DATA ASSIMILATION FOR FLOOD FORECASTING

Size: px
Start display at page:

Download "DATA ASSIMILATION FOR FLOOD FORECASTING"

Transcription

1 DATA ASSIMILATION FOR FLOOD FORECASTING Arnold Heemin Delft University of Technology 09/16/14 1

2 Data assimilation is the incorporation of measurement into a numerical model to improve the model results Applications: Weather forecasting using numerical models Storm surge forecasting Reconstructing air pollution emissions Ground water flow and transport problems Reservoir models Soil mechanics 09/16/14 2

3 Some real life applications of data assimilation 09/16/14 3

4 Grid of storm surge forecasting model 09/16/14 4

5 Example of a flow pattern 09/16/14 5

6 Example of a water level forecast 09/16/14 6

7 09/16/14 7 Grid of Coastal model

8 Data locations 09/16/14 8

9 HF radar data 09/16/14 9

10 Measurements of the vertical velocity profile 09/16/14 10

11 State space model The (non linear) physics: X = f( X, p, 1) + G ( 1) W 1 1 where X is the state, p is vector of uncertain parameters, f represents the (numerical) model, G is a noise input matrix and W is zero mean system noise with covariance Q The measurements: Z = M ( ) X + V where M is the measurement matrix and V is zero mean measurement noise with covariance R 09/16/14 11

12 Formulation of the wea constraint data assimilation problem It is desired to combine the data with the stochastic model in order to obtain an optimal estimate of the state and parameters of the system. We define the criterion: J( px, ) = Z MX ( ) K = 1 K R = X f( X, p, 1) T + α p p 1 ( GQG ) 0 C /16/14 12

13 Overview Ensemble Kalman filtering Classical Kalman filtering Deterministic ensemble Kalman filter for large scale systems: Reduced Ran Square Root filter Stochastic filter: Ensemble Kalman filter Hybrid filters: Square Root Ensemble Kalman filter Two sample filter with application to storm surge forecasting Variational data assimilation Basic idea of variational data assimilation Model reduced variational data assimilation with application to the calibration of a storm surge model 09/16/14 13

14 Kalman filtering: Linear dynamics F() and constant parameters State space model: The linear physics: X = F ( 1) X + G ( 1) W 1 1 where X is the state, F represents the (numerical) model, G is a noise input matrix and W is zero mean system noise with covariance Q The measurements: Z = M ( ) X + V where M is the measurement matrix and V is zero mean measurement noise with covariance R 09/16/14 14

15 Linear dynamics F() and constant parameters: The criterion in this case becomes: J( X ) = Z M( ) X R = 1 K = 1 K X F ( 1) X T 1 ( GQG ) 1 09/16/14 15

16 Linear dynamics F() and constant parameters: State estimation using Kalman filtering A recursive algorithm for =1,2, to determine : X P X P f f a a Optimal estimate of the state at time using measurements up to and including -1 Covariance matrix of the estimation error Optimal estimate of the state at time using measurements up to and including Covariance matrix of the estimation error 09/16/14 16

17 Kalman filter algorithm f X = F ( 1) X, a 1 P = F( 1) P F( 1) + G( 1) Q( 1) G( 1) f a T T 1 a f f X = X + K ( )[ Z MX ( ) ] a P = [ I KM ( ) ( )] P f T f T K( ) = P M( ) [ M( ) P M( ) + R( )] f 1 09/16/14 17

18 09/16/14 18 Extended Kalman filter algorithm for nonlinear systems 1, 1 1 )] ( ) ( ) ( [ ) ( ) ( )] ( ) ( [ ] ) ( )[ ( 1) ( : 1) ( 1) ( 1) ( 1) ( 1) ( ) ( 1 + = = + = = + = = R M P M M P K P M K I P X M Z K X X x f F w here G Q G F P F P X f X T f T f f a f f a X j i j i T T a f a f a

19 Large scale models Problems with the applications of the standard Kalman filter to large scale problems: -hugh computational burden -P very ill conditioned -tangent linear system is required 09/16/14 19

20 SQRT formulation of the covariance P Define S according to P=SS And rewrite the algorithm in terms of S Advantages: -SS always positive definite -S is less ill conditioned (than P) -S can be approximated by a matrix with reduced number of columns Ensemble algorithms are of the square root type and in addition do not require the tangent linear model 09/16/14 20

21 Reduced Ran square root filtering The square root matrix S is defined according to P=SS where S are the q leading EOF s of P: ξ 0 = xˆ ξ = xˆ + εs i i S is generally of very low ran: q<<n 09/16/14 21

22 Reduced Ran Square Root filter Representing a q dimensional Gaussian distribution using q+1 ensembles, first order accurate for nonlinear systems Ensemble member Variance of the model uncertainty 9/7/

23 Uncented Kalman filter Representing a p dimensional Gaussian distribution using p+2 ensembles, second order accurate for nonlinear systems Ensemble member Variance of the model uncertainty 9/7/

24 Summary Reduced Ran filters Each ensemble member is propagated using the original (non linear) model, no tangent linear model is required Errors are caused by truncation of the eigenvectors The algorithm is sensitive to filter divergence problems and, therefore q has to be chosen sufficiently large Computational effort required is approximately q+1 model simulations + eigenvalue decomposition (~q³) 09/16/14 24

25 Classical Ensemble Kalman filter (EnKF) To represent the probability density of the state estimate N ensemble members are chosen randomly: 1 ˆ N x S = = [... ξ ξ i i N xˆ 1...] 09/16/14 25

26 Ensemble Kalman filter Representing multi dimensional Gaussian distribution using N random ensembles Ensemble member Variance of the model uncertainty 9/7/

