Fundamental Temperature Measurement: Re-defining the Boltzmann Constant How do you really know what the temperature is? Michael de Podesta

Size: px
Start display at page:

Download "Fundamental Temperature Measurement: Re-defining the Boltzmann Constant How do you really know what the temperature is? Michael de Podesta"

Transcription

1 Fundamental Temperature Measurement: Re-defining the Boltzmann Constant How do you really know what the temperature is? Michael de Podesta NPL December 2014

2 Also my wonderful colleagues Gavin Sutton, Robin Underwood, Gordon Edwards, Graham Machin, Richard Rusby, David Flack, Andrew Lewis, Michael Perkin, Stuart Davidson, Kevin Douglas, Rob Ferguson, David Putland, Anthony Evenden, Louise Wright, Eric Bennett, Alan Turnbull, Gareth Hinds, Phil Cooling, Gergely Vargha, Martin Milton, Michael Parfitt, Peter Harris, Leigh Stanger and others

3 Measurement brings the world into focus

4 I measured the temperature of the antenna to be K Is that correct? On NPL-SAT-1 wasn t it K in 2007? Image: NASA

5 How do you really know what the temperature is? 1. Measurement 2. The International System of Units (The SI) 3. The change to the New SI 4. Measuring the speed of sound really accurately 5. How do we know we are right? 6. If we have time: one last thing

6 Measurement is Quantitative Comparison Unknown Standard of an unknown quantity with a standard quantity

7 The Challenge Molecular Motion A thermometer How do we relate the number produced by a thermometer (e.g. 20 º C) to the basic physics describing the jiggling of molecules?

8 How do you really know what the temperature is? 1. Measurement 2. The International System of Units (The SI) 3. The change to the New SI 4. Measuring the speed of sound really accurately 5. How do we know we are right? 6. If we have time:one last thing

9 The International System of Units s Sèvres: We have a problem K m A The definition of the kelvin is not connected to the units which define energy! kg The kelvin, the unit of thermodynamic temperature, is the fraction mol 1/ of the thermodynamic temperature of the triple point of water Cd

10 Triple point of water Every temperature measurement is a quantitative comparison of T TPW the level of molecular jiggling in the target with the level of molecular jiggling at this point in a triple-point cell

11 The NEW International System of Units ν 133 Cs Energy (joule) e s A c m kg h K cd Cd k B K N A mol

12 The NEW International System ν of Units 133 Cs k B s c K m e A The definition of the kelvin is now connected to the units which define energy! kg h mol Cd N A K cd

13 The NEW International System ν of Units k B The kelvin, the 133 unit Cs of thermodynamic temperature, is the fraction 1/ of s the thermodynamic temperature c of the triple point of water K m e A The kelvin, the unit of thermodynamic temperature, is such that the Boltzmann constant has the exact kg value h k B = XX joules per kelvin mol Cd N A K cd

14 From 2018 T TPW will still be a useful reproducible temperature But it will not define what we mean by one degree Every temperature measurement will be a quantitative comparison of the energy of molecular jiggling in the target with one joule of energy

15 How do you really know what the temperature is? 1. Measurement 2. The International System of Units (The SI) 3. The change to the New SI 4. Measuring the speed of sound really accurately 5. How do we know we are right? 6. If we have time:one last thing

16 Changing from old to new We want the size of the kelvin to stay the same: T TPW will still be K How many joules of energy does a molecule possess at T TPW? Value of the Boltzmann constant k B is fixed in the new SI. What is value of the Boltzmann constant k B in the current SI? New kelvin Absolute Zero Old kelvin

17 How can we estimate the Boltzmann Constant?

18 Heat Hot Object Cold Object When materials touch, fast atoms slow down, slow atoms speed up until Average energy per molecule is equal. [Actually what equalises is the average energy per accessible degree of freedom]

19 Warning! Next two slides contain equations!

20 We measure in argon gas Molecular motions are simple in a gas We can approach ideal gas conditions at low pressure In an ideal gas the internal energy is just the kinetic energy of the molecules 1 2 m v z 2 = 1 2 k BT Ar 1 2 m v y 2 = 1 2 k BT 1 2 m v x 2 = 1 2 k BT

21 The big idea Look up mass of an argon molecule Carry out experiment at T TPW 1 k B = m 3T v x 2 + v 2 y + v2 2 m v x 2 + v 2 y + v2 z = 3 k 2 k B = 3m z B T 2 speed of sound 5T 9 5 speed of sound 2 Measure the speed of sound

22 How do you really know what the temperature is? 1. Measurement 2. The International System of Units (The SI) 3. The change to the New SI 4. Measuring the speed of sound really accurately 5. How do we know we are right? 6. If we have time:one last thing

