hobart TAS 7001 Australia phone:

More information

The Local Ensemble Transform Kalman Filter and its implementation on the NCEP global model at the University of Maryland

The Local Ensemble Transform Kalman Filter and its implementation on the NCEP global model at the University of Maryland The Local Ensemble Transform Kalman Filter and its implementation on the NCEP global model at the University of Maryland Istvan Szunyogh (*), Elizabeth A. Satterfield (*), José A. Aravéquia (**), Elana

More information

The Local Ensemble Transform Kalman Filter and its implementation on the NCEP global model at the University of Maryland

The Local Ensemble Transform Kalman Filter and its implementation on the NCEP global model at the University of Maryland The Local Ensemble Transform Kalman Filter and its implementation on the NCEP global model at the University of Maryland Istvan Szunyogh (*), Elizabeth A. Satterfield (*), José A. Aravéquia (**), Elana

More information

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Background Data Assimilation Iterative process Forecast Analysis Background

More information

Data assimilation in the geosciences An overview

Data assimilation in the geosciences An overview Data assimilation in the geosciences An overview Alberto Carrassi 1, Olivier Talagrand 2, Marc Bocquet 3 (1) NERSC, Bergen, Norway (2) LMD, École Normale Supérieure, IPSL, France (3) CEREA, joint lab École

More information

Comparison of Ensemble Kalman Filters Under Non-Gaussianity. and Peter Bickel. Chris Snyder

Comparison of Ensemble Kalman Filters Under Non-Gaussianity. and Peter Bickel. Chris Snyder Generated using version 3.0 of the official AMS L A TEX template Comparison of Ensemble Kalman Filters Under Non-Gaussianity Jing Lei and Peter Bickel Department of Statistics, University of California,

More information

Assimilating Nonlocal Observations using a Local Ensemble Kalman Filter

Assimilating Nonlocal Observations using a Local Ensemble Kalman Filter Tellus 000, 000 000 (0000) Printed 16 February 2007 (Tellus LATEX style file v2.2) Assimilating Nonlocal Observations using a Local Ensemble Kalman Filter Elana J. Fertig 1, Brian R. Hunt 1, Edward Ott

More information

Quarterly Journal of the Royal Meteorological Society !"#$%&'&(&)"&'*'+'*%(,#$,-$#*'."(/'*0'"(#"(1"&)23$)(4#$2#"( 5'$*)6!

Quarterly Journal of the Royal Meteorological Society !#$%&'&(&)&'*'+'*%(,#$,-$#*'.(/'*0'(#(1&)23$)(4#$2#( 5'$*)6! !"#$%&'&(&)"&'*'+'*%(,#$,-$#*'."(/'*0'"(#"("&)$)(#$#"( '$*)! "#$%&'()!!"#$%&$'()*+"$,#')+-)%.&)/+(#')0&%&+$+'+#')+&%(! *'&$+,%-./!0)! "! :-(;%/-,(;! '/;!?$@A-//;B!@

More information

Four-dimensional ensemble Kalman filtering

Four-dimensional ensemble Kalman filtering Tellus (24), 56A, 273 277 Copyright C Blackwell Munksgaard, 24 Printed in UK. All rights reserved TELLUS Four-dimensional ensemble Kalman filtering By B. R. HUNT 1, E. KALNAY 1, E. J. KOSTELICH 2,E.OTT

More information

A Comparison of Hybrid Ensemble Transform Kalman Filter Optimum Interpolation and Ensemble Square Root Filter Analysis Schemes

A Comparison of Hybrid Ensemble Transform Kalman Filter Optimum Interpolation and Ensemble Square Root Filter Analysis Schemes MARCH 2007 W A N G E T A L. 1055 A Comparison of Hybrid Ensemble Transform Kalman Filter Optimum Interpolation and Ensemble Square Root Filter Analysis Schemes XUGUANG WANG CIRES Climate Diagnostics Center,

More information

Using Observations at Different Spatial. Scales in Data Assimilation for. Environmental Prediction. Joanne A. Waller

Using Observations at Different Spatial. Scales in Data Assimilation for. Environmental Prediction. Joanne A. Waller UNIVERSITY OF READING DEPARTMENT OF MATHEMATICS AND STATISTICS Using Observations at Different Spatial Scales in Data Assimilation for Environmental Prediction Joanne A. Waller Thesis submitted for the

