The Ensemble Kalman Filter:

Size: px
Start display at page:

Download "The Ensemble Kalman Filter:"

Transcription

1 p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen 23, Ocean Dynamics, Vol 53, No 4

2 p.2 The Ensemble Kalman Filter (EnKF) Represents error statistics using an ensemble of model states. Evolves error statistics by ensemble integrations. Variance minimizing analysis scheme operating on the ensemble. Monte Carlo, low rank, error subspace method. Converges to the Kalman Filter with increasing ensemble size. Fully nonlinear error evolution, contrary to EKF. Assumption of Gaussian statistics in analysis scheme.

3 p.3 The error covariance matrix Define ensemble covariances around the ensemble mean The ensemble mean is the bestguess. The ensemble spread defines the error variance. The covariance is determined by the smoothness of the ensemble members. A covariance matrix can be represented by an ensemble of model states (not unique).

4 p.4 Dynamical evolution of error statistics Each ensemble member evolve according to the model dynamics which is expressed by a stochastic differential equation d The probability density then evolve according to Kolmogorov s equation! This is the fundamental equation for evolution of error statistics and can be solved using Monte Carlo methods.

5 " # # # p.5 Analysis scheme (1) Given an ensemble of model forcasts, forecast error covariance, defining Create an ensemble of observations &% $# " " with, the real observations,, a vector of observation noise,. ' '

6 p.6 Analysis scheme (2) Update each ensemble member according to % " where + *) ' ( ( Thus the update of the mean becomes " The posterior error covariance becomes,

7 p.7 Example: Lorenz model Application with the chaotic Lorenz model Illustrates properties with higly nonlinear dynamical models. From Evensen (1997), MWR.

8 p.8 EnKF solution 2 EnKF: Estimate

9 p.9 EnKF error variance 3 EnKF: Error variance

10 p.1 EnKS solution 2 EnKS: Estimate

11 p.11 EnKS error variance 3 EnKS: Error variance

12 p.12 Summary: Lorenz model The EnKF and EnKS works well with highly nonlinear dynamical models. There is no linearization in the evolution of error statistics. Methods using tangent linear or adjoint operators have problems with the Lorenz equations: limited by the predictability time, limited by the validity time of tangent linear operator. Can we expect the same to be true for high resolution ocean and atmosphere models?

13 3 2 1 / % % 5 / / 3 1 / / p.13 Analysis equation (1) Define the ensemble matrix / +.% 67 ) The ensemble mean is (defining 4 / The ensemble perturbations become, becomes The ensemble covariance matrix 8 8

14 " 7 ; % % / " % < # % % 7 p.14 Analysis equation (2), define 19 Given a vector of measurements % :% $# " " stored in / 3 91 " % " +:% The ensemble perturbations are stored in / % 3 91 / # + % # thus, the measurement error covariance matrix becomes < < '

15 8 ) < < + p.15 Analysis equation (3) The analysis equation can now be written *) ' + Defining the innovations previous definitions: and using i.e., analysis expressed entirely in terms of the ensemble

16 Analysis equation (4) Define = 8 and > = = < <. Use 8, 4 /. Use 4 / = 5?. 8 = = = < < ) + 8, 4 / = >) + 8,, 4 / = >) + 8, = >) + 8 (1) p.16

17 = = p.17 Remarks on the analysis equation (1) Covariances only needed between observed variables at measurement locations ( ). 8 = never computed but indirectly used to determine. Analysis may be interpreted as: combination of forecast ensemble members, or, forecast pluss combination of covariance functions. Accuracy of analysis is determined by: the accuracy of, the properties of the ensemble error space.

18 p.18 Remarks on the analysis equation (2) For a linear model, any choice of will result in an analysis which is also a solution of the model. Filtering of covariance functions introduces nondynamical modes in the analysis.

19 p.19 Examples of ensemble statistics Taken from Haugen and Evensen (22), Ocean Dynamics. OGCM (MICOM) for the Indian Ocean. Assimilation of SST and SLA data.

20 Spatial correlations Latitude SSTDP(1) Latitude SSHDP(1) Longitude Longitude Latitude SSTSSH Latitude SSHUVEL Longitude Longitude p.2

21 Correlation functions SSH SSH SSH SST SSH DP SST SSH SST SST SST DP p.21

22 Correlation functions SSH SSH SSH SST SSH DP SST SSH SST SST SST DP p.22

23 Time Depth: Temperature 1 2 Depth 3 4 OBSERVED AND SIMULATED TEMPERATURE Days p.23

24 p.24 Ensemble Kalman Smoother (EnKS) Derived in Evensen and van Leeuwen (2), MWR. Starts with EnKF solution. Computes updates backward in time; sequentially for each measurement time, using covariances in time, no backward integrations. The analysis becomes for + ) C ML 8 KI E G 8 JI FEHG

25 + O V O S V O + p.25 Time correlated model noise Most schemes assume white model noise in time. Augment model state to include time correlations UTC ) + NC ) PRQ SNC C ) NC C White noise when and.