27 Summary Ensemble Kalman filter Each ensemble member is propagated using the original (non linear) model, no tangent linear model is required Errors are of statistical nature Errors decrease very slowly with large sample size Computational effort required is approximately N model simulations 09/16/14 27

28 28 09/16/14 Semi-deterministic schemes: Ensemble Square Root Filters (ESRF) An alternative way to solve the measurement update step is: The general solution is given by: where T is an ensemble transform matrix. R H S H S R S M R M S I S S S P T f f T f f T f f T a a a + = = = ) ( ) ] ( ) ( [ ) ( 1 ) ( ) ( [ 1 f T f T f a M R M S I T T T S S = =

29 The symmetric ESRF (with symmetric T) Unbiased updated ensemble mean Minimum analysis increment: a X X f 09/16/14 29

30 Two sample Kalman filter with application to storm surge forecasting (based on J.H. Sumihar, M Verlaan, A. W. Heemin, Monthly Weather Review, 2008) 09/16/14 30

31 Storm surge forecasting model: A numerical model based on 2D shallow water equations DCSM 09/16/14 31

32 Storm surge forecasting system with steady state Kalman filter to improve the model results using real-time data wind DCSM X H - y delay + K X: model state, containing values of water level and flow velocities at all grid points. y: water-level observation data. 09/16/14 32

33 K depends on the model error statistics The success of a Kalman filter depends very much on the specification of model error statistics. 09/16/14 33

34 Spatial correlation of the system noise of the operational Kalman filter (isotropic) windu windv 09/16/14 34

35 Two-sample Kalman filter algorithm The well-nown ensemble Kalman filter computes the statistics of the model uncertainty from an ensemble of model simulations at every time when a measurement is available. The two sample Kalman filter computes the statistics of the model uncertainty using only two samples by averaging over time (Sumihar et al., Monthly Weather Review, 2008). 09/16/14 35

36 Two-sample Kalman filter using two different meteorological models to generate the forecasts: UKMO and HiRLAM KNMI-HiRLAM UKMO Δt 1 The difference between UKMO and HiRLAM is used as proxy to unnown error. Error statistics are computed by averaging the difference over time. 09/16/14 36

37 Model error spatial correlation computed from UKMO-HiRLAM difference 09/16/14 37

38 Forecast performance 09/16/14 38

39 Conclusion The Two sample Kalman filter with two different forecasts of two different meteorological models (UKMO and HIRLAM) improves short term storm surge forecast because of more realistic model error statistics. Next step: Multi sample Kalman filter 09/16/14 39

40 Overview Ensemble Kalman filtering Classical Kalman filtering Deterministic ensemble Kalman filter for large scale systems: Reduced Ran Square Root filter Stochastic filter: Ensemble Kalman filter Hybrid filters: Square Root Ensemble Kalman filter Two sample filter with application to storm surge forecasting Variational data assimilation Basic idea of variational data assimilation Model reduced variational data assimilation with application to the calibration of a storm surge model 09/16/14 40

41 The wea constraint data assimilation problem revisited It is desired to combine the data with the stochastic model in order to obtain an optimal estimate of the state and parameters of the system. We define the criterion: K J( px, ) = Z MX ( ) K R = X f( X, p, 1) T + α p p 1 ( GQG ) 0 C /16/14 41

42 Non linear deterministic systems. Strong constraint variational data assimilation (4Dvar): Parameter estimation For Q=0 the error criterion reduces to: J ( p) Z M ( ) X 1 + α p p 1 = Introducing the adjoint state we can rewrite the criterion: K = J( p) = Z M( ) X + α p p K R 0 C + v ( X F( X, p, 1)) K = 1 T /16/ R 0 2 C

43 Non linear deterministic systems. Strong constraint variational data assimilation (4Dvar): Parameter estimation If we solve the uncoupled system: X = f( X, p, 1) 1 T T 1 1 = ( 1) + ( ) ( ( ) ) v F v M R Z M X X = x, v = K where F() is the tangent linear model. The gradient of the criterion can be computed by: J p = = K = 0 v T f αc p 1 ( p p0) Very efficient in combination with a gradient-based optimization scheme. 09/16/14 BUT: we need the adjoint implementation! 43

44 Model reduction with application to variational data assimilation (based on M.U. Altaf, M Verlaan, A.W. Heemin, International Journal on Multi Scale Computational Engineering, 2009) 09/16/14 44

45 Motivation Adjoint based methods are attractive for parameter estimation problems, but the development of the adjoint is usually too much wor. Non-intrusive model reduction for nonlinear systems is based on an ensemble of model simulations and can be used in data assimialtion to avoid the coding of the adjoint 45 9/7/2016

46 A POD model reduction approach to data assimilation: The linear case Consider the q dimensional sub space: P = [... p j...] And project the original model onto this sub space: r + 1 Z = [ P T F( ) P] r = [ M ( ) P] r We now have an explicit low dimensional (approximate) system description of the model variations including its adjoint! The sub space can be determined by computing the EOF (Empirical Orthogonal Functions) of an ensemble of model simulations 09/16/ v

47 Nonlinear systems We now have to determine: T f i r+ 1 = [ P Pr ] x j For every column l of P we have f x i j p ( f( X + ε p ) f( X )) 1 a a l ε 1 l 1 This is a first order accurate approximation. It is easy to extend this idea to higher order approximations We do not need the tangent linear approximation! 09/16/14 47

48 MRVDA Re-parameterization Initial Parameters High-order Model Simulation Objective Function Calculation Converged? Done Snapshots Simulation Building of The Low-order Model Low-order Model Simulation Low-order Adjoint Model Simulation Gradient Calculation Parameters Update Reduced Objective Function Calculation Converged? Sup Optimal Parameters 09/16/14 48