23 Speaking tube Microphone 1 Acoustic Thermometer Loudspeaker Microphone 2 Timer

24 The NPL-Cranfield Acoustic Thermometer Measures the speed of sound in a spherical resonator

25 All required to u 1 ppm. a, radius of sphere To be measured Resonant Frequency To be measured c 2 z a n, l f n, l Eigenvalues Calculable for known shapes 25

26 Machining/metrology Ultra-Precision Manufacture set-up Hemisphere Turning tool Interferometer 26

27 Comparative CMM

28 Comparative CMM Comparative CMM CMM Position 1 CMM Position 2

29 All required to u 1 ppm. a, radius of sphere To be measured Resonant Frequency To be measured c 2 z a n, l f n, l Eigenvalues Calculable for known shapes 29

30

31 Resonator Placed inside a isothermal vessel Held inside a pressure vessel Dunked in bucket Liquid Stirred

32 Temperature Observed ΔT = 91 μk µk

33 Thermometer Reading ( C) Temperature bottom L&N bottom equator16 elapsed hours top L&N top

34 Amplitude (V) Acoustic Spectrum Argon T = 30 C (0,3) (0,2) (2,1) (1,1) Frequency / Hz

35 Acoustic Resonance

36 Acoustic Resonance Signals / V Centre Frequency Hz ± Hz Temperature C ± C Frequency / Hz

37 All required to u 1 ppm. a, radius of sphere To be measured Resonant Frequency To be measured c 2 z a n, l f n, l Eigenvalues Calculable for known shapes 37

38 Microwave Resonance

39 Microwave Radius Estimates in Vacuum (a (21.5 C) ), nm nanometres 10 0 ±3.5 nm ±9 nm Mode (TM1n)

40 All required to u 1 ppm. a, radius of sphere To be measured Resonant Frequency To be measured c 2 z a n, l f n, l Eigenvalues Calculable for known shapes 40

41 Speed of Sound Squared c 2 (m 2 s -2 ) Amplitude (V) Data for c 2 c2 EXP 95,000 94, Argon T = 30 C (0,2) (2,1) (1,1) (0,3) , Frequency / Hz c ,850 94,800 (0,2) (0,3) (0,4) (0,5) (0,7) k B is inferred from (0,8) this intercept (0,9) 94, Pressure (kpa)

42 k B - NPL (parts in 10 6 ) k B - CODATA (parts in 10 6 ) Result 1 u(k =1) = This Work NIST 1988 LNE

43 How do you really know what the temperature is? 1. Measurement 2. The International System of Units (The SI) 3. The change to the New SI 4. Measuring the speed of sound really accurately 5. How do we know we are right? 6. If we have time:one last thing

44 We don t know we are right!

45 Data for c 2 Speed of Sound Squared c 2 (m 2 s -2 ) c2 EXP 95,000 94,950 94,900 c ,850 94,800 (0,2) (0,3) (0,4) A factor 3 lower than (0,5) anyone else! (0,7) Spread of estimates (0,8) is just 0.18 parts per (0,9) million 94, Pressure (kpa)

46 Signals / V Central frequency changes with temperature Half-Width should be exactly what we expect When f 0 = Hz expected width = Hz measured width = Hz 0 Frequency / Hz

47 Half-Width (Experiment Theory) Parts per million of resonance frequency 10 8 (0,7) 10 8 (0,7) 10 6 x g/ f (0,n) (0,5) (0,4) (0,8) (0,2) (0,3) (0,9) 10 6 x g/f (0,n) (0,5) (0,4) (0,8) (0,2) (0,3) (0,9) P / kpa f 0 = Hz expected width = Hz measured width = Hz Pressure (kpa)

48 Half-Width Parts per million of resonance frequency Experiment Theory Experiment New Theory x g/ f (0,n) (0,2) (0,3) (0,4) (0,5) (0,7) (0,8) (0,9) P / kpa 10 6 x g/f (0,n) (0,2) (0,3) (0,4) (0,5) (0,7) (0,8) (0,9) Pressure (kpa) f 0 = Hz expected width = Hz measured width = Hz

49 How do you really know what the temperature is? 1. Measurement 2. The International System of Units (The SI) 3. The change to the New SI 4. Measuring the speed of sound really accurately 5. How do we know we are right? 6. If we have time:one last thing

50 How do you know your thermometer is correct?

51 User 1 User 2 User 3 Calibration Lab NIM NIST NPL PTB LNE-CNAM International Bureau of Weights and Measures, BIPM

52 The International Temperature Scale of 1990 Temperature Fixed Points Interpolating Devices

53 Temperature Fixed Points of ITS90 How do we know that? T(K) T (ºC) Triple point of hydrogen Triple point of neon Triple point of oxygen Triple point of argon Triple point of mercury Triple point of water Melting point 1 of gallium Freezing point 1 of indium Freezing point of tin Freezing point of zinc Freezing point of aluminum Freezing point of silver Freezing point of gold Freezing point of copper