26 W Results ( ) Time p.26

27 W Results ( X) Time p.27

28 r r d r ^ r a p.28 Parameter and bias estimation in model Y C Introduces poorly known parameter d ]&c p:q b k gon d b\]&c `[`s Z[Z e `[` d ^ ]&c m\] l k ij e hij ^ ] e fg e _ ]&c Z[Z a `[` \] ^ ] _ ] Z[Z Two cases. ^ut. ^wv a poorly known parameter with 1. 2.

29 p.29 Estimate and model error, EnKF Time

30 p.3 Estimate and model error, EnKS Time

31 p.31 Estimate, model error and, EnKF Time

32 p.32 Estimate, model error and, EnKS Time

33 p.33 Estimated and std dev Time

34 p.34 Summary The EnKF and EnKS can handle time correlated model errors. The EnKF and EnKS can be used for parameter estimation by augmenting the model state with the unknown parameters.

35 p.35 Oil reservoar application The EnKF has been used to estimate permeability in a reservoar simulation model using production well data. The greatest uncertainty is the reservoar permeability and porosity. The well data consists of pressures and oil, gas and water production rates.

36 Estimated bias and std dev p.36

37 x y 7 p.37 Local analysis May be useful when is large or Analysis is computed grid point by grid point using only nearby measurements. Inverts many small matrices instead of one large. Different for each grid point, thus, allows us to reach a larger class of solutions. Suboptimal solution which introduces nondynamical modes..

38 z 8 + " 8 z ) < < 8 8 p.38 Nonlinear measurements Measurement equation # z Define ensemble of model prediction of the measurements / { % / % % The analysis then becomes { % { { { Analysis based on covariances between z and.

39 p.39 TOPAZ Operational ocean prediction system for the Atlantic and Arctic oceans. topaz.nersc.no Based on HYCOM State space is 26 5 unknowns. Ensemble size is 1. Assimilates SSH, SST, Ice concentration, and ARGO T&S profiles. Total of more than 1 measurements in each assimilation step. Uses local analysis as well as nonlinear measurements.

40 TOPAZ p.4

Ensemble Kalman Filter

Ensemble Kalman Filter Ensemble Kalman Filter Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway, Nansen Environmental and Remote Sensing Center, Bergen, Norway The Ensemble Kalman Filter (EnKF) Represents

More information

The Ensemble Kalman Filter:

The Ensemble Kalman Filter: p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen, Ocean Dynamics, Vol 5, No p. The Ensemble

More information

6 Sequential Data Assimilation for Nonlinear Dynamics: The Ensemble Kalman Filter

6 Sequential Data Assimilation for Nonlinear Dynamics: The Ensemble Kalman Filter 6 Sequential Data Assimilation for Nonlinear Dynamics: The Ensemble Kalman Filter GEIR EVENSEN Nansen Environmental and Remote Sensing Center, Bergen, Norway 6.1 Introduction Sequential data assimilation

More information

Smoothers: Types and Benchmarks

Smoothers: Types and Benchmarks Smoothers: Types and Benchmarks Patrick N. Raanes Oxford University, NERSC 8th International EnKF Workshop May 27, 2013 Chris Farmer, Irene Moroz Laurent Bertino NERSC Geir Evensen Abstract Talk builds

More information

Analysis Scheme in the Ensemble Kalman Filter

Analysis Scheme in the Ensemble Kalman Filter JUNE 1998 BURGERS ET AL. 1719 Analysis Scheme in the Ensemble Kalman Filter GERRIT BURGERS Royal Netherlands Meteorological Institute, De Bilt, the Netherlands PETER JAN VAN LEEUWEN Institute or Marine

More information

The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation

The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation Noname manuscript No. (will be inserted by the editor) The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation Geir Evensen Nansen Environmental and Remote Sensing Center, Bergen

More information

The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation

The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation Geir Evensen Norsk Hydro, Oil and Energy Research Centre, Bergen PO Box 7190 - N 5020 Bergen, Norway Geir.Evensen@hydro.com

More information

Norwegian Climate Prediction Model (NorCPM) getting ready for CMIP6 DCPP

Norwegian Climate Prediction Model (NorCPM) getting ready for CMIP6 DCPP Norwegian Climate Prediction Model (NorCPM) getting ready for CMIP6 DCPP Francois Counillon, Noel Keenlyside, Mats Bentsen, Ingo Bethke, Laurent Bertino, Teferi Demissie, Tor Eldevik, Shunya Koseki, Camille

More information

Asynchronous data assimilation

Asynchronous data assimilation Ensemble Kalman Filter, lecture 2 Asynchronous data assimilation Pavel Sakov Nansen Environmental and Remote Sensing Center, Norway This talk has been prepared in the course of evita-enkf project funded