49 Some remars Very efficient in case the simulation period of the ensemble of model simulation is very small compared to the calibration period For many iterations the reduced model can be the same and only the residuals have to be updated 09/16/14 49

50 Application to the calibration of a numerical tidal model 09/16/14 50

51 Based on shallow water equations Grid size: 1.5 by 1.0 (~2 m) Grid dimensions: 1120 x 1260 cells Active Grid Points: Time step: 2 minutes 8 main constituents 09/16/14

52 DCSM(Water level time series) 09/16/14

53 09/16/14 53

54 09/16/14 54

55 09/16/14 55

56 09/16/14 56

57 Experiment with field data Parameter: Depth Calibration run: 28 Dec 2006 to 30 Jan 2007 Measurement data: 01 Jan 2007 to 30 Jan 2007 Includes two spring-neap cycles Assimilation Stations: 35 Validation Stations: 15 Ensemble of forward model simulations for a period of four days (01 Jan 2007 to 04 Jan 2007) 09/16/14

58 DCSM Divide model area in 4 sub domains + 1 overall parameter No. of snapshots: 132 (Every three hours) 24 POD modes are required to capture 97% energy Same POD modes are used in 2 rd iteration Initial RMS: 25.7 cm After 2 rd iteration: 14.9 cm Improvement : 42% 09/16/14

59 09/16/14 59

60 DCSM(Validation results) Similar improvement as in the case of assimilation stations 09/16/14

61 Computational Cost Estimation 5 parameters, calibration period 1 month: Number of simulations of 1 month: 4.7, reduction criterion 42% (2 iterations, no model update in second iteration) Estimation 20 parameters (4 bottom friction and 16 depth values), calibration period 1 month: Number of simulations of 1 month: 11, reduction criterion 50% (5 iterations, no model update in second and fourth iteration)

62 Conclusions Model reduced variational data assimilation For the estimation of constant parameters in large scale numerical models the variational methods are generally the most accurate The adjoint implementation can be avoided using model reduction: MRVAR Efficiency MRVAR is very problem dependent More analysis is required 09/16/14 62

DATA ASSIMILATION STUDY USING THE DUTCH CONTINENTAL SHELF MODEL WITH FULL MEASUREMENT

DATA ASSIMILATION STUDY USING THE DUTCH CONTINENTAL SHELF MODEL WITH FULL MEASUREMENT DATA ASSIMILATION STUDY USING THE DUTCH CONTINENTAL SHELF MODEL WITH FULL MEASUREMENT JULIUS H. SUMIHAR AND MARTIN VERLAAN,2 Faculty of Electrical Engineering, Mathematics and Computer Science, Department

More information

Robust Ensemble Filtering With Improved Storm Surge Forecasting

Robust Ensemble Filtering With Improved Storm Surge Forecasting Robust Ensemble Filtering With Improved Storm Surge Forecasting U. Altaf, T. Buttler, X. Luo, C. Dawson, T. Mao, I.Hoteit Meteo France, Toulouse, Nov 13, 2012 Project Ensemble data assimilation for storm

More information

Ensemble square-root filters

Ensemble square-root filters Ensemble square-root filters MICHAEL K. TIPPETT International Research Institute for climate prediction, Palisades, New Yor JEFFREY L. ANDERSON GFDL, Princeton, New Jersy CRAIG H. BISHOP Naval Research

More information

The Canadian approach to ensemble prediction

The Canadian approach to ensemble prediction The Canadian approach to ensemble prediction ECMWF 2017 Annual seminar: Ensemble prediction : past, present and future. Pieter Houtekamer Montreal, Canada Overview. The Canadian approach. What are the

More information

Fundamentals of Data Assimilation

Fundamentals of Data Assimilation National Center for Atmospheric Research, Boulder, CO USA GSI Data Assimilation Tutorial - June 28-30, 2010 Acknowledgments and References WRFDA Overview (WRF Tutorial Lectures, H. Huang and D. Barker)

More information

An Ensemble based Reliable Storm Surge Forecasting for Gulf of Mexico

An Ensemble based Reliable Storm Surge Forecasting for Gulf of Mexico An Ensemble based Reliable Storm Surge Forecasting for Gulf of Mexico Umer Altaf Delft University of Technology, Delft ICES, University of Texas at Austin, USA KAUST, Saudi Arabia JONSMOD 2012, Ifremer,

More information

Parameter Estimation in Reservoir Engineering Models via Data Assimilation Techniques

Parameter Estimation in Reservoir Engineering Models via Data Assimilation Techniques Parameter Estimation in Reservoir Engineering Models via Data Assimilation Techniques Mariya V. Krymskaya TU Delft July 6, 2007 Ensemble Kalman Filter (EnKF) Iterative Ensemble Kalman Filter (IEnKF) State

More information

Organization. I MCMC discussion. I project talks. I Lecture.

