Practical Aspects of Ensemble-based Kalman Filters

Size: px
Start display at page:

Download "Practical Aspects of Ensemble-based Kalman Filters"

Transcription

1 Practical Aspects of Ensemble-based Kalman Filters Lars Nerger Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany and Bremen Supercomputing Competence Center BremHLR Bremen, Germany

2 Outline Aspects Computing Analysis formulation Localization Collaborations: AWI: W. Hiller, J. Schröter, S. Loza, P. Kirchgessner, T. Janjic (now DWD) BSH: F. Janssen, S. Massmann Bremen University: A. Bunse-Gerstner

3 The Problem

4 Application Example Model surface temperature Satellite surface temperature Norway Sweden Finland UK Oberwolfach Information: Model Information: Observation Forecasting in North & Baltic Seas Combine model and observations for optimal initial condition State vector size: (4 fields 3D, field 2D) Obervations: (Surface temperature only) Ensemble size 8 S. Loza et al., Journal of Marine Systems 05 (202) 52-62

5 Forecast deviation from satellite data No assimilation Assimilation RMS bias Improvements also sub-surface and in other fields

6 Data Assimilation Problem: Estimate model state (trajectory) from guess at initial time model dynamics observational data Characteristics of system: approximated by discretized differential equations high-dimension - O( ) sparse observations non-linear Current standard methods: Optimization algorithms ( 4DVar ) This talk! Ensemble-based estimation algorithms

7 Ensemble-based Kalman Filter First formulated by G. Evensen (EnKF, 994) Kalman filter: express probability distributions by mean and covariance matrix EnKF: Use ensembles to represent probability distributions state estimate ensemble forecast initial sampling forecast analysis ensemble transformation observation Looks trivial! BUT: There are many possible choices! time 0 time time 2

8 Computational and Practical Issues Data assimilation with ensemble-based Kalman filters is costly! Memory: Huge amount of memory required (model fields and ensemble matrix) Computing: Huge requirement of computing time (ensemble integrations) Parallelism: Natural parallelism of ensemble integration exists (needs to be implemented) Fixes : Filter algorithms do not work in their pure form ( fixes and tuning are needed) because Kalman filter optimal only in linear case Lars Nerger Ensemble square-root KFs

9 What we are looking for Goal: Find the assimilation method with smallest estimation error most accurate error estimate least computational cost least tuning Want to understand and improve performance Difficulty: Optimality of Kalman filter well known for linear systems No optimality for non-linear systems limited analytical possibilities apply methods to test problems Lars Nerger Ensemble square-root KFs

10 Computing

11 Logical separation of assimilation system single program time state Filter Initialization analysis re-initialization Core of PDAF state observations Model initialization time integration post processing mesh data Observations obs. vector obs. operator obs. error Explicit interface Indirect exchange (module/common) Nerger, L., Hiller, W. (202). Software for Ensemble-based DA Systems Implementation and Scalability. Computers and Geosciences. In press. doi:0.06/j.cageo

12 PDAF: A tool for data assimilation PDAF - Parallel Data Assimilation Framework a software to provide assimilation methods an environment for ensemble assimilation for testing algorithms and real applications useable with virtually any numerical model also: apply identical methods to different models test influence of different observations makes good use of supercomputers (Fortran and MPI; tested on up to 4800 processors) More information and source code available at

13 Analysis Formulations

14 Ensemble-based/error-subspace Kalman filters A little zoo (not complete): New study ESTKF _ Properties and (Nerger differences et al. 202) are hardly understood _ EnKF(94/98) Studied in Nerger et al. (2005) RRSQRT ROEK SEEK SEIK EnKF(2003) EnKF(2004) EAKF EnSRF ETKF Learn from studying relations and differences MLEF SPKF ESSE RHF anamorphosis New filter formulation ESTKF: L. Nerger et al., Monthly Weather Review 40 (202)

15 Model Equations Stochastic dynamic model: x t i = M i,i [x t i ]+ i, x t i, i R n Stochastic observation model: y k = H k [x t k]+ k, y k, k R m i N(0, Q i ); i T j = Q i ij k N (0, R k ); k T l = R k kl Assumptions: x t N i N ( x t i, P i ) k T k =0; i (x ti) T =0; k (x tk) T =0 Model error Observation error

16 The Ensemble Kalman Filter (EnKF, Evensen 94) Initialization: Generate random ensemble Ensemble statistics approximate and covariance Forecast: x a(l) i = M i,i [x a(l) (l) i ]+ i Analysis: x a(l) k = x f(l) k + K k y (l) k H k x f(l) k Kalman filter K k = P f k HT k H k P fk HTk + R k P f k := N T x f(l) k x f k x f(l) k x f k N l= x a k := N x a(l) k N l=

17 Issues of the EnKF94 Monte Carlo Method ensemble of observations required (samples matrix R; introduces sampling error) Inversion of large matrix H k P f k HT k + R k R m m (can be singular, possibly large differences in eigenvalues >0) Alternative: Compute analysis in space spanned by ensemble Methods: Ensemble Square-Root Kalman Filters, e.g. SEIK (Pham et al., 998) ETKF (Bishop et al., 200)

18 Ensemble Transform Kalman Filter - ETKF Ensemble perturbation matrix X k := X k X k size (n x N) Analysis covariance matrix P a = X f A(X f ) T. Transform matrix (in ensemble space) A := (N )I +(HX f ) T R HX f. Ensemble transformation X a = X f W ETKF. Ensemble weight matrix W ETKF := N CΛ. (n x n) (N x N) (n x N) (N x N) CC T = A (symmetric square root) Λ is identity or random orthogonal matrix with EV (,...,) T )