More information

Gaussian Filtering Strategies for Nonlinear Systems

Gaussian Filtering Strategies for Nonlinear Systems Gaussian Filtering Strategies for Nonlinear Systems Canonical Nonlinear Filtering Problem ~u m+1 = ~ f (~u m )+~ m+1 ~v m+1 = ~g(~u m+1 )+~ o m+1 I ~ f and ~g are nonlinear & deterministic I Noise/Errors

More information

Kalman Filter and Ensemble Kalman Filter

Kalman Filter and Ensemble Kalman Filter Kalman Filter and Ensemble Kalman Filter 1 Motivation Ensemble forecasting : Provides flow-dependent estimate of uncertainty of the forecast. Data assimilation : requires information about uncertainty

More information

A comparison of sequential data assimilation schemes for. Twin Experiments

A comparison of sequential data assimilation schemes for. Twin Experiments A comparison of sequential data assimilation schemes for ocean prediction with HYCOM Twin Experiments A. Srinivasan, University of Miami, Miami, FL E. P. Chassignet, COAPS, Florida State University, Tallahassee,

More information

SPE History Matching Using the Ensemble Kalman Filter on a North Sea Field Case

SPE History Matching Using the Ensemble Kalman Filter on a North Sea Field Case SPE- 1243 History Matching Using the Ensemble Kalman Filter on a North Sea Field Case Vibeke Haugen, SPE, Statoil ASA, Lars-Jørgen Natvik, Statoil ASA, Geir Evensen, Hydro, Aina Berg, IRIS, Kristin Flornes,

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi 4th EnKF Workshop, April 2010 Relationship

More information

Methods of Data Assimilation and Comparisons for Lagrangian Data

Methods of Data Assimilation and Comparisons for Lagrangian Data Methods of Data Assimilation and Comparisons for Lagrangian Data Chris Jones, Warwick and UNC-CH Kayo Ide, UCLA Andrew Stuart, Jochen Voss, Warwick Guillaume Vernieres, UNC-CH Amarjit Budiraja, UNC-CH

More information

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Background Data Assimilation Iterative process Forecast Analysis Background

More information

A Note on the Particle Filter with Posterior Gaussian Resampling

A Note on the Particle Filter with Posterior Gaussian Resampling Tellus (6), 8A, 46 46 Copyright C Blackwell Munksgaard, 6 Printed in Singapore. All rights reserved TELLUS A Note on the Particle Filter with Posterior Gaussian Resampling By X. XIONG 1,I.M.NAVON 1,2 and

More information

Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter

Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter SPE 84372 Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter Geir Nævdal, RF-Rogaland Research; Liv Merethe Johnsen, SPE, Norsk Hydro; Sigurd Ivar Aanonsen, SPE, Norsk Hydro;

More information

Aspects of the practical application of ensemble-based Kalman filters

Aspects of the practical application of ensemble-based Kalman filters Aspects of the practical application of ensemble-based Kalman filters Lars Nerger Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany and Bremen Supercomputing Competence Center

More information

Ensemble square-root filters

Ensemble square-root filters Ensemble square-root filters MICHAEL K. TIPPETT International Research Institute for climate prediction, Palisades, New Yor JEFFREY L. ANDERSON GFDL, Princeton, New Jersy CRAIG H. BISHOP Naval Research

More information

Relative Merits of 4D-Var and Ensemble Kalman Filter

Relative Merits of 4D-Var and Ensemble Kalman Filter Relative Merits of 4D-Var and Ensemble Kalman Filter Andrew Lorenc Met Office, Exeter International summer school on Atmospheric and Oceanic Sciences (ISSAOS) "Atmospheric Data Assimilation". August 29

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 6.2: Kalman Filter Jürgen Sturm Technische Universität München Motivation Bayes filter is a useful tool for state

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi ECODYC10, Dresden 28 January 2010 Relationship

More information

State and Parameter Estimation in Stochastic Dynamical Models

State and Parameter Estimation in Stochastic Dynamical Models State and Parameter Estimation in Stochastic Dynamical Models Timothy DelSole George Mason University, Fairfax, Va and Center for Ocean-Land-Atmosphere Studies, Calverton, MD June 21, 2011 1 1 collaboration

More information

Adaptive ensemble Kalman filtering of nonlinear systems

Adaptive ensemble Kalman filtering of nonlinear systems Adaptive ensemble Kalman filtering of nonlinear systems Tyrus Berry George Mason University June 12, 213 : Problem Setup We consider a system of the form: x k+1 = f (x k ) + ω k+1 ω N (, Q) y k+1 = h(x

More information

4. DATA ASSIMILATION FUNDAMENTALS

4. DATA ASSIMILATION FUNDAMENTALS 4. DATA ASSIMILATION FUNDAMENTALS... [the atmosphere] "is a chaotic system in which errors introduced into the system can grow with time... As a consequence, data assimilation is a struggle between chaotic