54 How to work out the Freezing point of Tin K Speed of Sound squared (Speed 2) 2 (Speed 1) 2 Basic physics tells us Speed of Sound 2 Temperature Absolute Triple Point Freezing Point Temperature Zero of Water of Tin

55 T- T 90 (mk) How wrong is ITS 90? 10 5 NPL Preliminary PRELIMINARY DATA t 90 ( C)

56 How do you really know what the temperature is? Inter-comparisons and calibrations according to ITS-90 Make sure everyone agrees Fundamental Measurements Measure the errors in ITS-90

57 The Challenge? Molecular Motion Primary Thermometer A thermometer How do we relate the number produced by a thermometer (e.g. 20 º C) to the basic physics describing the jiggling of molecules?

58 How do you really know what the temperature is? 1. Measurement The definition of the units of temperature (the kelvin and the degree Celsius) 2. The International is about System to change. of Units (The SI) 3. The From change 2018, to temperature the New SI measurements will be fundamentally linked to the units of energy. 4. Measuring the speed of sound really accurately Every temperature measurement you make 5. How is do linked we know to our we fundamental are right? understanding of the thermal properties of matter 6. If we have time:one last thing

59

How do you really know what the temperature is? Michael de Podesta

How do you really know what the temperature is? Michael de Podesta How do you really know what the temperature is? Michael de Podesta TECO: Madrid September 2016 GOLDEN RULE OF TALKS One talk: one thing This Talk: TWO THINGS! Thing 1: The definitions of the SI units of

More information

How do you really know what the temperature is? Michael de Podesta

How do you really know what the temperature is? Michael de Podesta How do you really know what the temperature is? Michael de Podesta Varenna 6 th July 2016 Talk#1 Michael de Podesta Age: 20,645 Earth rotations : More than 56 complete solar orbits Work Lecturer in Physics

More information

The Boltzmann constant and the re-definition of the kelvin

The Boltzmann constant and the re-definition of the kelvin The Boltzmann constant and the re-definition of the kelvin Part 2 Michael de Podesta Varenna July 2012 The Boltzmann constant and the re-definition of the kelvin 1. Introduction 2. How do you know what

More information

Good morning everyone, and welcome again to MSLs World Metrology Day celebrations.

Good morning everyone, and welcome again to MSLs World Metrology Day celebrations. Thank you Gavin.. Good morning everyone, and welcome again to MSLs World Metrology Day celebrations. The aim of this talk is to explain the changes that will be made with the change in the definition of

More information

The Redefinition of the Kelvin

The Redefinition of the Kelvin 5574ion of the Kelvin research-article2014 Michael de Podesta National Physical Laboratory, Teddington, UK michael.depodesta@npl.co.uk Measurement and Control 2014, Vol. 47(10) 323 328 Crown Copyright

More information

Chapter 14 Heat and Temperature Notes

Chapter 14 Heat and Temperature Notes Chapter 14 Heat and Temperature Notes Section 1: Temperature The degree of or of an object. Related to the of an object s atoms or molecules What makes something hot? o Particles that make up o They have

More information

Boltzmann Project. Determination of k and redefinition 2008: imera+ Project coordinated by PTB

Boltzmann Project. Determination of k and redefinition 2008: imera+ Project coordinated by PTB Boltzmann Project CCT/17-28 2002: Study on k determination with DCGT u r (k) 2 ppm 2005: 1st Boltzmann workshop with 2004: international experts TEMPMEKO: at PTB Lecture with first idea for new definition

More information

Heat and Temperature

Heat and Temperature Heat and Temperature Temperature What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? Intro: Discussion A person from Seattle

More information

The definition of the kelvin in the new SI Michael de Podesta

The definition of the kelvin in the new SI Michael de Podesta The definition of the kelvin in the new SI Michael de Podesta Varenna 216 6 th July2016 Talk#2 How will you know what the temperature is in 2018? Michael de Podesta Varenna 216 6 th July2016 Talk#2 How

More information

Zeroth Law of Thermodynamics

Zeroth Law of Thermodynamics Thermal Equilibrium When you two systems are placed in contact with each other there is no net energy transfer between them. Consequently, these two systems would be at the same temperature. Zeroth Law

More information

Thermal Equilibrium. Zeroth Law of Thermodynamics 2/4/2019. Temperature

Thermal Equilibrium. Zeroth Law of Thermodynamics 2/4/2019. Temperature Thermal Equilibrium When you two systems are placed in contact with each other there is no net energy transfer between them. Consequently, these two systems would be at the same temperature. Zeroth Law