19 SEIK Filter Error-subspace basis matrix L := X f T, size (n x N-) (T subtracts ensemble mean and removes last column) Analysis covariance matrix P a = LÃLT (n x n) Transform matrix (in error subspace) à := (N )T T T +(HL) T R HL. (N- x N-) Ensemble transformation X a = LW SEIK. (n x N) Ensemble weight matrix W SEIK := N CΩ T (N- x N) C. is square root of à (originally Cholesky decomposition) CΩ T is transformation from N- to N (random or deterministic)

20 Weight Matrices (W in X a = X f W ) ETKF ETKF: Transformation matrix 0. SEIK-Cholesky sqrt SEIK chol: Transformation matrix ETKF main contribution from diagonal (minimum transformation) Off-diagonals of similar weight Minimum change in distribution of ensemble variance SEIK with Cholesky sqrt main contribution from diagonal Off-diagonals with strongly varying weights Changes distribution of variance in ensemble

21 Transformation Matrix of SEIK/symmetric sqrt SEIK symmetric sqrt SEIK sym: Transformation matrix Difference SEIK-ETKF transformation matrices difference: SEIK ETKF x Transformation matrices of ETKF and SEIK-sym very similar Largest difference for last ensemble member (Experiments with Lorenz96 model: This can lead to smaller ensemble variance of this member)

22 SEIK depends on ensemble order Switch last two ensemble members SEIK sym: Difference of transformation matrices x (Switched back last two columns & rows for comparison) Ensemble transformation depends on order of ensemble members (For ETKF the difference is 0-5 ) Statistically fine, but not desirable!

23 Revised T matrix Identical transformations require different projection matrix for SEIK: For SEIK: T subtracts ensemble mean and drops last column Dependence on order of ensemble members! Solution: Redefine T: Distribute last member over first N- columns Also replace Ω L := X f T, by new ˆT New filter formulation: Error Subspace Transform Kalman Filter (ESTKF)

24 T-matrix in SEIK and ESTKF SEIK: ESTKF: T i,j = ˆT i,j = N N N N N p + N p + N p N for i = j, i < N for i = j, i < N for i = N for i = j, i < N for i = j, i < N for i = N Efficient implementation as subtraction of means & last column ETKF: improve compute performance using a matrix T

25 ESTKF: New filter with identical transformation as ETKF New filter ESTKF properties like ETKF: Minimum transformation Transformation independent of ensemble order But: analysis computed in dimension N- direct access to error subspace smaller condition number of A L. Nerger et al., Monthly Weather Review 40 (202)

26 Localization

27 Localization: Why and how? Combination of observations and model state based on estimated error covariance matrices Example: Sampling error and localization true sampled localized Finite ensemble size leads to significant sampling errors particularly for small covariances! distance Remove estimated long-range correlations Increases degrees of freedom for analysis (globally not locally!) Increases size of analysis correction

28 Global vs. local SEIK, N=32 (March 993) Error reduced to 83.6% Error reduced to 3.7% Improvement is error reduction by assimilation Localization extents improvements into regions not improved by global SEIK Regions with error increase diminished for local SEIK Underestimation of errors reduced by localization L. Nerger et al. Ocean Dynamics 56 (2006) 634

29 Localization Types Simplified analysis equation: x a = x f + Pf P f + R y xf Covariance localization Modify covariances in forecast covariance matrix P f Element-wise product with correlation matrix of compact support Requires that P f is computed (not in ETKF or SEIK) E.g.: Houtekamer/Mitchell (998, 200), Whitaker/Hamill (2002), Keppenne/ Rienecker (2002) Observation localization Modify observation error covariance matrix R Needs distance of observation (achieved by local analysis or domain localization) Possible in all filter formulations E.g.: Evensen (2003), Ott et al. (2004), Nerger/Gregg (2007), Hunt et al. (2007)

30 Local SEIK filter domain & observation localization Local Analysis: Update small regions (like single vertical columns) Observation localizations: Observations weighted according to distance Consider only observations with weight >0 State update and ensemble transformation fully local S: Analysis region D: Corresponding data region Similar to localization in LETKF (e.g. Hunt et al, 2007) L. Nerger et al., Ocean Dynamics 56 (2006) 634 L. Nerger & W.W. Gregg, J. Mar. Syst. 68 (2007) 237

31 Different effect of localization methods Experimental result: Twin experiment with simple Lorenz96 model Covariance localization better than observation localization (Also reported by Greybush et al. (20) with other model) Time-mean RMS errors / Inflation forgetting factor Covariance EnKF sqrt, obs. localization error= support radius Localization radius / inflation T. Janjic et al., Mon. Wea. Rev. 39 (20) forgetting factor Observation LSEIK fix, obs. localization error= support radius Localization radius

32 Different effect of localization methods (cont.) Larger differences for smaller observation errors / Inflation forgetting factor Covariance localization EnKF sqrt, obs. error= support radius Localization radius forgetting factor Observation LSEIK fix, obs. localization error= support radius Localization radius

33 Covariance vs. Observation Localization Some published findings: Both methods are similar Slightly smaller width required for observation localization But note for observation localization: Effective localization length depends on errors of state and observations Small observation error wide localization Possibly problematic: in initial transient phase of assimilation if large state errors are estimated locally effective weight effective weight distance prescribed weight effective weight P= R= P= R= distance P: state error variance R: observation error variance

34 Regulated Localization New localization function for observation localization formulated to keep effective length constant (exact for single w OLR = wcl σr 2 observation) ( HPH T + σr 2 wcl HPH T ) depends on state and observation HPH T + errors σr 2 depends on fixed localization function cheap to compute for each observation Only exact for single observation works for multiple weight w fixed w reg, R=0 w reg, R=.0 w reg, R=0. P= distance L. Nerger et al. QJ Royal. Meterol. Soc. 38 (202)

35 Lorenz96 Experiment: Regulated Localization forgetting factor Fixed Covariance localization, loc., N=0, R= EnKF sqrt, LSEIK fix, obs. error= support radius Reduced minimum rms errors Increased stability region forgetting factor Still need to test in real application Regulated localization, N=0, R= LSEIK reg, obs. error= support radius Description of effective localization length explains the findings of other studies!