More information

Ensemble 4DVAR and observa3on impact study with the GSIbased hybrid ensemble varia3onal data assimila3on system. for the GFS

Ensemble 4DVAR and observa3on impact study with the GSIbased hybrid ensemble varia3onal data assimila3on system. for the GFS Ensemble 4DVAR and observa3on impact study with the GSIbased hybrid ensemble varia3onal data assimila3on system for the GFS Xuguang Wang University of Oklahoma, Norman, OK xuguang.wang@ou.edu Ting Lei,

More information

A new structure for error covariance matrices and their adaptive estimation in EnKF assimilation

A new structure for error covariance matrices and their adaptive estimation in EnKF assimilation Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 795 804, April 2013 A A new structure for error covariance matrices their adaptive estimation in EnKF assimilation Guocan

More information

Analysis sensitivity calculation in an Ensemble Kalman Filter

Analysis sensitivity calculation in an Ensemble Kalman Filter Analysis sensitivity calculation in an Ensemble Kalman Filter Junjie Liu 1, Eugenia Kalnay 2, Takemasa Miyoshi 2, and Carla Cardinali 3 1 University of California, Berkeley, CA, USA 2 University of Maryland,

More information

Simple Doppler Wind Lidar adaptive observation experiments with 3D-Var. and an ensemble Kalman filter in a global primitive equations model

Simple Doppler Wind Lidar adaptive observation experiments with 3D-Var. and an ensemble Kalman filter in a global primitive equations model 1 2 3 4 Simple Doppler Wind Lidar adaptive observation experiments with 3D-Var and an ensemble Kalman filter in a global primitive equations model 5 6 7 8 9 10 11 12 Junjie Liu and Eugenia Kalnay Dept.

More information

An Iterative EnKF for Strongly Nonlinear Systems

An Iterative EnKF for Strongly Nonlinear Systems 1988 M O N T H L Y W E A T H E R R E V I E W VOLUME 140 An Iterative EnKF for Strongly Nonlinear Systems PAVEL SAKOV Nansen Environmental and Remote Sensing Center, Bergen, Norway DEAN S. OLIVER Uni Centre

More information

UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE EFFECTS OF SEQUENTIAL OR SIMULTANEOUS ASSIMILATION OF OBSERVATIONS AND LOCALIZATION METHODS ON THE PERFORMANCE

UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE EFFECTS OF SEQUENTIAL OR SIMULTANEOUS ASSIMILATION OF OBSERVATIONS AND LOCALIZATION METHODS ON THE PERFORMANCE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE EFFECTS OF SEQUENTIAL OR SIMULTANEOUS ASSIMILATION OF OBSERVATIONS AND LOCALIZATION METHODS ON THE PERFORMANCE OF THE ENSEMBLE KALMAN FILTER A THESIS SUBMITTED TO

More information

Monthly Weather Review The Hybrid Local Ensemble Transform Kalman Filter

Monthly Weather Review The Hybrid Local Ensemble Transform Kalman Filter Monthly Weather Review The Hybrid Local Ensemble Transform Kalman Filter --Manuscript Draft-- Manuscript Number: Full Title: Article Type: Corresponding Author: Corresponding Author's Institution: First

More information

arxiv: v1 [physics.ao-ph] 23 Jan 2009

arxiv: v1 [physics.ao-ph] 23 Jan 2009 A Brief Tutorial on the Ensemble Kalman Filter Jan Mandel arxiv:0901.3725v1 [physics.ao-ph] 23 Jan 2009 February 2007, updated January 2009 Abstract The ensemble Kalman filter EnKF) is a recursive filter

More information

Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter

Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter Hong Li, Junjie Liu, and Elana Fertig E. Kalnay I. Szunyogh, E. J. Kostelich Weather and Chaos Group

More information

Estimating observation impact without adjoint model in an ensemble Kalman filter

Estimating observation impact without adjoint model in an ensemble Kalman filter QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 134: 1327 1335 (28) Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 1.12/qj.28 Estimating observation

More information

Maximum Likelihood Ensemble Filter Applied to Multisensor Systems

Maximum Likelihood Ensemble Filter Applied to Multisensor Systems Maximum Likelihood Ensemble Filter Applied to Multisensor Systems Arif R. Albayrak a, Milija Zupanski b and Dusanka Zupanski c abc Colorado State University (CIRA), 137 Campus Delivery Fort Collins, CO