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

Data assimilation in high dimensions

Data assimilation in high dimensions Data assimilation in high dimensions David Kelly Courant Institute New York University New York NY www.dtbkelly.com February 12, 2015 Graduate seminar, CIMS David Kelly (CIMS) Data assimilation February

More information

Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter

Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter Jon Poterjoy, Ryan Sobash, and Jeffrey Anderson National Center for Atmospheric Research

More information

Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows

Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows Laura Slivinski June, 3 Laura Slivinski (Brown University) Lagrangian Data Assimilation June, 3 / 3 Data Assimilation Setup:

More information

Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data

Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data John Harlim and Brian R. Hunt Department of Mathematics and Institute for Physical Science and Technology University

More information

Forecasting and data assimilation

Forecasting and data assimilation Supported by the National Science Foundation DMS Forecasting and data assimilation Outline Numerical models Kalman Filter Ensembles Douglas Nychka, Thomas Bengtsson, Chris Snyder Geophysical Statistics

More information

Data Assimilation with the Ensemble Kalman Filter and the SEIK Filter applied to a Finite Element Model of the North Atlantic

Data Assimilation with the Ensemble Kalman Filter and the SEIK Filter applied to a Finite Element Model of the North Atlantic Data Assimilation with the Ensemble Kalman Filter and the SEIK Filter applied to a Finite Element Model of the North Atlantic L. Nerger S. Danilov, G. Kivman, W. Hiller, and J. Schröter Alfred Wegener

More information

The Ensemble Kalman Filter: theoretical formulation and practical implementation

The Ensemble Kalman Filter: theoretical formulation and practical implementation Ocean Dynamics (2003) 53: 343 367 DOI 10.1007/s10236-003-0036-9 Geir Evensen The Ensemble Kalman Filter: theoretical formulation and practical implementation Received: 16 December 2002 / Accepted: 7 May

More information

The ECMWF Hybrid 4D-Var and Ensemble of Data Assimilations

The ECMWF Hybrid 4D-Var and Ensemble of Data Assimilations The Hybrid 4D-Var and Ensemble of Data Assimilations Lars Isaksen, Massimo Bonavita and Elias Holm Data Assimilation Section lars.isaksen@ecmwf.int Acknowledgements to: Mike Fisher and Marta Janiskova

More information

The Canadian approach to ensemble prediction

The Canadian approach to ensemble prediction The Canadian approach to ensemble prediction ECMWF 2017 Annual seminar: Ensemble prediction : past, present and future. Pieter Houtekamer Montreal, Canada Overview. The Canadian approach. What are the

More information

Comparison of of Assimilation Schemes for HYCOM

Comparison of of Assimilation Schemes for HYCOM Comparison of of Assimilation Schemes for HYCOM Ashwanth Srinivasan, C. Thacker, Z. Garraffo, E. P. Chassignet, O. M. Smedstad, J. Cummings, F. Counillon, L. Bertino, T. M. Chin, P. Brasseur and C. Lozano

More information

Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model

Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model Handling nonlinearity in Ensemble Kalman Filter: Experiments with the three-variable Lorenz model Shu-Chih Yang 1*, Eugenia Kalnay, and Brian Hunt 1. Department of Atmospheric Sciences, National Central

More information

An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation

An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation An Efficient Ensemble Data Assimilation Approach To Deal With Range Limited Observation A. Shah 1,2, M. E. Gharamti 1, L. Bertino 1 1 Nansen Environmental and Remote Sensing Center 2 University of Bergen

More information

Data assimilation in the geosciences An overview

Data assimilation in the geosciences An overview Data assimilation in the geosciences An overview Alberto Carrassi 1, Olivier Talagrand 2, Marc Bocquet 3 (1) NERSC, Bergen, Norway (2) LMD, École Normale Supérieure, IPSL, France (3) CEREA, joint lab École

More information

Four-Dimensional Ensemble Kalman Filtering

Four-Dimensional Ensemble Kalman Filtering Four-Dimensional Ensemble Kalman Filtering B.R. Hunt, E. Kalnay, E.J. Kostelich, E. Ott, D.J. Patil, T. Sauer, I. Szunyogh, J.A. Yorke, A.V. Zimin University of Maryland, College Park, MD 20742, USA Ensemble

More information

OOPC-GODAE workshop on OSE/OSSEs Paris, IOCUNESCO, November 5-7, 2007

OOPC-GODAE workshop on OSE/OSSEs Paris, IOCUNESCO, November 5-7, 2007 OOPC-GODAE workshop on OSE/OSSEs Paris, IOCUNESCO, November 5-7, 2007 Design of ocean observing systems: strengths and weaknesses of approaches based on assimilative systems Pierre Brasseur CNRS / LEGI