More information

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Units of Chapter 17 & 19 Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work

More information

Thermometry at Low and Ultra-low Temperatures

Thermometry at Low and Ultra-low Temperatures Thermometry at Low and Ultra-low Temperatures Temperature is a thermodynamic property of state It can be defined by a reversible cycle, like a carnot cycle but this is not very practical General Considerations

More information

International Temperature Scale of 1990 From Wikipedia, the free encyclopedia

International Temperature Scale of 1990 From Wikipedia, the free encyclopedia International Temperature Scale of 1990 From Wikipedia, the free encyclopedia The International Temperature Scale of 1990 (ITS-90) published by the Consultative Committee for Thermometry (CCT) of the International

More information

Every physical or chemical change in matter involves a change in energy.

Every physical or chemical change in matter involves a change in energy. Sec. 2.1 Energy Objectives: 1. Explain that physical and chemical changes in matter involve transfers of energy 2. Apply the law of conservation of energy to analyze changes in matter 3. Distinguish between

More information

Lecture 2: Zero law of thermodynamics

Lecture 2: Zero law of thermodynamics Lecture 2: Zero law of thermodynamics 1. Thermometers and temperature scales 2. Thermal contact and thermal equilibrium 3. Zeroth law of thermodynamics 1. Thermometers and Temperature scales We often associate

More information

Chapter 14: Temperature and Heat

Chapter 14: Temperature and Heat Chapter 14 Lecture Chapter 14: Temperature and Heat Goals for Chapter 14 To study temperature and temperature scales. To describe thermal expansion and its applications. To explore and solve problems involving

More information

Chapter 4: Heat Capacity and Heat Transfer

Chapter 4: Heat Capacity and Heat Transfer Chapter 4: Heat Capacity and Heat Transfer Chapter 4: Heat Capacity and Heat Transfer Chapter 4: Heat Capacity and Heat Transfer 4.1 Material Structure 4.2 Temperature and Material Properties 4.3 Heating

More information

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different *STUDENT* Unit Objectives: Absolute Zero Avogadro s Law Normal Boiling Point Compound Cooling Curve Deposition Energy Element Evaporation Heat Heat of Fusion Heat of Vaporization Unit 6 Unit Vocabulary:

More information

Module 3 - Thermodynamics. Thermodynamics. Measuring Temperatures. Temperature and Thermal Equilibrium

Module 3 - Thermodynamics. Thermodynamics. Measuring Temperatures. Temperature and Thermal Equilibrium Thermodynamics From the Greek thermos meaning heat and dynamis meaning power is a branch of physics that studies the effects of changes in temperature, pressure, and volume on physical systems at the macroscopic

More information

Unit 5 Thermodynamics

Unit 5 Thermodynamics Unit 5 Thermodynamics Unit 13: Heat and Temperature Unit 14: Thermal Expansion /Heat Exchange/ Change of Phase Test: Units 13-14 Thermal Energy The total kinetic and potential energy of all the molecules

More information

Module 3 - Thermodynamics. Thermodynamics. Measuring Temperatures. Temperature and Thermal Equilibrium

Module 3 - Thermodynamics. Thermodynamics. Measuring Temperatures. Temperature and Thermal Equilibrium Thermodynamics From the Greek thermos meaning heat and dynamis meaning power is a branch of physics that studies the effects of changes in temperature, pressure, and volume on physical systems at the macroscopic

More information

What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold?

What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? Heat and Temperature Section 1: Temperature What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? 1 Intro: Discussion A person

More information

The International Temperature Scale of 1990

The International Temperature Scale of 1990 The International Temperature Scale of 199 metrologia Springer-Verlag 199 This copy incorporates textual corrections detailed in Metrologia 27, 17 (199) The International Temperature Scale of 199 (ITS-9)

More information

Al-Saudia Virtual Academy Online tuiton Pakistan Online Tutor Pakistan. Heat

Al-Saudia Virtual Academy Online tuiton Pakistan Online Tutor Pakistan. Heat Al-Saudia Virtual Academy Online tuiton Pakistan Online Tutor Pakistan Heat Nature of Heat: Heat is the transfer of energy (every in transit) from one body to another due to the temperature difference

More information

What is Temperature?

What is Temperature? What is Temperature? Observation: When objects are placed near each other, they may change, even if no work is done. (Example: when you put water from the hot tap next to water from the cold tap, they

More information

Slide 1 / 67. Slide 2 / 67. 8th Grade. Thermal Energy Study Guide Slide 3 / 67. Thermal Energy. Study Guide.