36 Summary Ensemble-based KFs not exact But they work! Improve methods Least cost; least tuning; best state and error estimates Study relations for improvements Efficient analysis formulations Efficient localization Thank you!

Aspects of the practical application of ensemble-based Kalman filters

Aspects of the practical application of ensemble-based Kalman filters Aspects of the practical application of ensemble-based Kalman filters Lars Nerger Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany and Bremen Supercomputing Competence Center

More information

A Unification of Ensemble Square Root Kalman Filters. and Wolfgang Hiller

A Unification of Ensemble Square Root Kalman Filters. and Wolfgang Hiller Generated using version 3.0 of the official AMS L A TEX template A Unification of Ensemble Square Root Kalman Filters Lars Nerger, Tijana Janjić, Jens Schröter, and Wolfgang Hiller Alfred Wegener Institute

More information

Building Ensemble-Based Data Assimilation Systems. for High-Dimensional Models

Building Ensemble-Based Data Assimilation Systems. for High-Dimensional Models 47th International Liège Colloquium, Liège, Belgium, 4 8 May 2015 Building Ensemble-Based Data Assimilation Systems for High-Dimensional s Lars Nerger, Paul Kirchgessner Alfred Wegener Institute for Polar

More information

Data Assimilation with the Ensemble Kalman Filter and the SEIK Filter applied to a Finite Element Model of the North Atlantic

Data Assimilation with the Ensemble Kalman Filter and the SEIK Filter applied to a Finite Element Model of the North Atlantic Data Assimilation with the Ensemble Kalman Filter and the SEIK Filter applied to a Finite Element Model of the North Atlantic L. Nerger S. Danilov, G. Kivman, W. Hiller, and J. Schröter Alfred Wegener

More information

On the influence of model nonlinearity and localization on ensemble Kalman smoothing

On the influence of model nonlinearity and localization on ensemble Kalman smoothing QuarterlyJournalof theroyalmeteorologicalsociety Q. J. R. Meteorol. Soc. 140: 2249 2259, October 2014 A DOI:10.1002/qj.2293 On the influence of model nonlinearity and localization on ensemble Kalman smoothing

More information

Zentrum für Technomathematik

Zentrum für Technomathematik Zentrum für Technomathematik Fachbereich 3 Mathematik und Informatik On the influence of model nonlinearity and localization on ensemble Kalman smoothing Lars Nerger Svenja Schulte Angelika Bunse-Gerstner

More information

A Comparison of Error Subspace Kalman Filters

A Comparison of Error Subspace Kalman Filters Tellus 000, 000 000 (0000) Printed 4 February 2005 (Tellus LATEX style file v2.2) A Comparison of Error Subspace Kalman Filters By LARS NERGER, WOLFGANG HILLER and JENS SCHRÖTER Alfred Wegener Institute

More information

Local Ensemble Transform Kalman Filter

Local Ensemble Transform Kalman Filter Local Ensemble Transform Kalman Filter Brian Hunt 11 June 2013 Review of Notation Forecast model: a known function M on a vector space of model states. Truth: an unknown sequence {x n } of model states

More information

Optimal Localization for Ensemble Kalman Filter Systems

Optimal Localization for Ensemble Kalman Filter Systems Journal December of the 2014 Meteorological Society of Japan, Vol. Á. 92, PERIÁÑEZ No. 6, pp. et 585 597, al. 2014 585 DOI:10.2151/jmsj.2014-605 Optimal Localization for Ensemble Kalman Filter Systems

More information

Gaussian Filtering Strategies for Nonlinear Systems

Gaussian Filtering Strategies for Nonlinear Systems Gaussian Filtering Strategies for Nonlinear Systems Canonical Nonlinear Filtering Problem ~u m+1 = ~ f (~u m )+~ m+1 ~v m+1 = ~g(~u m+1 )+~ o m+1 I ~ f and ~g are nonlinear & deterministic I Noise/Errors

More information

Using sea level data to constrain a finite-element primitive-equation ocean model with a local SEIK filter

Using sea level data to constrain a finite-element primitive-equation ocean model with a local SEIK filter Noname manuscript No. (will be inserted by the editor) Using sea level data to constrain a finite-element primitive-equation ocean model with a local SEIK filter L. Nerger(1) S. Danilov W. Hiller J. Schröter

More information

Relative Merits of 4D-Var and Ensemble Kalman Filter

Relative Merits of 4D-Var and Ensemble Kalman Filter Relative Merits of 4D-Var and Ensemble Kalman Filter Andrew Lorenc Met Office, Exeter International summer school on Atmospheric and Oceanic Sciences (ISSAOS) "Atmospheric Data Assimilation". August 29

More information

Kalman Filter and Ensemble Kalman Filter

Kalman Filter and Ensemble Kalman Filter Kalman Filter and Ensemble Kalman Filter 1 Motivation Ensemble forecasting : Provides flow-dependent estimate of uncertainty of the forecast. Data assimilation : requires information about uncertainty

More information

Curriculum Vitae. Lars Nerger. Alfred Wegener Institute Helmholtz Center for Polar and Marine Research Am Handelshafen 12 D Bremerhaven, Germany