More information

An Ensemble Kalman Smoother for Nonlinear Dynamics

An Ensemble Kalman Smoother for Nonlinear Dynamics 1852 MONTHLY WEATHER REVIEW VOLUME 128 An Ensemble Kalman Smoother or Nonlinear Dynamics GEIR EVENSEN Nansen Environmental and Remote Sensing Center, Bergen, Norway PETER JAN VAN LEEUWEN Institute or Marine

More information

Four-dimensional ensemble Kalman filtering

Four-dimensional ensemble Kalman filtering Tellus (24), 56A, 273 277 Copyright C Blackwell Munksgaard, 24 Printed in UK. All rights reserved TELLUS Four-dimensional ensemble Kalman filtering By B. R. HUNT 1, E. KALNAY 1, E. J. KOSTELICH 2,E.OTT

More information

Organization. I MCMC discussion. I project talks. I Lecture.

Organization. I MCMC discussion. I project talks. I Lecture. Organization I MCMC discussion I project talks. I Lecture. Content I Uncertainty Propagation Overview I Forward-Backward with an Ensemble I Model Reduction (Intro) Uncertainty Propagation in Causal Systems

More information

Geir Evensen Data Assimilation

Geir Evensen Data Assimilation Geir Evensen Data Assimilation Geir Evensen Data Assimilation The Ensemble Kalman Filter With 63 Figures PROF.GEIR EVENSEN Hydro Research Centre, Bergen PO Box 7190 N 5020 Bergen Norway and Mohn-Sverdrup

More information

A Stochastic Collocation based. for Data Assimilation

A Stochastic Collocation based. for Data Assimilation A Stochastic Collocation based Kalman Filter (SCKF) for Data Assimilation Lingzao Zeng and Dongxiao Zhang University of Southern California August 11, 2009 Los Angeles Outline Introduction SCKF Algorithm

More information

Robust Ensemble Filtering With Improved Storm Surge Forecasting

Robust Ensemble Filtering With Improved Storm Surge Forecasting Robust Ensemble Filtering With Improved Storm Surge Forecasting U. Altaf, T. Buttler, X. Luo, C. Dawson, T. Mao, I.Hoteit Meteo France, Toulouse, Nov 13, 2012 Project Ensemble data assimilation for storm

More information

Stability of Ensemble Kalman Filters

Stability of Ensemble Kalman Filters Stability of Ensemble Kalman Filters Idrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen, John Bardsley, Heikki Haario and Tuomo Kauranne Lappeenranta University of Technology University of

More information

Demonstration and Comparison of of Sequential Approaches for Altimeter Data Assimilation in in HYCOM

Demonstration and Comparison of of Sequential Approaches for Altimeter Data Assimilation in in HYCOM Demonstration and Comparison of of Sequential Approaches for Altimeter Data Assimilation in in HYCOM A. Srinivasan, E. P. Chassignet, O. M. Smedstad, C. Thacker, L. Bertino, P. Brasseur, T. M. Chin,, F.

More information

Adaptive Observation Strategies for Forecast Error Minimization

Adaptive Observation Strategies for Forecast Error Minimization Adaptive Observation Strategies for Forecast Error Minimization Nicholas Roy 1, Han-Lim Choi 2, Daniel Gombos 3, James Hansen 4, Jonathan How 2, and Sooho Park 1 1 Computer Science and Artificial Intelligence

More information

Localization and Correlation in Ensemble Kalman Filters

Localization and Correlation in Ensemble Kalman Filters Localization and Correlation in Ensemble Kalman Filters Jeff Anderson NCAR Data Assimilation Research Section The National Center for Atmospheric Research is sponsored by the National Science Foundation.

More information

A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems

A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems Journal of Marine Systems 40 41 (2003) 253 289 www.elsevier.com/locate/jmarsys A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting

More information

Ergodicity in data assimilation methods

Ergodicity in data assimilation methods Ergodicity in data assimilation methods David Kelly Andy Majda Xin Tong Courant Institute New York University New York NY www.dtbkelly.com April 15, 2016 ETH Zurich David Kelly (CIMS) Data assimilation

More information

Data assimilation in high dimensions

Data assimilation in high dimensions Data assimilation in high dimensions David Kelly Kody Law Andy Majda Andrew Stuart Xin Tong Courant Institute New York University New York NY www.dtbkelly.com February 3, 2016 DPMMS, University of Cambridge

More information

Short tutorial on data assimilation

Short tutorial on data assimilation Mitglied der Helmholtz-Gemeinschaft Short tutorial on data assimilation 23 June 2015 Wolfgang Kurtz & Harrie-Jan Hendricks Franssen Institute of Bio- and Geosciences IBG-3 (Agrosphere), Forschungszentrum