Slide 1 / 67. Slide 2 / 67. 8th Grade. Thermal Energy Study Guide Slide 3 / 67. Thermal Energy. Study Guide. Slide 1 / 67 Slide 2 / 67 8th Grade Thermal Energy Study Guide 2015-10-09 www.njctl.org Slide 3 / 67 Thermal Energy Study Guide www.njctl.org Slide 4 / 67 Part 1 Define the following terms and/or concepts

More information

Matter is made of atoms and molecules

Matter is made of atoms and molecules Name Per Talking to the Text Atoms and Molecules pt.2 Author Says (important ideas, vocabulary) Matter is made of atoms and molecules We have already used the term atom and molecule a couple of times.

More information

8th Grade. Thermal Energy Study Guide.

8th Grade. Thermal Energy Study Guide. 1 8th Grade Thermal Energy Study Guide 2015 10 09 www.njctl.org 2 Thermal Energy Study Guide www.njctl.org 3 Part 1 Define the following terms and/or concepts 4 1 Temperature 5 2 Kinetic Energy 6 3 Thermal

More information

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids Slide 1 / 66 1 What is the name of the following statement: "When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other"? A B C D E First Law

More information

Liquids and Solids: The Molecular Kinetic Theory II. Unit 5

Liquids and Solids: The Molecular Kinetic Theory II. Unit 5 Liquids and Solids: The Molecular Kinetic Theory II Unit 5 Energy Definition Energy is the ability to do work. The ability to make something happen. Different Kinds of Energy: Heat (Thermal) Energy energy

More information

Chapter 14 Temperature and Heat

Chapter 14 Temperature and Heat Chapter 14 Temperature and Heat To understand temperature and temperature scales. To describe thermal expansion and its applications. To explore and solve problems involving heat, phase changes and calorimetry.

More information

Temperature. Temperature Scales. Temperature (cont d) CHAPTER 14 Heat and Temperature

Temperature. Temperature Scales. Temperature (cont d) CHAPTER 14 Heat and Temperature Temperature CHAPTER 14 Heat and Temperature The temperature of a substance is proportional to the average kinetic energy of the substance s particles. As the average kinetic energy of the particles in

More information

Ch 100: Fundamentals for Chemistry

Ch 100: Fundamentals for Chemistry Ch 100: Fundamentals for Chemistry Chapter 4: Properties of Matter Lecture Notes Physical & Chemical Properties Physical Properties are the characteristics of matter that can be changed without changing

More information

the energy of motion!

the energy of motion! What are the molecules of matter doing all the time?! Heat and Temperature! Notes! All matter is composed of continually jiggling atoms or molecules! The jiggling is! If something is vibrating, what kind

More information

I. Yang, C. H. Song, Y.-G. Kim & K. S. Gam

I. Yang, C. H. Song, Y.-G. Kim & K. S. Gam Cryostat for Fixed-Point Calibration of Capsule-Type SPRTs I. Yang, C. H. Song, Y.-G. Kim & K. S. Gam International Journal of Thermophysics Journal of Thermophysical Properties and Thermophysics and Its

More information

Thermal Physics Lectures Nos. 8 and 9. Name: ID number:.. Date:.

Thermal Physics Lectures Nos. 8 and 9. Name: ID number:.. Date:. Thermal Physics Lectures Nos. 8 and 9. Name: ID number:.. Date:. 1. Which of the following statements about thermal contact and thermal equilibrium is NOT true? A) Two objects can be in thermal equilibrium

More information

WORKING GROUP FOR CONTACT THERMOMETRY REPORT TO CCT June 2017

WORKING GROUP FOR CONTACT THERMOMETRY REPORT TO CCT June 2017 CCT/17-57 WORKING GROUP FOR CONTACT THERMOMETRY REPORT TO CCT June 2017 Members Joachim Fischer (PTB) chairman, Michael de Podesta (NPL), Vladimir Kytin (VNIIFTRI), Tohru Nakano (NMIJ/AIST), Laurent Pitre

More information

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Chapter 10 Thermal Physics Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion of Solids and Liquids Ideal

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy * Defining Temperature * We associate temperature with how hot or cold an object feels. * Our sense of touch serves as a qualitative indicator of temperature. * Energy must be either added or removed from

More information

Unit 08 Review: The KMT and Gas Laws

Unit 08 Review: The KMT and Gas Laws Unit 08 Review: The KMT and Gas Laws It may be helpful to view the animation showing heating curve and changes of state: http://cwx.prenhall.com/petrucci/medialib/media_portfolio/text_images/031_changesstate.mov

More information

Chapter 2 Heat, Temperature and the First Law of Thermodynamics

Chapter 2 Heat, Temperature and the First Law of Thermodynamics Chapter 2 Heat, Temperature and the First Law of Thermodynamics 2.1. Temperature and the Zeroth Law of Thermodynamics 2.2. Thermal Expansion 2.3. Heat and the Absorption of Heat by Solids and Liquids 2.4.