Curriculum Vitae. Lars Nerger. Alfred Wegener Institute Helmholtz Center for Polar and Marine Research Am Handelshafen 12 D Bremerhaven, Germany Contact information Curriculum Vitae Lars Nerger Alfred Wegener Institute Helmholtz Center for Polar and Marine Research Am Handelshafen 12 D-27570 Bremerhaven, Germany Phone: +49 (471) 4831 1558 Fax:

More information

Ensemble square-root filters

Ensemble square-root filters Ensemble square-root filters MICHAEL K. TIPPETT International Research Institute for climate prediction, Palisades, New Yor JEFFREY L. ANDERSON GFDL, Princeton, New Jersy CRAIG H. BISHOP Naval Research

More information

Adaptive ensemble Kalman filtering of nonlinear systems

Adaptive ensemble Kalman filtering of nonlinear systems Adaptive ensemble Kalman filtering of nonlinear systems Tyrus Berry George Mason University June 12, 213 : Problem Setup We consider a system of the form: x k+1 = f (x k ) + ω k+1 ω N (, Q) y k+1 = h(x

More information

Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF

Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Javier Amezcua, Dr. Kayo Ide, Dr. Eugenia Kalnay 1 Outline

More information

Implications of the Form of the Ensemble Transformation in the Ensemble Square Root Filters

Implications of the Form of the Ensemble Transformation in the Ensemble Square Root Filters 1042 M O N T H L Y W E A T H E R R E V I E W VOLUME 136 Implications of the Form of the Ensemble Transformation in the Ensemble Square Root Filters PAVEL SAKOV AND PETER R. OKE CSIRO Marine and Atmospheric

More information

Asynchronous data assimilation

Asynchronous data assimilation Ensemble Kalman Filter, lecture 2 Asynchronous data assimilation Pavel Sakov Nansen Environmental and Remote Sensing Center, Norway This talk has been prepared in the course of evita-enkf project funded

More information

Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data

Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data John Harlim and Brian R. Hunt Department of Mathematics and Institute for Physical Science and Technology University

More information

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Evan Kwiatkowski, Jan Mandel University of Colorado Denver December 11, 2014 OUTLINE 2 Data Assimilation Bayesian Estimation

More information

A Note on the Particle Filter with Posterior Gaussian Resampling

A Note on the Particle Filter with Posterior Gaussian Resampling Tellus (6), 8A, 46 46 Copyright C Blackwell Munksgaard, 6 Printed in Singapore. All rights reserved TELLUS A Note on the Particle Filter with Posterior Gaussian Resampling By X. XIONG 1,I.M.NAVON 1,2 and

More information

A data-driven method for improving the correlation estimation in serial ensemble Kalman filter

A data-driven method for improving the correlation estimation in serial ensemble Kalman filter A data-driven method for improving the correlation estimation in serial ensemble Kalman filter Michèle De La Chevrotière, 1 John Harlim 2 1 Department of Mathematics, Penn State University, 2 Department

More information

Quarterly Journal of the Royal Meteorological Society

Quarterly Journal of the Royal Meteorological Society Quarterly Journal of the Royal Meteorological Society Effects of sequential or simultaneous assimilation of observations and localization methods on the performance of the ensemble Kalman filter Journal:

More information

Ensemble Kalman Filter

Ensemble Kalman Filter Ensemble Kalman Filter Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway, Nansen Environmental and Remote Sensing Center, Bergen, Norway The Ensemble Kalman Filter (EnKF) Represents

More information

Four-dimensional ensemble Kalman filtering

Four-dimensional ensemble Kalman filtering Tellus (24), 56A, 273 277 Copyright C Blackwell Munksgaard, 24 Printed in UK. All rights reserved TELLUS Four-dimensional ensemble Kalman filtering By B. R. HUNT 1, E. KALNAY 1, E. J. KOSTELICH 2,E.OTT

More information

A comparison of error subspace Kalman filters

A comparison of error subspace Kalman filters Tellus 2005), 57A, 715 735 Copyright C Blacwell Munsgaard, 2005 Printed in Singapore. All rights reserved TELLUS A comparison of error subspace Kalman filters By LARS NERGER,WOLFGANG HILLER and JENS SCHRÖTER,

More information

The Ensemble Kalman Filter:

The Ensemble Kalman Filter: p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen, Ocean Dynamics, Vol 5, No p. The Ensemble

More information

Localization in the ensemble Kalman Filter

Localization in the ensemble Kalman Filter Department of Meteorology Localization in the ensemble Kalman Filter Ruth Elizabeth Petrie A dissertation submitted in partial fulfilment of the requirement for the degree of MSc. Atmosphere, Ocean and

More information

Robust Ensemble Filtering With Improved Storm Surge Forecasting

Robust Ensemble Filtering With Improved Storm Surge Forecasting Robust Ensemble Filtering With Improved Storm Surge Forecasting U. Altaf, T. Buttler, X. Luo, C. Dawson, T. Mao, I.Hoteit Meteo France, Toulouse, Nov 13, 2012 Project Ensemble data assimilation for storm

More information

Ensemble 4DVAR for the NCEP hybrid GSI EnKF data assimilation system and observation impact study with the hybrid system

Ensemble 4DVAR for the NCEP hybrid GSI EnKF data assimilation system and observation impact study with the hybrid system Ensemble 4DVAR for the NCEP hybrid GSI EnKF data assimilation system and observation impact study with the hybrid system Xuguang Wang School of Meteorology University of Oklahoma, Norman, OK OU: Ting Lei,

More information

Maximum Likelihood Ensemble Filter Applied to Multisensor Systems

Maximum Likelihood Ensemble Filter Applied to Multisensor Systems Maximum Likelihood Ensemble Filter Applied to Multisensor Systems Arif R. Albayrak a, Milija Zupanski b and Dusanka Zupanski c abc Colorado State University (CIRA), 137 Campus Delivery Fort Collins, CO