More information

Abstract 2. ENSEMBLE KALMAN FILTERS 1. INTRODUCTION

Abstract 2. ENSEMBLE KALMAN FILTERS 1. INTRODUCTION J5.4 4D ENSEMBLE KALMAN FILTERING FOR ASSIMILATION OF ASYNCHRONOUS OBSERVATIONS T. Sauer George Mason University, Fairfax, VA 22030 B.R. Hunt, J.A. Yorke, A.V. Zimin, E. Ott, E.J. Kostelich, I. Szunyogh,

More information

Preliminary Test of Glider Data Assimilation Along the Labrador Sea Shelf Break

Preliminary Test of Glider Data Assimilation Along the Labrador Sea Shelf Break Preliminary Test of Glider Data Assimilation Along the Labrador Sea Shelf Break Third Annual VITALS Science Meeting October 19, 2015 Changheng Chen, K. Andrea Scott Department of Systems Design Engineering

More information

Environment Canada s Regional Ensemble Kalman Filter

Environment Canada s Regional Ensemble Kalman Filter Environment Canada s Regional Ensemble Kalman Filter May 19, 2014 Seung-Jong Baek, Luc Fillion, Kao-Shen Chung, and Peter Houtekamer Meteorological Research Division, Environment Canada, Dorval, Quebec

More information

Revision of TR-09-25: A Hybrid Variational/Ensemble Filter Approach to Data Assimilation

Revision of TR-09-25: A Hybrid Variational/Ensemble Filter Approach to Data Assimilation Revision of TR-9-25: A Hybrid Variational/Ensemble ilter Approach to Data Assimilation Adrian Sandu 1 and Haiyan Cheng 1 Computational Science Laboratory Department of Computer Science Virginia Polytechnic

More information

An Iterative EnKF for Strongly Nonlinear Systems

An Iterative EnKF for Strongly Nonlinear Systems 1988 M O N T H L Y W E A T H E R R E V I E W VOLUME 140 An Iterative EnKF for Strongly Nonlinear Systems PAVEL SAKOV Nansen Environmental and Remote Sensing Center, Bergen, Norway DEAN S. OLIVER Uni Centre

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Geir Evensen Data Assimilation

Geir Evensen Data Assimilation Geir Evensen Data Assimilation Geir Evensen Data Assimilation The Ensemble Kalman Filter With 63 Figures PROF.GEIR EVENSEN Hydro Research Centre, Bergen PO Box 7190 N 5020 Bergen Norway and Mohn-Sverdrup

More information

Ensembles and Particle Filters for Ocean Data Assimilation

Ensembles and Particle Filters for Ocean Data Assimilation DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ensembles and Particle Filters for Ocean Data Assimilation Robert N. Miller College of Oceanic and Atmospheric Sciences

More information

Nonlinear and/or Non-normal Filtering. Jesús Fernández-Villaverde University of Pennsylvania

Nonlinear and/or Non-normal Filtering. Jesús Fernández-Villaverde University of Pennsylvania Nonlinear and/or Non-normal Filtering Jesús Fernández-Villaverde University of Pennsylvania 1 Motivation Nonlinear and/or non-gaussian filtering, smoothing, and forecasting (NLGF) problems are pervasive

More information

Local Ensemble Transform Kalman Filter

Local Ensemble Transform Kalman Filter Local Ensemble Transform Kalman Filter Brian Hunt 11 June 2013 Review of Notation Forecast model: a known function M on a vector space of model states. Truth: an unknown sequence {x n } of model states

More information

Ensemble Data Assimilation and Uncertainty Quantification

Ensemble Data Assimilation and Uncertainty Quantification Ensemble Data Assimilation and Uncertainty Quantification Jeff Anderson National Center for Atmospheric Research pg 1 What is Data Assimilation? Observations combined with a Model forecast + to produce

More information

A Dressed Ensemble Kalman Filter Using the Hybrid Coordinate Ocean Model in the Pacific

A Dressed Ensemble Kalman Filter Using the Hybrid Coordinate Ocean Model in the Pacific ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 26, NO. 5, 2009, 1042 1052 A Dressed Ensemble Kalman Filter Using the Hybrid Coordinate Ocean Model in the Pacific WAN Liying 1 (!"#), ZHU Jiang 2 ($%), WANG Hui

More information

Assimilating Altimetry Data into a HYCOM Model of the Pacific: Ensemble Optimal Interpolation versus Ensemble Kalman Filter

Assimilating Altimetry Data into a HYCOM Model of the Pacific: Ensemble Optimal Interpolation versus Ensemble Kalman Filter APRIL 2010 W A N E T A L. 753 Assimilating Altimetry Data into a HYCOM Model of the Pacific: Ensemble Optimal Interpolation versus Ensemble Kalman Filter LIYING WAN National Marine Environmental Forecasting

More information

Adaptive ensemble Kalman filtering of nonlinear systems. Tyrus Berry and Timothy Sauer George Mason University, Fairfax, VA 22030