Organization. I MCMC discussion. I project talks. I Lecture. Organization I MCMC discussion I project talks. I Lecture. Content I Uncertainty Propagation Overview I Forward-Backward with an Ensemble I Model Reduction (Intro) Uncertainty Propagation in Causal Systems

More information

Relative Merits of 4D-Var and Ensemble Kalman Filter

Relative Merits of 4D-Var and Ensemble Kalman Filter Relative Merits of 4D-Var and Ensemble Kalman Filter Andrew Lorenc Met Office, Exeter International summer school on Atmospheric and Oceanic Sciences (ISSAOS) "Atmospheric Data Assimilation". August 29

More information

Stability of Ensemble Kalman Filters

Stability of Ensemble Kalman Filters Stability of Ensemble Kalman Filters Idrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen, John Bardsley, Heikki Haario and Tuomo Kauranne Lappeenranta University of Technology University of

More information

Model Uncertainty Quantification for Data Assimilation in partially observed Lorenz 96

Model Uncertainty Quantification for Data Assimilation in partially observed Lorenz 96 Model Uncertainty Quantification for Data Assimilation in partially observed Lorenz 96 Sahani Pathiraja, Peter Jan Van Leeuwen Institut für Mathematik Universität Potsdam With thanks: Sebastian Reich,

More information

Ensemble Kalman Filter based snow data assimilation

Ensemble Kalman Filter based snow data assimilation Ensemble Kalman Filter based snow data assimilation (just some ideas) FMI, Sodankylä, 4 August 2011 Jelena Bojarova Sequential update problem Non-linear state space problem Tangent-linear state space problem

More information

Can hybrid-4denvar match hybrid-4dvar?

Can hybrid-4denvar match hybrid-4dvar? Comparing ensemble-variational assimilation methods for NWP: Can hybrid-4denvar match hybrid-4dvar? WWOSC, Montreal, August 2014. Andrew Lorenc, Neill Bowler, Adam Clayton, David Fairbairn and Stephen

More information

The ECMWF Hybrid 4D-Var and Ensemble of Data Assimilations

The ECMWF Hybrid 4D-Var and Ensemble of Data Assimilations The Hybrid 4D-Var and Ensemble of Data Assimilations Lars Isaksen, Massimo Bonavita and Elias Holm Data Assimilation Section lars.isaksen@ecmwf.int Acknowledgements to: Mike Fisher and Marta Janiskova

More information

Kalman Filter and Ensemble Kalman Filter

Kalman Filter and Ensemble Kalman Filter Kalman Filter and Ensemble Kalman Filter 1 Motivation Ensemble forecasting : Provides flow-dependent estimate of uncertainty of the forecast. Data assimilation : requires information about uncertainty

More information

A Comparison of Error Subspace Kalman Filters

A Comparison of Error Subspace Kalman Filters Tellus 000, 000 000 (0000) Printed 4 February 2005 (Tellus LATEX style file v2.2) A Comparison of Error Subspace Kalman Filters By LARS NERGER, WOLFGANG HILLER and JENS SCHRÖTER Alfred Wegener Institute

More information

A Stochastic Collocation based. for Data Assimilation

A Stochastic Collocation based. for Data Assimilation A Stochastic Collocation based Kalman Filter (SCKF) for Data Assimilation Lingzao Zeng and Dongxiao Zhang University of Southern California August 11, 2009 Los Angeles Outline Introduction SCKF Algorithm

More information

Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows

Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows Lagrangian Data Assimilation and Its Application to Geophysical Fluid Flows Laura Slivinski June, 3 Laura Slivinski (Brown University) Lagrangian Data Assimilation June, 3 / 3 Data Assimilation Setup:

More information

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Evan Kwiatkowski, Jan Mandel University of Colorado Denver December 11, 2014 OUTLINE 2 Data Assimilation Bayesian Estimation

More information

A Note on the Particle Filter with Posterior Gaussian Resampling

A Note on the Particle Filter with Posterior Gaussian Resampling Tellus (6), 8A, 46 46 Copyright C Blackwell Munksgaard, 6 Printed in Singapore. All rights reserved TELLUS A Note on the Particle Filter with Posterior Gaussian Resampling By X. XIONG 1,I.M.NAVON 1,2 and

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 2015 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO August 11-14, 2015 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

Data assimilation in the MIKE 11 Flood Forecasting system using Kalman filtering

Data assimilation in the MIKE 11 Flood Forecasting system using Kalman filtering Water Resources Systems Hydrological Risk, Management and Development (Proceedings of symposium IlS02b held during IUGG2003 al Sapporo. July 2003). IAHS Publ. no. 281. 2003. 75 Data assimilation in the

More information

Introduction to Ensemble Kalman Filters and the Data Assimilation Research Testbed

Introduction to Ensemble Kalman Filters and the Data Assimilation Research Testbed Introduction to Ensemble Kalman Filters and the Data Assimilation Research Testbed Jeffrey Anderson, Tim Hoar, Nancy Collins NCAR Institute for Math Applied to Geophysics pg 1 What is Data Assimilation?

More information

Variational data assimilation of lightning with WRFDA system using nonlinear observation operators

Variational data assimilation of lightning with WRFDA system using nonlinear observation operators Variational data assimilation of lightning with WRFDA system using nonlinear observation operators Virginia Tech, Blacksburg, Virginia Florida State University, Tallahassee, Florida rstefane@vt.edu, inavon@fsu.edu

More information

Mathematical Concepts of Data Assimilation

Mathematical Concepts of Data Assimilation Mathematical Concepts of Data Assimilation N.K. Nichols 1 Introduction Environmental systems can be realistically described by mathematical and numerical models of the system dynamics. These models can

More information

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm Overview 1 2 3 Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation 6th EnKF Purpose EnKF equations localization After the 6th EnKF (2014), I decided with Prof. Zhang to summarize progress

More information

Modeling the North West European Shelf using Delft3D Flexible Mesh

Modeling the North West European Shelf using Delft3D Flexible Mesh Modeling the North West European Shelf using Delft3D Flexible Mesh 2nd JCOMM Scientific and Technical Symposium on Storm Surges, 8-13 Nov. 2015, Key West, USA; Firmijn Zijl Outline of this presentation

More information

Ocean data assimilation for reanalysis

Ocean data assimilation for reanalysis Ocean data assimilation for reanalysis Matt Martin. ERA-CLIM2 Symposium, University of Bern, 14 th December 2017. Contents Introduction. On-going developments to improve ocean data assimilation for reanalysis.