More information

A Local Ensemble Kalman Filter for Atmospheric Data Assimilation

A Local Ensemble Kalman Filter for Atmospheric Data Assimilation arxiv:physics/0203058v4 [physics.ao-ph] 30 Jul 2003 A Local Ensemble Kalman Filter for Atmospheric Data Assimilation Edward Ott, 1 Brian R. Hunt, Istvan Szunyogh, Aleksey V. Zimin, Eric J. Kostelich, Matteo

More information

Accepted in Tellus A 2 October, *Correspondence

Accepted in Tellus A 2 October, *Correspondence 1 An Adaptive Covariance Inflation Error Correction Algorithm for Ensemble Filters Jeffrey L. Anderson * NCAR Data Assimilation Research Section P.O. Box 3000 Boulder, CO 80307-3000 USA Accepted in Tellus

More information

Ensemble Kalman Filter

Ensemble Kalman Filter Ensemble Kalman Filter Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway, Nansen Environmental and Remote Sensing Center, Bergen, Norway The Ensemble Kalman Filter (EnKF) Represents

More information

Accelerating the spin-up of Ensemble Kalman Filtering

Accelerating the spin-up of Ensemble Kalman Filtering Accelerating the spin-up of Ensemble Kalman Filtering Eugenia Kalnay * and Shu-Chih Yang University of Maryland Abstract A scheme is proposed to improve the performance of the ensemble-based Kalman Filters

More information

Adaptive ensemble Kalman filtering of nonlinear systems. Tyrus Berry and Timothy Sauer George Mason University, Fairfax, VA 22030

Adaptive ensemble Kalman filtering of nonlinear systems. Tyrus Berry and Timothy Sauer George Mason University, Fairfax, VA 22030 Generated using V3.2 of the official AMS LATEX template journal page layout FOR AUTHOR USE ONLY, NOT FOR SUBMISSION! Adaptive ensemble Kalman filtering of nonlinear systems Tyrus Berry and Timothy Sauer

More information

(Toward) Scale-dependent weighting and localization for the NCEP GFS hybrid 4DEnVar Scheme

(Toward) Scale-dependent weighting and localization for the NCEP GFS hybrid 4DEnVar Scheme (Toward) Scale-dependent weighting and localization for the NCEP GFS hybrid 4DEnVar Scheme Daryl Kleist 1, Kayo Ide 1, Rahul Mahajan 2, Deng-Shun Chen 3 1 University of Maryland - Dept. of Atmospheric

More information

Development of the Local Ensemble Transform Kalman Filter

Development of the Local Ensemble Transform Kalman Filter Development of the Local Ensemble Transform Kalman Filter Istvan Szunyogh Institute for Physical Science and Technology & Department of Atmospheric and Oceanic Science AOSC Special Seminar September 27,

More information

A mechanism for catastrophic filter divergence in data assimilation for sparse observation networks

A mechanism for catastrophic filter divergence in data assimilation for sparse observation networks Manuscript prepared for Nonlin. Processes Geophys. with version 5. of the L A TEX class copernicus.cls. Date: 5 August 23 A mechanism for catastrophic filter divergence in data assimilation for sparse

More information

Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter

Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 135: 523 533 (2009) Published online 3 February 2009 in Wiley InterScience (www.interscience.wiley.com).371 Simultaneous estimation

More information

A Stochastic Collocation based. for Data Assimilation

A Stochastic Collocation based. for Data Assimilation A Stochastic Collocation based Kalman Filter (SCKF) for Data Assimilation Lingzao Zeng and Dongxiao Zhang University of Southern California August 11, 2009 Los Angeles Outline Introduction SCKF Algorithm

More information

A Matrix-Free Posterior Ensemble Kalman Filter Implementation Based on a Modified Cholesky Decomposition

A Matrix-Free Posterior Ensemble Kalman Filter Implementation Based on a Modified Cholesky Decomposition atmosphere Article A Matrix-Free Posterior Ensemble Kalman Filter Implementation Based on a Modified Cholesky Decomposition Elias D. Nino-Ruiz Applied Math and Computational Science Laboratory, Department

More information

University of Oklahoma, Norman Oklahoma Monthly Weather Review Submitted June 2017 Accepted November 2017