More information

Phase Change Diagram. Rank Solids, liquids and gases from weakest attractive forces to strongest:

Phase Change Diagram. Rank Solids, liquids and gases from weakest attractive forces to strongest: Unit 11 Kinetic molecular theory packet Page 1 of 13 Chemistry Unit 11 Kinetic Theory Unit Quiz: Test Objectives Be able to define pressure and memorize the basic pressure units. Be able to convert to/from:

More information

European Association of National Metrology Institutes

European Association of National Metrology Institutes European Association of National Metrology Institutes EURAMET GUIDELINES ON TEMPERATURE: Extrapolation of SPRT calibrations below the triple point of argon, 83.8058 K, and traceability in baths of liquid

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Physics 1301, Exam 4 Review

Physics 1301, Exam 4 Review c V Andersen, 2006 1 Physics 1301, Exam 4 Review The following is a list of things you should definitely know for the exam, however, the list is not exhaustive. You are responsible for all the material

More information

Chapter 19 Entropy Pearson Education, Inc. Slide 20-1

Chapter 19 Entropy Pearson Education, Inc. Slide 20-1 Chapter 19 Entropy Slide 20-1 Ch 19 & 20 material What to focus on? Just put out some practice problems Ideal gas how to find P/V/T changes. E.g., gas scaling, intro to the ideal gas law, pressure cooker,

More information

Date: May 8, Obj: Collect data and develop a mathematical equation. Copy: Thermochemistry is the study of heat and chemical reactions.

Date: May 8, Obj: Collect data and develop a mathematical equation. Copy: Thermochemistry is the study of heat and chemical reactions. Do Now Date: May 8, 2017 Obj: Collect data and develop a mathematical equation. Copy: Thermochemistry is the study of heat and chemical reactions. Monday, May 8, 2017 Today: Warm-Up Content: Introduction

More information

3.2 Units of Measurement > Chapter 3 Scientific Measurement. 3.2 Units of Measurement. 3.1 Using and Expressing Measurements

3.2 Units of Measurement > Chapter 3 Scientific Measurement. 3.2 Units of Measurement. 3.1 Using and Expressing Measurements Chapter 3 Scientific Measurement 3.1 Using and Expressing Measurements 3.2 Units of Measurement 3.3 Solving Conversion Problems 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

More information

Properties of Gases. The perfect gas. States of gases Gas laws Kinetic model of gases (Ch th ed, th ed.) Real gases

Properties of Gases. The perfect gas. States of gases Gas laws Kinetic model of gases (Ch th ed, th ed.) Real gases Properties of Gases Chapter 1 of Physical Chemistry - 6th Edition P.W. Atkins. Chapter 1 and a little bit of Chapter 24 of 7th Edition. Chapter 1 and a little bit of Chapter 21 of 8th edition. The perfect

More information

On the possible future revision of the SI

On the possible future revision of the SI Bureau International des Poids et Mesures On the possible future revision of the SI Martin Milton (Director) and Michael Stock (Director of Electricity and Mass) BIPM 2 nd July 2013 Bureau International

More information

Chapter 3: Matter and Energy

Chapter 3: Matter and Energy Chapter 3: Matter and Energy Convert between Fahrenheit, Celsius, and Kelvin temperature scales. Relate energy, temperature change, and heat capacity. The atoms and molecules that compose matter are in

More information

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated.

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated. Heat Energy Temperature and Thermometers Temperature is a measure of how hot or cold something is. Most materials expand when heated. Thermometers are instruments designed to measure temperature. In order

More information

Chapter 17 Temperature and heat

Chapter 17 Temperature and heat Chapter 17 Temperature and heat 1 Temperature and Thermal Equilibrium When we speak of objects being hot and cold, we need to quantify this by some scientific method that is quantifiable and reproducible.

More information

Thermodynamics. Atoms are in constant motion, which increases with temperature.