More information

Gaussian Filtering Strategies for Nonlinear Systems

Gaussian Filtering Strategies for Nonlinear Systems Gaussian Filtering Strategies for Nonlinear Systems Canonical Nonlinear Filtering Problem ~u m+1 = ~ f (~u m )+~ m+1 ~v m+1 = ~g(~u m+1 )+~ o m+1 I ~ f and ~g are nonlinear & deterministic I Noise/Errors

More information

Data Assimilation for Dispersion Models

Data Assimilation for Dispersion Models Data Assimilation for Dispersion Models K. V. Umamaheswara Reddy Dept. of Mechanical and Aerospace Engg. State University of New Yor at Buffalo Buffalo, NY, U.S.A. venatar@buffalo.edu Yang Cheng Dept.

More information

Nonlinear error dynamics for cycled data assimilation methods

Nonlinear error dynamics for cycled data assimilation methods Nonlinear error dynamics for cycled data assimilation methods A J F Moodey 1, A S Lawless 1,2, P J van Leeuwen 2, R W E Potthast 1,3 1 Department of Mathematics and Statistics, University of Reading, UK.

More information

Numerical Weather Prediction: Data assimilation. Steven Cavallo

Numerical Weather Prediction: Data assimilation. Steven Cavallo Numerical Weather Prediction: Data assimilation Steven Cavallo Data assimilation (DA) is the process estimating the true state of a system given observations of the system and a background estimate. Observations

More information

Assimilation Techniques (4): 4dVar April 2001

Assimilation Techniques (4): 4dVar April 2001 Assimilation echniques (4): 4dVar April By Mike Fisher European Centre for Medium-Range Weather Forecasts. able of contents. Introduction. Comparison between the ECMWF 3dVar and 4dVar systems 3. he current

More information

Current Limited Area Applications

Current Limited Area Applications Current Limited Area Applications Nils Gustafsson SMHI Norrköping, Sweden nils.gustafsson@smhi.se Outline of talk (contributions from many HIRLAM staff members) Specific problems of Limited Area Model

More information

DATA ASSIMILATION IN A COMBINED 1D-2D FLOOD MODEL

DATA ASSIMILATION IN A COMBINED 1D-2D FLOOD MODEL Proceedings o the International Conerence Innovation, Advances and Implementation o Flood Forecasting Technology, Tromsø, DATA ASSIMILATION IN A COMBINED 1D-2D FLOOD MODEL Johan Hartnac, Henri Madsen and

More information

Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts (2)

Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts (2) Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts (2) Time series curves 500hPa geopotential Correlation coefficent of forecast anomaly N Hemisphere Lat 20.0 to 90.0

More information

Introduction to Data Assimilation. Saroja Polavarapu Meteorological Service of Canada University of Toronto

Introduction to Data Assimilation. Saroja Polavarapu Meteorological Service of Canada University of Toronto Introduction to Data Assimilation Saroja Polavarapu Meteorological Service of Canada University of Toronto GCC Summer School, Banff. May 22-28, 2004 Outline of lectures General idea Numerical weather prediction

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 014 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO July 14-16, 014 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

Revision of TR-09-25: A Hybrid Variational/Ensemble Filter Approach to Data Assimilation

Revision of TR-09-25: A Hybrid Variational/Ensemble Filter Approach to Data Assimilation Revision of TR-9-25: A Hybrid Variational/Ensemble ilter Approach to Data Assimilation Adrian Sandu 1 and Haiyan Cheng 1 Computational Science Laboratory Department of Computer Science Virginia Polytechnic

More information

Some Applications of WRF/DART

Some Applications of WRF/DART Some Applications of WRF/DART Chris Snyder, National Center for Atmospheric Research Mesoscale and Microscale Meteorology Division (MMM), and Institue for Mathematics Applied to Geoscience (IMAGe) WRF/DART

More information

Weak Constraints 4D-Var

Weak Constraints 4D-Var Weak Constraints 4D-Var Yannick Trémolet ECMWF Training Course - Data Assimilation May 1, 2012 Yannick Trémolet Weak Constraints 4D-Var May 1, 2012 1 / 30 Outline 1 Introduction 2 The Maximum Likelihood

More information

Towards a probabilistic hydrological forecasting and data assimilation system. Henrik Madsen DHI, Denmark

Towards a probabilistic hydrological forecasting and data assimilation system. Henrik Madsen DHI, Denmark Towards a probabilistic hydrological forecasting and data assimilation system Henrik Madsen DHI, Denmark Outline Hydrological forecasting Data assimilation framework Data assimilation experiments Concluding

More information

Anisotropic spatial filter that is based on flow-dependent background error structures is implemented and tested.