University of Oklahoma, Norman Oklahoma Monthly Weather Review Submitted June 2017 Accepted November 2017 Development of a Hybrid En3DVar Data Assimilation System and Comparisons with 3DVar and EnKF for Radar Data Assimilation with Observing System Simulation Experiments Rong Kong 1,2, Ming Xue 1,2, and Chengsi

More information

Hailiang Du and Leonard A. Smith Pseudo-orbit data assimilation. Part I: the perfect model scenario

Hailiang Du and Leonard A. Smith Pseudo-orbit data assimilation. Part I: the perfect model scenario Hailiang Du and Leonard A. Smith Pseudo-orbit data assimilation. Part I: the perfect model scenario Article (Published version) (Refereed) Original citation: Du, Hailiang and Smith, Leonard A. (2014) Pseudo-orbit

More information

EARLY ONLINE RELEASE

EARLY ONLINE RELEASE AMERICAN METEOROLOGICAL SOCIETY Monthly Weather Review EARLY ONLINE RELEASE This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it

More information

A Gaussian Resampling Particle Filter

A Gaussian Resampling Particle Filter A Gaussian Resampling Particle Filter By X. Xiong 1 and I. M. Navon 1 1 School of Computational Science and Department of Mathematics, Florida State University, Tallahassee, FL 3236, USA 14 July ABSTRACT

More information

A Local Ensemble Kalman Filter for Atmospheric Data Assimilation

A Local Ensemble Kalman Filter for Atmospheric Data Assimilation Tellus 000, 000 000 (0000) Printed 1 April 2004 (Tellus LATEX style file v2.2) A Local Ensemble Kalman Filter for Atmospheric Data Assimilation By EDWARD OTT 1, BRIAN R. HUNT 2, ISTVAN SZUNYOGH 3, ALEKSEY

More information

Data assimilation; comparison of 4D-Var and LETKF smoothers

Data assimilation; comparison of 4D-Var and LETKF smoothers Data assimilation; comparison of 4D-Var and LETKF smoothers Eugenia Kalnay and many friends University of Maryland CSCAMM DAS13 June 2013 Contents First part: Forecasting the weather - we are really getting

More information

Ensemble prediction and strategies for initialization: Tangent Linear and Adjoint Models, Singular Vectors, Lyapunov vectors

Ensemble prediction and strategies for initialization: Tangent Linear and Adjoint Models, Singular Vectors, Lyapunov vectors Ensemble prediction and strategies for initialization: Tangent Linear and Adjoint Models, Singular Vectors, Lyapunov vectors Eugenia Kalnay Lecture 2 Alghero, May 2008 Elements of Ensemble Forecasting

More information

Data Assimilation Research Testbed Tutorial

Data Assimilation Research Testbed Tutorial Data Assimilation Research Testbed Tutorial Section 2: How should observations of a state variable impact an unobserved state variable? Multivariate assimilation. Single observed variable, single unobserved

More information

Error (E) Covariance Diagnostics. in Ensemble Data Assimilation. Kayo Ide, Daryl Kleist, Adam Kubaryk University of Maryland

Error (E) Covariance Diagnostics. in Ensemble Data Assimilation. Kayo Ide, Daryl Kleist, Adam Kubaryk University of Maryland Error (E) Covariance Diagnostics in Ensemble Data Assimilation Kayo Ide, Daryl Kleist, Adam Kubaryk University of Maryland 7 th EnKF Data Assimilation Workshop May 2016 Outline Part I. Background: E-diagnostics

More information

Advances and Challenges in Ensemblebased Data Assimilation in Meteorology. Takemasa Miyoshi

Advances and Challenges in Ensemblebased Data Assimilation in Meteorology. Takemasa Miyoshi January 18, 2013, DA Workshop, Tachikawa, Japan Advances and Challenges in Ensemblebased Data Assimilation in Meteorology Takemasa Miyoshi RIKEN Advanced Institute for Computational Science Takemasa.Miyoshi@riken.jp

More information

Controlling overestimation of error covariance in ensemble Kalman filters with sparse observations: A variance limiting Kalman filter

Controlling overestimation of error covariance in ensemble Kalman filters with sparse observations: A variance limiting Kalman filter Controlling overestimation of error covariance in ensemble Kalman filters with sparse observations: A variance limiting Kalman filter Georg A. Gottwald and Lewis Mitchell School of Mathematics and Statistics,