Thermodynamics. Atoms are in constant motion, which increases with temperature. Thermodynamics SOME DEFINITIONS: THERMO related to heat DYNAMICS the study of motion SYSTEM an object or set of objects ENVIRONMENT the rest of the universe MICROSCOPIC at an atomic or molecular level

More information

Chapter 10. Thermal Physics

Chapter 10. Thermal Physics Chapter 10 Thermal Physics Thermal Physics Thermal physics is the study of Temperature Heat How these affect matter Thermal Physics, cont Descriptions require definitions of temperature, heat and internal

More information

Chapter 10, Thermal Physics

Chapter 10, Thermal Physics CHAPTER 10 1. If it is given that 546 K equals 273 C, then it follows that 400 K equals: a. 127 C b. 150 C c. 473 C d. 1 200 C 2. A steel wire, 150 m long at 10 C, has a coefficient of linear expansion

More information

Answer: The relation between kelvin scale and Celsius scale is TK =TC => TC=TK

Answer: The relation between kelvin scale and Celsius scale is TK =TC => TC=TK Question The triple points of neon and carbon dioxide are 24.57 K and 216.55 K respectively. Express these temperatures on the Celsius and Fahrenheit scales. Answer: The relation between kelvin scale and

More information

(Refer Slide Time 3:35)

(Refer Slide Time 3:35) Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module 2 Lecture - 9 Temperature Measurement This will be lecture

More information

Simpo PDF Merge and Split Unregistered Version -

Simpo PDF Merge and Split Unregistered Version - Simpo PDF Merge and Split Unregistered Version - http://wwwsimpopdfcom 6 If the zeroth law of thermodynamics were not valid, which of the following could not be considered a property of an object? A Pressure

More information

QuickCheck. Collisions between molecules. Collisions between molecules

QuickCheck. Collisions between molecules. Collisions between molecules Collisions between molecules We model molecules as rigid spheres of radius r as shown at the right. The mean free path of a molecule is the average distance it travels between collisions. The average time

More information

Estimate, for this water, the specific heat capacity, specific heat capacity =... J kg 1 K 1. the specific latent heat of vaporisation.

Estimate, for this water, the specific heat capacity, specific heat capacity =... J kg 1 K 1. the specific latent heat of vaporisation. 1 A kettle is rated as 2.3 kw. A mass of 750 g of water at 20 C is poured into the kettle. When the kettle is switched on, it takes 2.0 minutes for the water to start boiling. In a further 7.0 minutes,

More information

Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy:

Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy: Chemistry Heat Review Name Date Vocabulary Heat: Temperature: Enthalpy: Calorimetry: Activation energy: Formulas Heat of phase change Heat for temperature increase Heat of reaction Endothermic/Exothermic

More information

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER This brief chapter provides an introduction to thermodynamics. The goal is to use phenomenological descriptions of the microscopic details of matter in order

More information

5.60 Thermodynamics & Kinetics Spring 2008

5.60 Thermodynamics & Kinetics Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.60 Thermodynamics & Kinetics Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.60 Spring 2008 Lecture

More information

Broughton High School. Thermal Energy. Physical Science Workbook Chapter 6 Thermal Energy 2016 Mr. Davis

Broughton High School. Thermal Energy. Physical Science Workbook Chapter 6 Thermal Energy 2016 Mr. Davis 1 Thermal Energy Vocabulary for Chapter 6 Thermal Energy Broughton High School Physical Science Vocabulary No.# Term Page # Definition 2 1. Degrees 2. Higher Specific Heat 3. Heat of Vaporization 4. Radiation

More information

Atoms and molecules are in motion and have energy

Atoms and molecules are in motion and have energy Atoms and molecules are in motion and have energy By now you know that substances are made of atoms and molecules. These atoms and molecules are always in motion and have attractions to each other. When

More information

Collisions between molecules

Collisions between molecules Collisions between molecules We model molecules as rigid spheres of radius r as shown at the right. The mean free path of a molecule is the average distance it travels between collisions. The average time

More information

CHEM 103 Measurement in Chemistry

CHEM 103 Measurement in Chemistry CHEM 103 Measurement in Chemistry Lecture Notes January 26, 2006 Prof. Sevian 1 Agenda Calculations skills you need: Dimensional analysis Significant figures Scientific notation Group problem #1 2 2005

More information

Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg

Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg Temperature and Heat 1. Two systems of temperature 1. Temperature conversions 2. Real science (one scale to rule them all) 3. Temperature scales 2. Effects of temperature on materials 1. Linear Thermal

More information

Part Number Range Accuracy Printing WP * Probe Special User LDC with Page Logging included Feature Cal Backlight

Part Number Range Accuracy Printing WP * Probe Special User LDC with Page Logging included Feature Cal Backlight Table of Contents Comparison Chart Introduction Temperature Indicators & Controllers Portable Infrared Printing/Logging Page O2 O3 O10 O14 O30 O33 O1 Part Number Range Accuracy Printing WP * Probe Special

More information

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 18 Temperature, Heat & The First Law of Thermodynamics Equilibrium & temperature scales Thermal expansion Exchange of heat First law of thermodynamics Heat conduction

More information

Bell Ringer. What are the formulas to obtain the force, acceleration, and mass? And corresponding units. F= ma M= f/a A= f/m