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 2015 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO August 11-14, 2015 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

Four-Dimensional Ensemble Kalman Filtering

Four-Dimensional Ensemble Kalman Filtering Four-Dimensional Ensemble Kalman Filtering B.R. Hunt, E. Kalnay, E.J. Kostelich, E. Ott, D.J. Patil, T. Sauer, I. Szunyogh, J.A. Yorke, A.V. Zimin University of Maryland, College Park, MD 20742, USA Ensemble

More information

P3.11 A COMPARISON OF AN ENSEMBLE OF POSITIVE/NEGATIVE PAIRS AND A CENTERED SPHERICAL SIMPLEX ENSEMBLE

P3.11 A COMPARISON OF AN ENSEMBLE OF POSITIVE/NEGATIVE PAIRS AND A CENTERED SPHERICAL SIMPLEX ENSEMBLE P3.11 A COMPARISON OF AN ENSEMBLE OF POSITIVE/NEGATIVE PAIRS AND A CENTERED SPHERICAL SIMPLEX ENSEMBLE 1 INTRODUCTION Xuguang Wang* The Pennsylvania State University, University Park, PA Craig H. Bishop

More information

P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES

P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES Xuguang Wang*, Thomas M. Hamill, Jeffrey S. Whitaker NOAA/CIRES

More information

Ensemble Kalman Filters for WRF-ARW. Chris Snyder MMM and IMAGe National Center for Atmospheric Research

Ensemble Kalman Filters for WRF-ARW. Chris Snyder MMM and IMAGe National Center for Atmospheric Research Ensemble Kalman Filters for WRF-ARW Chris Snyder MMM and IMAGe National Center for Atmospheric Research Preliminaries Notation: x = modelʼs state w.r.t. some discrete basis, e.g. grid-pt values y = Hx

More information

4DEnVar. Four-Dimensional Ensemble-Variational Data Assimilation. Colloque National sur l'assimilation de données

4DEnVar. Four-Dimensional Ensemble-Variational Data Assimilation. Colloque National sur l'assimilation de données Four-Dimensional Ensemble-Variational Data Assimilation 4DEnVar Colloque National sur l'assimilation de données Andrew Lorenc, Toulouse France. 1-3 décembre 2014 Crown copyright Met Office 4DEnVar: Topics

More information

4D-Var or Ensemble Kalman Filter? TELLUS A, in press

4D-Var or Ensemble Kalman Filter? TELLUS A, in press 4D-Var or Ensemble Kalman Filter? Eugenia Kalnay 1 *, Hong Li 1, Takemasa Miyoshi 2, Shu-Chih Yang 1, and Joaquim Ballabrera-Poy 3 1 University of Maryland, College Park, MD, 20742-2425 2 Numerical Prediction

More information

Data assimilation; comparison of 4D-Var and LETKF smoothers

Data assimilation; comparison of 4D-Var and LETKF smoothers Data assimilation; comparison of 4D-Var and LETKF smoothers Eugenia Kalnay and many friends University of Maryland CSCAMM DAS13 June 2013 Contents First part: Forecasting the weather - we are really getting

More information

Generating climatological forecast error covariance for Variational DAs with ensemble perturbations: comparison with the NMC method

Generating climatological forecast error covariance for Variational DAs with ensemble perturbations: comparison with the NMC method Generating climatological forecast error covariance for Variational DAs with ensemble perturbations: comparison with the NMC method Matthew Wespetal Advisor: Dr. Eugenia Kalnay UMD, AOSC Department March

More information

The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich. Main topics

The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich. Main topics The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich Arizona State University Co-workers: Istvan Szunyogh, Brian Hunt, Ed Ott, Eugenia Kalnay, Jim Yorke, and many others http://www.weatherchaos.umd.edu

More information

The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation

The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation Noname manuscript No. (will be inserted by the editor) The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation Geir Evensen Nansen Environmental and Remote Sensing Center, Bergen

More information

Overview of data assimilation in oceanography or how best to initialize the ocean?

Overview of data assimilation in oceanography or how best to initialize the ocean? Overview of data assimilation in oceanography or how best to initialize the ocean? T. Janjic Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany Outline Ocean observing system Ocean

More information

Comparisons between 4DEnVar and 4DVar on the Met Office global model

Comparisons between 4DEnVar and 4DVar on the Met Office global model Comparisons between 4DEnVar and 4DVar on the Met Office global model David Fairbairn University of Surrey/Met Office 26 th June 2013 Joint project by David Fairbairn, Stephen Pring, Andrew Lorenc, Neill

More information

Cross-validation methods for quality control, cloud screening, etc.

Cross-validation methods for quality control, cloud screening, etc. Cross-validation methods for quality control, cloud screening, etc. Olaf Stiller, Deutscher Wetterdienst Are observations consistent Sensitivity functions with the other observations? given the background

More information

Can hybrid-4denvar match hybrid-4dvar?