Adaptive ensemble Kalman filtering of nonlinear systems. Tyrus Berry and Timothy Sauer George Mason University, Fairfax, VA 22030 Generated using V3.2 of the official AMS LATEX template journal page layout FOR AUTHOR USE ONLY, NOT FOR SUBMISSION! Adaptive ensemble Kalman filtering of nonlinear systems Tyrus Berry and Timothy Sauer

More information

Fundamentals of Data Assimilation

Fundamentals of Data Assimilation National Center for Atmospheric Research, Boulder, CO USA GSI Data Assimilation Tutorial - June 28-30, 2010 Acknowledgments and References WRFDA Overview (WRF Tutorial Lectures, H. Huang and D. Barker)

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tim Sauer George Mason University Parameter estimation and UQ U. Pittsburgh Mar. 5, 2017 Partially supported by NSF Most of this work is due to: Tyrus Berry,

More information

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006 Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems Eric Kostelich Data Mining Seminar, Feb. 6, 2006 kostelich@asu.edu Co-Workers Istvan Szunyogh, Gyorgyi Gyarmati, Ed Ott, Brian

More information

On the convergence of (ensemble) Kalman filters and smoothers onto the unstable subspace

On the convergence of (ensemble) Kalman filters and smoothers onto the unstable subspace On the convergence of (ensemble) Kalman filters and smoothers onto the unstable subspace Marc Bocquet CEREA, joint lab École des Ponts ParisTech and EdF R&D, Université Paris-Est, France Institut Pierre-Simon

More information

Par$cle Filters Part I: Theory. Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading

Par$cle Filters Part I: Theory. Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading Par$cle Filters Part I: Theory Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading Reading July 2013 Why Data Assimila$on Predic$on Model improvement: - Parameter es$ma$on

More information

Ensemble Kalman Filtering for State and Parameter Estimation on a Reservoir Model

Ensemble Kalman Filtering for State and Parameter Estimation on a Reservoir Model Ensemble Kalman Filtering for State and Parameter Estimation on a Reservoir Model John Petter Jensen Master of Science in Engineering Cybernetics Submission date: June 27 Supervisor: Bjarne Anton Foss,

More information

Ensemble variational assimilation as a probabilistic estimator Part 1: The linear and weak non-linear case

Ensemble variational assimilation as a probabilistic estimator Part 1: The linear and weak non-linear case Nonlin. Processes Geophys., 25, 565 587, 28 https://doi.org/.594/npg-25-565-28 Author(s) 28. This work is distributed under the Creative Commons Attribution 4. License. Ensemble variational assimilation

More information

Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics

Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 99, NO. C, PAGES,143,162, MAY, 1994 Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics Geir

More information

Ensemble Kalman filters, Sequential Importance Resampling and beyond

Ensemble Kalman filters, Sequential Importance Resampling and beyond Ensemble Kalman filters, Sequential Importance Resampling and beyond Peter Jan van Leeuwen Institute for Marine and Atmospheric research Utrecht (IMAU) Utrecht University, P.O.Box 80005, 3508 TA Utrecht,

More information

arxiv: v1 [physics.ao-ph] 23 Jan 2009

arxiv: v1 [physics.ao-ph] 23 Jan 2009 A Brief Tutorial on the Ensemble Kalman Filter Jan Mandel arxiv:0901.3725v1 [physics.ao-ph] 23 Jan 2009 February 2007, updated January 2009 Abstract The ensemble Kalman filter EnKF) is a recursive filter

More information

R. E. Petrie and R. N. Bannister. Department of Meteorology, Earley Gate, University of Reading, Reading, RG6 6BB, United Kingdom

R. E. Petrie and R. N. Bannister. Department of Meteorology, Earley Gate, University of Reading, Reading, RG6 6BB, United Kingdom A method for merging flow-dependent forecast error statistics from an ensemble with static statistics for use in high resolution variational data assimilation R. E. Petrie and R. N. Bannister Department

More information

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e.

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e. Kalman Filter Localization Bayes Filter Reminder Prediction Correction Gaussians p(x) ~ N(µ,σ 2 ) : Properties of Gaussians Univariate p(x) = 1 1 2πσ e 2 (x µ) 2 σ 2 µ Univariate -σ σ Multivariate µ Multivariate

More information

Gaussian anamorphosis extension of the DEnKF for combined state and parameter estimation: application to a 1D ocean ecosystem model.

Gaussian anamorphosis extension of the DEnKF for combined state and parameter estimation: application to a 1D ocean ecosystem model. Gaussian anamorphosis extension of the DEnKF for combined state and parameter estimation: application to a D ocean ecosystem model. Ehouarn Simon a,, Laurent Bertino a a Nansen Environmental and Remote

More information

DART_LAB Tutorial Section 2: How should observations impact an unobserved state variable? Multivariate assimilation.