Anisotropic spatial filter that is based on flow-dependent background error structures is implemented and tested. Special Topics 3DVAR Analysis/Retrieval of 3D water vapor from GPS slant water data Liu, H. and M. Xue, 2004: 3DVAR retrieval of 3D moisture field from slant-path water vapor observations of a high-resolution

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Centre for Computational Statistics and Machine Learning University College London c.archambeau@cs.ucl.ac.uk CSML

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi ECODYC10, Dresden 28 January 2010 Relationship

More information

Asynchronous data assimilation

Asynchronous data assimilation Ensemble Kalman Filter, lecture 2 Asynchronous data assimilation Pavel Sakov Nansen Environmental and Remote Sensing Center, Norway This talk has been prepared in the course of evita-enkf project funded

More information

Applications of an ensemble Kalman Filter to regional ocean modeling associated with the western boundary currents variations

Applications of an ensemble Kalman Filter to regional ocean modeling associated with the western boundary currents variations Applications of an ensemble Kalman Filter to regional ocean modeling associated with the western boundary currents variations Miyazawa, Yasumasa (JAMSTEC) Collaboration with Princeton University AICS Data

More information

Comparisons between 4DEnVar and 4DVar on the Met Office global model

Comparisons between 4DEnVar and 4DVar on the Met Office global model Comparisons between 4DEnVar and 4DVar on the Met Office global model David Fairbairn University of Surrey/Met Office 26 th June 2013 Joint project by David Fairbairn, Stephen Pring, Andrew Lorenc, Neill

More information

Forecasting and data assimilation

Forecasting and data assimilation Supported by the National Science Foundation DMS Forecasting and data assimilation Outline Numerical models Kalman Filter Ensembles Douglas Nychka, Thomas Bengtsson, Chris Snyder Geophysical Statistics

More information

Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter

Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter Convective-scale data assimilation in the Weather Research and Forecasting model using a nonlinear ensemble filter Jon Poterjoy, Ryan Sobash, and Jeffrey Anderson National Center for Atmospheric Research

More information

Accelerating the spin-up of Ensemble Kalman Filtering

Accelerating the spin-up of Ensemble Kalman Filtering Accelerating the spin-up of Ensemble Kalman Filtering Eugenia Kalnay * and Shu-Chih Yang University of Maryland Abstract A scheme is proposed to improve the performance of the ensemble-based Kalman Filters

More information

Ensemble Kalman Filter

Ensemble Kalman Filter Ensemble Kalman Filter Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway, Nansen Environmental and Remote Sensing Center, Bergen, Norway The Ensemble Kalman Filter (EnKF) Represents

More information

Hierarchical Bayes Ensemble Kalman Filter

Hierarchical Bayes Ensemble Kalman Filter Hierarchical Bayes Ensemble Kalman Filter M Tsyrulnikov and A Rakitko HydroMetCenter of Russia Wrocław, 7 Sep 2015 M Tsyrulnikov and A Rakitko (HMC) Hierarchical Bayes Ensemble Kalman Filter Wrocław, 7

More information

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance The Kalman Filter Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience Sarah Dance School of Mathematical and Physical Sciences, University of Reading s.l.dance@reading.ac.uk July

More information

Ergodicity in data assimilation methods

Ergodicity in data assimilation methods Ergodicity in data assimilation methods David Kelly Andy Majda Xin Tong Courant Institute New York University New York NY www.dtbkelly.com April 15, 2016 ETH Zurich David Kelly (CIMS) Data assimilation

More information

(Extended) Kalman Filter

(Extended) Kalman Filter (Extended) Kalman Filter Brian Hunt 7 June 2013 Goals of Data Assimilation (DA) Estimate the state of a system based on both current and all past observations of the system, using a model for the system

More information

Convective-scale NWP for Singapore

Convective-scale NWP for Singapore Convective-scale NWP for Singapore Hans Huang and the weather modelling and prediction section MSS, Singapore Dale Barker and the SINGV team Met Office, Exeter, UK ECMWF Symposium on Dynamical Meteorology

More information

The hybrid ETKF- Variational data assimilation scheme in HIRLAM

The hybrid ETKF- Variational data assimilation scheme in HIRLAM The hybrid ETKF- Variational data assimilation scheme in HIRLAM (current status, problems and further developments) The Hungarian Meteorological Service, Budapest, 24.01.2011 Nils Gustafsson, Jelena Bojarova

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi 4th EnKF Workshop, April 2010 Relationship

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

A State Space Model for Wind Forecast Correction

A State Space Model for Wind Forecast Correction A State Space Model for Wind Forecast Correction Valrie Monbe, Pierre Ailliot 2, and Anne Cuzol 1 1 Lab-STICC, Université Européenne de Bretagne, France (e-mail: valerie.monbet@univ-ubs.fr, anne.cuzol@univ-ubs.fr)

More information

GSI Tutorial Background and Observation Errors: Estimation and Tuning. Daryl Kleist NCEP/EMC June 2011 GSI Tutorial

GSI Tutorial Background and Observation Errors: Estimation and Tuning. Daryl Kleist NCEP/EMC June 2011 GSI Tutorial GSI Tutorial 2011 Background and Observation Errors: Estimation and Tuning Daryl Kleist NCEP/EMC 29-30 June 2011 GSI Tutorial 1 Background Errors 1. Background error covariance 2. Multivariate relationships

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Adaptive Data Assimilation and Multi-Model Fusion

Adaptive Data Assimilation and Multi-Model Fusion Adaptive Data Assimilation and Multi-Model Fusion Pierre F.J. Lermusiaux, Oleg G. Logoutov and Patrick J. Haley Jr. Mechanical Engineering and Ocean Science and Engineering, MIT We thank: Allan R. Robinson

More information

Least Squares. Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Winter UCSD

Least Squares. Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Winter UCSD Least Squares Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 75A Winter 0 - UCSD (Unweighted) Least Squares Assume linearity in the unnown, deterministic model parameters Scalar, additive noise model: y f (

More information

Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts

Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts Numerical Weather prediction at the European Centre for Medium-Range Weather Forecasts Time series curves 500hPa geopotential Correlation coefficent of forecast anomaly N Hemisphere Lat 20.0 to 90.0 Lon

More information

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Background Data Assimilation Iterative process Forecast Analysis Background

More information

Objective localization of ensemble covariances: theory and applications

Objective localization of ensemble covariances: theory and applications Institutionnel Grand Public Objective localization of ensemble covariances: theory and applications Yann Michel1, B. Me ne trier2 and T. Montmerle1 Professionnel (1) Me te o-france & CNRS, Toulouse, France