Can hybrid-4denvar match hybrid-4dvar? Comparing ensemble-variational assimilation methods for NWP: Can hybrid-4denvar match hybrid-4dvar? WWOSC, Montreal, August 2014. Andrew Lorenc, Neill Bowler, Adam Clayton, David Fairbairn and Stephen

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tim Sauer George Mason University Parameter estimation and UQ U. Pittsburgh Mar. 5, 2017 Partially supported by NSF Most of this work is due to: Tyrus Berry,

More information

How 4DVAR can benefit from or contribute to EnKF (a 4DVAR perspective)

How 4DVAR can benefit from or contribute to EnKF (a 4DVAR perspective) How 4DVAR can benefit from or contribute to EnKF (a 4DVAR perspective) Dale Barker WWRP/THORPEX Workshop on 4D-Var and Ensemble Kalman Filter Intercomparisons Sociedad Cientifica Argentina, Buenos Aires,

More information

Error (E) Covariance Diagnostics. in Ensemble Data Assimilation. Kayo Ide, Daryl Kleist, Adam Kubaryk University of Maryland

Error (E) Covariance Diagnostics. in Ensemble Data Assimilation. Kayo Ide, Daryl Kleist, Adam Kubaryk University of Maryland Error (E) Covariance Diagnostics in Ensemble Data Assimilation Kayo Ide, Daryl Kleist, Adam Kubaryk University of Maryland 7 th EnKF Data Assimilation Workshop May 2016 Outline Part I. Background: E-diagnostics

More information

A Spectral Approach to Linear Bayesian Updating

A Spectral Approach to Linear Bayesian Updating A Spectral Approach to Linear Bayesian Updating Oliver Pajonk 1,2, Bojana V. Rosic 1, Alexander Litvinenko 1, and Hermann G. Matthies 1 1 Institute of Scientific Computing, TU Braunschweig, Germany 2 SPT

More information

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006 Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems Eric Kostelich Data Mining Seminar, Feb. 6, 2006 kostelich@asu.edu Co-Workers Istvan Szunyogh, Gyorgyi Gyarmati, Ed Ott, Brian

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 014 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO July 14-16, 014 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

A new Hierarchical Bayes approach to ensemble-variational data assimilation

A new Hierarchical Bayes approach to ensemble-variational data assimilation A new Hierarchical Bayes approach to ensemble-variational data assimilation Michael Tsyrulnikov and Alexander Rakitko HydroMetCenter of Russia College Park, 20 Oct 2014 Michael Tsyrulnikov and Alexander

More information

Analysis Scheme in the Ensemble Kalman Filter

Analysis Scheme in the Ensemble Kalman Filter JUNE 1998 BURGERS ET AL. 1719 Analysis Scheme in the Ensemble Kalman Filter GERRIT BURGERS Royal Netherlands Meteorological Institute, De Bilt, the Netherlands PETER JAN VAN LEEUWEN Institute or Marine

More information

Estimation of positive sum-to-one constrained parameters with ensemble-based Kalman filters: application to an ocean ecosystem model

Estimation of positive sum-to-one constrained parameters with ensemble-based Kalman filters: application to an ocean ecosystem model Estimation of positive sum-to-one constrained parameters with ensemble-based Kalman filters: application to an ocean ecosystem model Ehouarn Simon 1, Annette Samuelsen 1, Laurent Bertino 1 Dany Dumont

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi 4th EnKF Workshop, April 2010 Relationship

More information

An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation

An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation A. Shah 1,2, M. E. Gharamti 1, L. Bertino 1 1 Nansen Environmental and Remote Sensing Center 2 University of Bergen

More information

On the Kalman Filter error covariance collapse into the unstable subspace

On the Kalman Filter error covariance collapse into the unstable subspace Nonlin. Processes Geophys., 18, 243 250, 2011 doi:10.5194/npg-18-243-2011 Author(s) 2011. CC Attribution 3.0 License. Nonlinear Processes in Geophysics On the Kalman Filter error covariance collapse into

More information

The Ensemble Kalman Filter:

The Ensemble Kalman Filter: p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen 23, Ocean Dynamics, Vol 53, No 4 p.2 The Ensemble

More information

Advances and Challenges in Ensemblebased Data Assimilation in Meteorology. Takemasa Miyoshi

Advances and Challenges in Ensemblebased Data Assimilation in Meteorology. Takemasa Miyoshi January 18, 2013, DA Workshop, Tachikawa, Japan Advances and Challenges in Ensemblebased Data Assimilation in Meteorology Takemasa Miyoshi RIKEN Advanced Institute for Computational Science Takemasa.Miyoshi@riken.jp

More information

(Toward) Scale-dependent weighting and localization for the NCEP GFS hybrid 4DEnVar Scheme

(Toward) Scale-dependent weighting and localization for the NCEP GFS hybrid 4DEnVar Scheme (Toward) Scale-dependent weighting and localization for the NCEP GFS hybrid 4DEnVar Scheme Daryl Kleist 1, Kayo Ide 1, Rahul Mahajan 2, Deng-Shun Chen 3 1 University of Maryland - Dept. of Atmospheric

More information

Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter

Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter arxiv:physics/0511236 v1 28 Nov 2005 Brian R. Hunt Institute for Physical Science and Technology and Department

More information

Review of Covariance Localization in Ensemble Filters

Review of Covariance Localization in Ensemble Filters NOAA Earth System Research Laboratory Review of Covariance Localization in Ensemble Filters Tom Hamill NOAA Earth System Research Lab, Boulder, CO tom.hamill@noaa.gov Canonical ensemble Kalman filter update

More information

Some ideas for Ensemble Kalman Filter

Some ideas for Ensemble Kalman Filter Some ideas for Ensemble Kalman Filter Former students and Eugenia Kalnay UMCP Acknowledgements: UMD Chaos-Weather Group: Brian Hunt, Istvan Szunyogh, Ed Ott and Jim Yorke, Kayo Ide, and students Former

More information

The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation

The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation Geir Evensen Norsk Hydro, Oil and Energy Research Centre, Bergen PO Box 7190 - N 5020 Bergen, Norway Geir.Evensen@hydro.com