More information

Recent Advances in EnKF

Recent Advances in EnKF Recent Advances in EnKF Former students (Shu-Chih( Yang, Takemasa Miyoshi, Hong Li, Junjie Liu, Chris Danforth, Ji-Sun Kang, Matt Hoffman, Steve Penny, Steve Greybush), and Eugenia Kalnay University of

More information

A Comparison of Error Subspace Kalman Filters

A Comparison of Error Subspace Kalman Filters Tellus 000, 000 000 (0000) Printed 4 February 2005 (Tellus LATEX style file v2.2) A Comparison of Error Subspace Kalman Filters By LARS NERGER, WOLFGANG HILLER and JENS SCHRÖTER Alfred Wegener Institute

More information

Ting Lei, Xuguang Wang University of Oklahoma, Norman, OK, USA. Wang and Lei, MWR, Daryl Kleist (NCEP): dual resolution 4DEnsVar

Ting Lei, Xuguang Wang University of Oklahoma, Norman, OK, USA. Wang and Lei, MWR, Daryl Kleist (NCEP): dual resolution 4DEnsVar GSI-based four dimensional ensemble-variational (4DEnsVar) data assimilation: formulation and single resolution experiments with real data for NCEP GFS Ting Lei, Xuguang Wang University of Oklahoma, Norman,

More information

A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error

A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error A variance limiting Kalman filter for data assimilation: I. Sparse observational grids II. Model error Georg Gottwald, Lewis Mitchell, Sebastian Reich* University of Sydney, *Universität Potsdam Durham,

More information

Zentrum für Technomathematik

Zentrum für Technomathematik Zentrum für Technomathematik Fachbereich 3 Mathematik und Informatik On the influence of model nonlinearity and localization on ensemble Kalman smoothing Lars Nerger Svenja Schulte Angelika Bunse-Gerstner

More information

An implementation of the Local Ensemble Kalman Filter in a quasi geostrophic model and comparison with 3D-Var

An implementation of the Local Ensemble Kalman Filter in a quasi geostrophic model and comparison with 3D-Var Author(s) 2007. This work is licensed under a Creative Commons License. Nonlinear Processes in Geophysics An implementation of the Local Ensemble Kalman Filter in a quasi geostrophic model and comparison

More information

A mollified ensemble Kalman filter

A mollified ensemble Kalman filter A mollified ensemble Kalman filter Kay Bergemann Sebastian Reich November 2, 2018 arxiv:1002.3091v2 [math.na] 22 Jun 2010 Abstract It is well recognized that discontinuous analysis increments of sequential

More information

A mollified ensemble Kalman filter

A mollified ensemble Kalman filter Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 1636 1643, July 1 Part B A mollified ensemble Kalman filter Kay Bergemann and Sebastian Reich* Universität Potsdam, Potsdam,

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 2015 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO August 11-14, 2015 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

Mesoscale Ensemble Data Assimilation: Opportunities and Challenges. Fuqing Zhang Penn State University

Mesoscale Ensemble Data Assimilation: Opportunities and Challenges. Fuqing Zhang Penn State University Mesoscale Ensemble Data Assimilation: Opportunities and Challenges Fuqing Zhang Penn State University Mesoscale EnKF: some incomplete background 1 st proposed by Evensen (1994); Houtekamer and Micthell

More information

EnKF and Catastrophic filter divergence

EnKF and Catastrophic filter divergence EnKF and Catastrophic filter divergence David Kelly Kody Law Andrew Stuart Mathematics Department University of North Carolina Chapel Hill NC bkelly.com June 4, 2014 SIAM UQ 2014 Savannah. David Kelly

More information

P3.11 A COMPARISON OF AN ENSEMBLE OF POSITIVE/NEGATIVE PAIRS AND A CENTERED SPHERICAL SIMPLEX ENSEMBLE

P3.11 A COMPARISON OF AN ENSEMBLE OF POSITIVE/NEGATIVE PAIRS AND A CENTERED SPHERICAL SIMPLEX ENSEMBLE P3.11 A COMPARISON OF AN ENSEMBLE OF POSITIVE/NEGATIVE PAIRS AND A CENTERED SPHERICAL SIMPLEX ENSEMBLE 1 INTRODUCTION Xuguang Wang* The Pennsylvania State University, University Park, PA Craig H. Bishop

More information