DART_LAB Tutorial Section 2: How should observations impact an unobserved state variable? Multivariate assimilation. DART_LAB Tutorial Section 2: How should observations impact an unobserved state variable? Multivariate assimilation. UCAR 2014 The National Center for Atmospheric Research is sponsored by the National

More information

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm Overview 1 2 3 Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation 6th EnKF Purpose EnKF equations localization After the 6th EnKF (2014), I decided with Prof. Zhang to summarize progress

More information

Application of the Ensemble Kalman Filter to History Matching

Application of the Ensemble Kalman Filter to History Matching Application of the Ensemble Kalman Filter to History Matching Presented at Texas A&M, November 16,2010 Outline Philosophy EnKF for Data Assimilation Field History Match Using EnKF with Covariance Localization

More information

A Comparison of Error Subspace Kalman Filters

A Comparison of Error Subspace Kalman Filters Tellus 000, 000 000 (0000) Printed 4 February 2005 (Tellus LATEX style file v2.2) A Comparison of Error Subspace Kalman Filters By LARS NERGER, WOLFGANG HILLER and JENS SCHRÖTER Alfred Wegener Institute

More information

Estimation of positive sum-to-one constrained parameters with ensemble-based Kalman filters: application to an ocean ecosystem model

Estimation of positive sum-to-one constrained parameters with ensemble-based Kalman filters: application to an ocean ecosystem model Estimation of positive sum-to-one constrained parameters with ensemble-based Kalman filters: application to an ocean ecosystem model Ehouarn Simon 1, Annette Samuelsen 1, Laurent Bertino 1 Dany Dumont

More information

A data-driven method for improving the correlation estimation in serial ensemble Kalman filter

A data-driven method for improving the correlation estimation in serial ensemble Kalman filter A data-driven method for improving the correlation estimation in serial ensemble Kalman filter Michèle De La Chevrotière, 1 John Harlim 2 1 Department of Mathematics, Penn State University, 2 Department

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 014 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO July 14-16, 014 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

Bayesian Statistics and Data Assimilation. Jonathan Stroud. Department of Statistics The George Washington University

Bayesian Statistics and Data Assimilation. Jonathan Stroud. Department of Statistics The George Washington University Bayesian Statistics and Data Assimilation Jonathan Stroud Department of Statistics The George Washington University 1 Outline Motivation Bayesian Statistics Parameter Estimation in Data Assimilation Combined

More information

Some Applications of WRF/DART

Some Applications of WRF/DART Some Applications of WRF/DART Chris Snyder, National Center for Atmospheric Research Mesoscale and Microscale Meteorology Division (MMM), and Institue for Mathematics Applied to Geoscience (IMAGe) WRF/DART

More information

A data assimilation approach for reconstructing sea ice volume in the Southern Hemisphere

A data assimilation approach for reconstructing sea ice volume in the Southern Hemisphere Harmony on Ice 2 meeting Paris, 28-29 Nov. 2011 A data assimilation approach for reconstructing sea ice volume in the Southern Hemisphere F. Massonnet, P. Mathiot, T. Fichefet, H. Goosse, C. König Beatty,

More information

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Weiguang Chang and Isztar Zawadzki Department of Atmospheric and Oceanic Sciences Faculty

More information

Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices

Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices Andreas Rhodin, Harald Anlauf German Weather Service (DWD) Workshop on Flow-dependent aspects of data assimilation,

More information

Zentrum für Technomathematik

Zentrum für Technomathematik Zentrum für Technomathematik Fachbereich 3 Mathematik und Informatik On the influence of model nonlinearity and localization on ensemble Kalman smoothing Lars Nerger Svenja Schulte Angelika Bunse-Gerstner

More information

Bayesian Inverse problem, Data assimilation and Localization

Bayesian Inverse problem, Data assimilation and Localization Bayesian Inverse problem, Data assimilation and Localization Xin T Tong National University of Singapore ICIP, Singapore 2018 X.Tong Localization 1 / 37 Content What is Bayesian inverse problem? What is

More information

Assimilation des Observations et Traitement des Incertitudes en Météorologie

Assimilation des Observations et Traitement des Incertitudes en Météorologie Assimilation des Observations et Traitement des Incertitudes en Météorologie Olivier Talagrand Laboratoire de Météorologie Dynamique, Paris 4èmes Rencontres Météo/MathAppli Météo-France, Toulouse, 25 Mars

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Centre for Computational Statistics and Machine Learning University College London c.archambeau@cs.ucl.ac.uk CSML

More information

Maximum Likelihood Ensemble Filter Applied to Multisensor Systems

Maximum Likelihood Ensemble Filter Applied to Multisensor Systems Maximum Likelihood Ensemble Filter Applied to Multisensor Systems Arif R. Albayrak a, Milija Zupanski b and Dusanka Zupanski c abc Colorado State University (CIRA), 137 Campus Delivery Fort Collins, CO

More information