More information

OOPC-GODAE workshop on OSE/OSSEs Paris, IOCUNESCO, November 5-7, 2007

OOPC-GODAE workshop on OSE/OSSEs Paris, IOCUNESCO, November 5-7, 2007 OOPC-GODAE workshop on OSE/OSSEs Paris, IOCUNESCO, November 5-7, 2007 Design of ocean observing systems: strengths and weaknesses of approaches based on assimilative systems Pierre Brasseur CNRS / LEGI

More information

arxiv: v1 [physics.ao-ph] 23 Jan 2009

arxiv: v1 [physics.ao-ph] 23 Jan 2009 A Brief Tutorial on the Ensemble Kalman Filter Jan Mandel arxiv:0901.3725v1 [physics.ao-ph] 23 Jan 2009 February 2007, updated January 2009 Abstract The ensemble Kalman filter EnKF) is a recursive filter

More information

4. DATA ASSIMILATION FUNDAMENTALS

4. DATA ASSIMILATION FUNDAMENTALS 4. DATA ASSIMILATION FUNDAMENTALS... [the atmosphere] "is a chaotic system in which errors introduced into the system can grow with time... As a consequence, data assimilation is a struggle between chaotic

More information

UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE EFFECTS OF SEQUENTIAL OR SIMULTANEOUS ASSIMILATION OF OBSERVATIONS AND LOCALIZATION METHODS ON THE PERFORMANCE

UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE EFFECTS OF SEQUENTIAL OR SIMULTANEOUS ASSIMILATION OF OBSERVATIONS AND LOCALIZATION METHODS ON THE PERFORMANCE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE EFFECTS OF SEQUENTIAL OR SIMULTANEOUS ASSIMILATION OF OBSERVATIONS AND LOCALIZATION METHODS ON THE PERFORMANCE OF THE ENSEMBLE KALMAN FILTER A THESIS SUBMITTED TO

More information

Abstract 2. ENSEMBLE KALMAN FILTERS 1. INTRODUCTION

Abstract 2. ENSEMBLE KALMAN FILTERS 1. INTRODUCTION J5.4 4D ENSEMBLE KALMAN FILTERING FOR ASSIMILATION OF ASYNCHRONOUS OBSERVATIONS T. Sauer George Mason University, Fairfax, VA 22030 B.R. Hunt, J.A. Yorke, A.V. Zimin, E. Ott, E.J. Kostelich, I. Szunyogh,

More information

Data assimilation in the geosciences An overview

Data assimilation in the geosciences An overview Data assimilation in the geosciences An overview Alberto Carrassi 1, Olivier Talagrand 2, Marc Bocquet 3 (1) NERSC, Bergen, Norway (2) LMD, École Normale Supérieure, IPSL, France (3) CEREA, joint lab École

More information

A Matrix-Free Posterior Ensemble Kalman Filter Implementation Based on a Modified Cholesky Decomposition

A Matrix-Free Posterior Ensemble Kalman Filter Implementation Based on a Modified Cholesky Decomposition atmosphere Article A Matrix-Free Posterior Ensemble Kalman Filter Implementation Based on a Modified Cholesky Decomposition Elias D. Nino-Ruiz Applied Math and Computational Science Laboratory, Department

More information

Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows

Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows Laura Slivinski June, 3 Laura Slivinski (Brown University) Lagrangian Data Assimilation June, 3 / 3 Data Assimilation Setup:

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi ECODYC10, Dresden 28 January 2010 Relationship

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tyrus Berry George Mason University NJIT Feb. 28, 2017 Postdoc supported by NSF This work is in collaboration with: Tim Sauer, GMU Franz Hamilton, Postdoc, NCSU

More information

Ensemble Kalman Filter potential

Ensemble Kalman Filter potential Ensemble Kalman Filter potential Former students (Shu-Chih( Yang, Takemasa Miyoshi, Hong Li, Junjie Liu, Chris Danforth, Ji-Sun Kang, Matt Hoffman), and Eugenia Kalnay University of Maryland Acknowledgements:

More information

Ensemble Data Assimilation: Theory and Applications

Ensemble Data Assimilation: Theory and Applications : Theory and Applications Humberto C. Godinez J. David Moulton, Jon Reisner, Alex O. Fierro, Stephen Guimond, Jim Kao Los Alamos National Laboratory National Severe Storms Laboratory Seminar July 6, 2011

More information

WRF-LETKF The Present and Beyond

WRF-LETKF The Present and Beyond November 12, 2012, Weather-Chaos meeting WRF-LETKF The Present and Beyond Takemasa Miyoshi and Masaru Kunii University of Maryland, College Park miyoshi@atmos.umd.edu Co-investigators and Collaborators:

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts (2)

Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts (2) Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts (2) Time series curves 500hPa geopotential Correlation coefficent of forecast anomaly N Hemisphere Lat 20.0 to 90.0

More information

An ETKF approach for initial state and parameter estimation in ice sheet modelling

An ETKF approach for initial state and parameter estimation in ice sheet modelling An ETKF approach for initial state and parameter estimation in ice sheet modelling Bertrand Bonan University of Reading DARC Seminar, Reading October 30, 2013 DARC Seminar (Reading) ETKF for ice sheet

More information

Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter

Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter Improved analyses and forecasts with AIRS retrievals using the Local Ensemble Transform Kalman Filter Hong Li, Junjie Liu, and Elana Fertig E. Kalnay I. Szunyogh, E. J. Kostelich Weather and Chaos Group

More information

Towards a probabilistic hydrological forecasting and data assimilation system. Henrik Madsen DHI, Denmark

Towards a probabilistic hydrological forecasting and data assimilation system. Henrik Madsen DHI, Denmark Towards a probabilistic hydrological forecasting and data assimilation system Henrik Madsen DHI, Denmark Outline Hydrological forecasting Data assimilation framework Data assimilation experiments Concluding