More information

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Weiguang Chang and Isztar Zawadzki Department of Atmospheric and Oceanic Sciences Faculty

More information

Environment Canada s Regional Ensemble Kalman Filter

Environment Canada s Regional Ensemble Kalman Filter Environment Canada s Regional Ensemble Kalman Filter May 19, 2014 Seung-Jong Baek, Luc Fillion, Kao-Shen Chung, and Peter Houtekamer Meteorological Research Division, Environment Canada, Dorval, Quebec

More information

1. Current atmospheric DA systems 2. Coupling surface/atmospheric DA 3. Trends & ideas

1. Current atmospheric DA systems 2. Coupling surface/atmospheric DA 3. Trends & ideas 1 Current issues in atmospheric data assimilation and its relationship with surfaces François Bouttier GAME/CNRM Météo-France 2nd workshop on remote sensing and modeling of surface properties, Toulouse,

More information

OPTIMAL CONTROL AND ESTIMATION

OPTIMAL CONTROL AND ESTIMATION OPTIMAL CONTROL AND ESTIMATION Robert F. Stengel Department of Mechanical and Aerospace Engineering Princeton University, Princeton, New Jersey DOVER PUBLICATIONS, INC. New York CONTENTS 1. INTRODUCTION

More information

R. E. Petrie and R. N. Bannister. Department of Meteorology, Earley Gate, University of Reading, Reading, RG6 6BB, United Kingdom

R. E. Petrie and R. N. Bannister. Department of Meteorology, Earley Gate, University of Reading, Reading, RG6 6BB, United Kingdom A method for merging flow-dependent forecast error statistics from an ensemble with static statistics for use in high resolution variational data assimilation R. E. Petrie and R. N. Bannister Department

More information

Local Predictability of the Performance of an. Ensemble Forecast System

Local Predictability of the Performance of an. Ensemble Forecast System Local Predictability of the Performance of an Ensemble Forecast System Elizabeth Satterfield Istvan Szunyogh University of Maryland, College Park, Maryland To be submitted to JAS Corresponding author address:

More information

13A. 4 Analysis and Impact of Super-obbed Doppler Radial Velocity in the NCEP Grid-point Statistical Interpolation (GSI) Analysis System

13A. 4 Analysis and Impact of Super-obbed Doppler Radial Velocity in the NCEP Grid-point Statistical Interpolation (GSI) Analysis System 13A. 4 Analysis and Impact of Super-obbed Doppler Radial Velocity in the NCEP Grid-point Statistical Interpolation (GSI) Analysis System Shun Liu 1, Ming Xue 1,2, Jidong Gao 1,2 and David Parrish 3 1 Center

More information

4DEnVar. Four-Dimensional Ensemble-Variational Data Assimilation. Colloque National sur l'assimilation de données

4DEnVar. Four-Dimensional Ensemble-Variational Data Assimilation. Colloque National sur l'assimilation de données Four-Dimensional Ensemble-Variational Data Assimilation 4DEnVar Colloque National sur l'assimilation de données Andrew Lorenc, Toulouse France. 1-3 décembre 2014 Crown copyright Met Office 4DEnVar: Topics

More information

Data assimilation; comparison of 4D-Var and LETKF smoothers

Data assimilation; comparison of 4D-Var and LETKF smoothers Data assimilation; comparison of 4D-Var and LETKF smoothers Eugenia Kalnay and many friends University of Maryland CSCAMM DAS13 June 2013 Contents First part: Forecasting the weather - we are really getting

More information

Comparing the SEKF with the DEnKF on a land surface model

Comparing the SEKF with the DEnKF on a land surface model Comparing the SEKF with the DEnKF on a land surface model David Fairbairn, Alina Barbu, Emiliano Gelati, Jean-Francois Mahfouf and Jean-Christophe Caret CNRM - Meteo France Partly funded by European Union

More information

Local Ensemble Transform Kalman Filter

Local Ensemble Transform Kalman Filter Local Ensemble Transform Kalman Filter Brian Hunt 11 June 2013 Review of Notation Forecast model: a known function M on a vector space of model states. Truth: an unknown sequence {x n } of model states

More information

Alexander Barth, Aida Alvera-Azc. Azcárate, Robert H. Weisberg, University of South Florida. George Halliwell RSMAS, University of Miami

Alexander Barth, Aida Alvera-Azc. Azcárate, Robert H. Weisberg, University of South Florida. George Halliwell RSMAS, University of Miami Ensemble-based based Assimilation of HF-Radar Surface Currents in a West Florida Shelf ROMS Nested into HYCOM and filtering of spurious surface gravity waves. Alexander Barth, Aida Alvera-Azc Azcárate,

More information

Post flood analysis. Demands of the Storm Surge Warning Service (SVSD) of the Netherlands. Annette Zijderveld/ Martin Verlaan

Post flood analysis. Demands of the Storm Surge Warning Service (SVSD) of the Netherlands. Annette Zijderveld/ Martin Verlaan Post flood analysis Demands of the Storm Surge Warning Service (SVSD) of the Netherlands Annette Zijderveld/ Martin Verlaan Objective Bringing in coastal issues to the FEWS user days (second attempt) Demonstrating

More information

Lecture notes on assimilation algorithms

Lecture notes on assimilation algorithms Lecture notes on assimilation algorithms Elías alur Hólm European Centre for Medium-Range Weather Forecasts Reading, UK April 18, 28 1 Basic concepts 1.1 The analysis In meteorology and other branches

More information

Ensemble Data Assimilation and Uncertainty Quantification

Ensemble Data Assimilation and Uncertainty Quantification Ensemble Data Assimilation and Uncertainty Quantification Jeff Anderson National Center for Atmospheric Research pg 1 What is Data Assimilation? Observations combined with a Model forecast + to produce

More information

Comparison of 3D-Var and LETKF in an Atmospheric GCM: SPEEDY

Comparison of 3D-Var and LETKF in an Atmospheric GCM: SPEEDY Comparison of 3D-Var and LEKF in an Atmospheric GCM: SPEEDY Catherine Sabol Kayo Ide Eugenia Kalnay, akemasa Miyoshi Weather Chaos, UMD 9 April 2012 Outline SPEEDY Formulation Single Observation Eperiments

More information

Cross-validation methods for quality control, cloud screening, etc.