More information

EnKF Localization Techniques and Balance

EnKF Localization Techniques and Balance EnKF Localization Techniques and Balance Steven Greybush Eugenia Kalnay, Kayo Ide, Takemasa Miyoshi, and Brian Hunt Weather Chaos Meeting September 21, 2009 Data Assimilation Equation Scalar form: x a

More information

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm Overview 1 2 3 Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation 6th EnKF Purpose EnKF equations localization After the 6th EnKF (2014), I decided with Prof. Zhang to summarize progress

More information

Ensemble Data Assimilation and Uncertainty Quantification

Ensemble Data Assimilation and Uncertainty Quantification Ensemble Data Assimilation and Uncertainty Quantification Jeff Anderson National Center for Atmospheric Research pg 1 What is Data Assimilation? Observations combined with a Model forecast + to produce

More information

Convergence of the Ensemble Kalman Filter in Hilbert Space

Convergence of the Ensemble Kalman Filter in Hilbert Space Convergence of the Ensemble Kalman Filter in Hilbert Space Jan Mandel Center for Computational Mathematics Department of Mathematical and Statistical Sciences University of Colorado Denver Parts based

More information

Hybrid Variational Ensemble Data Assimilation for Tropical Cyclone

Hybrid Variational Ensemble Data Assimilation for Tropical Cyclone Hybrid Variational Ensemble Data Assimilation for Tropical Cyclone Forecasts Xuguang Wang School of Meteorology University of Oklahoma, Norman, OK Acknowledgement: OU: Ting Lei, Yongzuo Li, Kefeng Zhu,

More information

Nonlinear error dynamics for cycled data assimilation methods

Nonlinear error dynamics for cycled data assimilation methods Nonlinear error dynamics for cycled data assimilation methods A J F Moodey 1, A S Lawless 1,2, P J van Leeuwen 2, R W E Potthast 1,3 1 Department of Mathematics and Statistics, University of Reading, UK.

More information

The Variational approach on the road to Data Assimilation (DA) for Chemical Transport Models (CTM).

The Variational approach on the road to Data Assimilation (DA) for Chemical Transport Models (CTM). The Variational approach on the road to Data Assimilation (DA) for Chemical Transport Models (CTM). Student: Andrés Yarce Botero Advisors: Olga Lucía Quintero Nicolás Pinel Peláez Mathematical Modeling

More information

Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model

Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model Shu-Chih Yang 1*, Eugenia Kalnay, and Brian Hunt 1. Department of Atmospheric Sciences, National Central

More information

Weakly coupled assimilation for decadal prediction with MPI-ESM

Weakly coupled assimilation for decadal prediction with MPI-ESM Weakly coupled assimilation for decadal prediction with MPI-ESM Sebastian Brune, Johanna Baehr Institute of Oceanography CEN, University of Hamburg Holger Pohlmann, Wolfgang Müller Max Planck Institute

More information

Hybrid variational-ensemble data assimilation. Daryl T. Kleist. Kayo Ide, Dave Parrish, John Derber, Jeff Whitaker

Hybrid variational-ensemble data assimilation. Daryl T. Kleist. Kayo Ide, Dave Parrish, John Derber, Jeff Whitaker Hybrid variational-ensemble data assimilation Daryl T. Kleist Kayo Ide, Dave Parrish, John Derber, Jeff Whitaker Weather and Chaos Group Meeting 07 March 20 Variational Data Assimilation J Var J 2 2 T

More information

Multivariate Correlations: Applying a Dynamic Constraint and Variable Localization in an Ensemble Context

Multivariate Correlations: Applying a Dynamic Constraint and Variable Localization in an Ensemble Context Multivariate Correlations: Applying a Dynamic Constraint and Variable Localization in an Ensemble Context Catherine Thomas 1,2,3, Kayo Ide 1 Additional thanks to Daryl Kleist, Eugenia Kalnay, Takemasa

More information

Strongly coupled data assimilation: Could scatterometer winds improve ocean analyses?

Strongly coupled data assimilation: Could scatterometer winds improve ocean analyses? Strongly coupled data assimilation: Could scatterometer winds improve ocean analyses? Sergey Frolov 1 Craig H. Bishop 2 ; Teddy Holt 2 ; James Cummings 3 ; David Kuhl 4 1 UCAR, Visiting Scientist 2 Naval

More information

Recent Advances in EnKF

Recent Advances in EnKF Recent Advances in EnKF Former students (Shu-Chih( Yang, Takemasa Miyoshi, Hong Li, Junjie Liu, Chris Danforth, Ji-Sun Kang, Matt Hoffman, Steve Penny, Steve Greybush), and Eugenia Kalnay University of

More information

A Non-Gaussian Ensemble Filter Update for Data Assimilation

A Non-Gaussian Ensemble Filter Update for Data Assimilation 4186 M O N T H L Y W E A T H E R R E V I E W VOLUME 138 A Non-Gaussian Ensemble Filter Update for Data Assimilation JEFFREY L. ANDERSON NCAR Data Assimilation Research Section,* Boulder, Colorado (Manuscript

More information

Applications of information theory in ensemble data assimilation

Applications of information theory in ensemble data assimilation QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 33: 533 545 (007) Published online in Wiley InterScience (www.interscience.wiley.com).3 Applications of information theory

More information

Model Uncertainty Quantification for Data Assimilation in partially observed Lorenz 96

Model Uncertainty Quantification for Data Assimilation in partially observed Lorenz 96 Model Uncertainty Quantification for Data Assimilation in partially observed Lorenz 96 Sahani Pathiraja, Peter Jan Van Leeuwen Institut für Mathematik Universität Potsdam With thanks: Sebastian Reich,

More information