Cross-validation methods for quality control, cloud screening, etc. Cross-validation methods for quality control, cloud screening, etc. Olaf Stiller, Deutscher Wetterdienst Are observations consistent Sensitivity functions with the other observations? given the background

More information

A new Hierarchical Bayes approach to ensemble-variational data assimilation

A new Hierarchical Bayes approach to ensemble-variational data assimilation A new Hierarchical Bayes approach to ensemble-variational data assimilation Michael Tsyrulnikov and Alexander Rakitko HydroMetCenter of Russia College Park, 20 Oct 2014 Michael Tsyrulnikov and Alexander

More information

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006 Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems Eric Kostelich Data Mining Seminar, Feb. 6, 2006 kostelich@asu.edu Co-Workers Istvan Szunyogh, Gyorgyi Gyarmati, Ed Ott, Brian

More information

Basic Concepts in Data Reconciliation. Chapter 6: Steady-State Data Reconciliation with Model Uncertainties

Basic Concepts in Data Reconciliation. Chapter 6: Steady-State Data Reconciliation with Model Uncertainties Chapter 6: Steady-State Data with Model Uncertainties CHAPTER 6 Steady-State Data with Model Uncertainties 6.1 Models with Uncertainties In the previous chapters, the models employed in the DR were considered

More information

Parallel Algorithms for Four-Dimensional Variational Data Assimilation

Parallel Algorithms for Four-Dimensional Variational Data Assimilation Parallel Algorithms for Four-Dimensional Variational Data Assimilation Mie Fisher ECMWF October 24, 2011 Mie Fisher (ECMWF) Parallel 4D-Var October 24, 2011 1 / 37 Brief Introduction to 4D-Var Four-Dimensional

More information

Model error and parameter estimation

Model error and parameter estimation Model error and parameter estimation Chiara Piccolo and Mike Cullen ECMWF Annual Seminar, 11 September 2018 Summary The application of interest is atmospheric data assimilation focus on EDA; A good ensemble

More information

Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data assimilation

Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data assimilation Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jc004621, 2008 Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data

More information

Hybrid variational-ensemble data assimilation. Daryl T. Kleist. Kayo Ide, Dave Parrish, John Derber, Jeff Whitaker

Hybrid variational-ensemble data assimilation. Daryl T. Kleist. Kayo Ide, Dave Parrish, John Derber, Jeff Whitaker Hybrid variational-ensemble data assimilation Daryl T. Kleist Kayo Ide, Dave Parrish, John Derber, Jeff Whitaker Weather and Chaos Group Meeting 07 March 20 Variational Data Assimilation J Var J 2 2 T

More information

POD/DEIM Strategies for reduced data assimilation systems

POD/DEIM Strategies for reduced data assimilation systems POD/DEIM Strategies for reduced data assimilation systems Răzvan Ştefănescu 1 Adrian Sandu 1 Ionel M. Navon 2 1 Computational Science Laboratory, Department of Computer Science, Virginia Polytechnic Institute

More information

Earth Observation in coastal zone MetOcean design criteria

Earth Observation in coastal zone MetOcean design criteria ESA Oil & Gas Workshop 2010 Earth Observation in coastal zone MetOcean design criteria Cees de Valk BMT ARGOSS Wind, wave and current design criteria geophysical process uncertainty modelling assumptions

More information

ECE295, Data Assimila0on and Inverse Problems, Spring 2015

ECE295, Data Assimila0on and Inverse Problems, Spring 2015 ECE295, Data Assimila0on and Inverse Problems, Spring 2015 1 April, Intro; Linear discrete Inverse problems (Aster Ch 1 and 2) Slides 8 April, SVD (Aster ch 2 and 3) Slides 15 April, RegularizaFon (ch

More information

Improving GFS 4DEnVar Hybrid Data Assimilation System Using Time-lagged Ensembles

Improving GFS 4DEnVar Hybrid Data Assimilation System Using Time-lagged Ensembles Improving GFS 4DEnVar Hybrid Data Assimilation System Using Time-lagged Ensembles Bo Huang and Xuguang Wang School of Meteorology University of Oklahoma, Norman, OK, USA Acknowledgement: Junkyung Kay (OU);

More information

Analysis Scheme in the Ensemble Kalman Filter

Analysis Scheme in the Ensemble Kalman Filter JUNE 1998 BURGERS ET AL. 1719 Analysis Scheme in the Ensemble Kalman Filter GERRIT BURGERS Royal Netherlands Meteorological Institute, De Bilt, the Netherlands PETER JAN VAN LEEUWEN Institute or Marine

More information

Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations

Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations Alberto Guadagnini (1,), Marco Panzeri (1), Monica Riva (1,), Shlomo P. Neuman () (1) Department of

More information

Background and observation error covariances Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience

Background and observation error covariances Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience Background and observation error covariances Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience Sarah Dance School of Mathematical and Physical Sciences, University of Reading

More information