Bell Ringer. What are the formulas to obtain the force, acceleration, and mass? And corresponding units. F= ma M= f/a A= f/m Bell Ringer What are the formulas to obtain the force, acceleration, and mass? And corresponding units. F= ma M= f/a A= f/m F= N M= kg A= m/s^2 What did we learn about the acceleration rate and gravitational

More information

18.13 Review & Summary

18.13 Review & Summary 5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

More information

Chapter 7 Notes. Matter is made of tiny particles in constant motion

Chapter 7 Notes. Matter is made of tiny particles in constant motion Chapter 7 Notes Section 7.1 Matter is made of tiny particles in constant motion Atomic Theory Greek philosophers (430 BC ) Democritus and Leucippus proposed that matter is made of tiny particles called

More information

PHYSICS 149: Lecture 26

PHYSICS 149: Lecture 26 PHYSICS 149: Lecture 26 Chapter 14: Heat 14.1 Internal Energy 14.2 Heat 14.3 Heat Capacity and Specific Heat 14.5 Phase Transitions 14.6 Thermal Conduction 14.7 Thermal Convection 14.8 Thermal Radiation

More information

Gas Thermometer and Absolute Zero

Gas Thermometer and Absolute Zero Chapter 1 Gas Thermometer and Absolute Zero Name: Lab Partner: Section: 1.1 Purpose Construct a temperature scale and determine absolute zero temperature (the temperature at which molecular motion ceases).

More information

2,000-gram mass of water compared to a 1,000-gram mass.

2,000-gram mass of water compared to a 1,000-gram mass. 11.2 Heat To change the temperature, you usually need to add or subtract energy. For example, when it s cold outside, you turn up the heat in your house or apartment and the temperature goes up. You know

More information

Question 11.1: The triple points of neon and carbon dioxide are 24.57 K and 216.55 K respectively. Express these temperatures on the Celsius and Fahrenheit scales. Kelvin and Celsius scales are related

More information

matter/index.html

matter/index.html http://www.colorado.edu/physics/2000/index.pl http://www.harcourtschool.com/activity/states_of_ matter/index.html Thermal Energy Ch 6-1 Temperature and Heat Objectives Explain the kinetic theory of matter

More information

High temperature He is hot

High temperature He is hot Lecture 9 What is Temperature and Heat? High temperature He is hot Some important definitions * Two objects are in Thermal contact with each other if energy can be exchanged between them. Thermal equilibrium

More information

Heat and temperature are related and often confused, but they are not the same.

Heat and temperature are related and often confused, but they are not the same. Heat and temperature are related and often confused, but they are not the same. Heat Definition: Heat is energy that is transferred from one body to another as a result of a difference in temperature Symbol:

More information

Heating and Cooling Explained By The Particle Model. Notes: Part 2/4

Heating and Cooling Explained By The Particle Model. Notes: Part 2/4 Heating and Cooling Explained By The Particle Model Notes: Part 2/4 Particles are the building blocks of all things. What are Particles? Some people call them molecules. Particles are NOT alive. How many

More information

CALORIEMETRY. Similar to the other forms of the energy, The S.I unit of heat is joule. joule is represented as J.

CALORIEMETRY. Similar to the other forms of the energy, The S.I unit of heat is joule. joule is represented as J. CALORIEMETRY CALORIMETRY Heat is the kinetic energy due to random motion of the molecules of a substance is called heat energy. Heat is a an invisible energy, that causes in us the sensation of hotness

More information

Chapter 9. Preview. Objectives Defining Temperature. Thermal Equilibrium. Thermal Expansion Measuring Temperature. Section 1 Temperature and

Chapter 9. Preview. Objectives Defining Temperature. Thermal Equilibrium. Thermal Expansion Measuring Temperature. Section 1 Temperature and Section 1 Temperature and Thermal Equilibrium Preview Objectives Defining Temperature Thermal Equilibrium Thermal Expansion Measuring Temperature Section 1 Temperature and Thermal Equilibrium Objectives

More information

Thermodynamics. Temperature, Heat, Work Heat Engines

Thermodynamics. Temperature, Heat, Work Heat Engines Thermodynamics Temperature, Heat, Work Heat Engines Introduction In mechanics we deal with quantities such as mass, position, velocity, acceleration, energy, momentum, etc. Question: What happens to the

More information

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES.

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES. 10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES. Key words: Atoms, Molecules, Atomic Theory of Matter, Molecular Mass, Solids, Liquids, and Gases, Thermodynamics, State Variables,

More information

3. What property and two conditions determine the phase of a sample of matter is? Property = Equilbirum Conditions = Temperature and Pressure

3. What property and two conditions determine the phase of a sample of matter is? Property = Equilbirum Conditions = Temperature and Pressure 9.A Calorimetry: Basics Instructions: Provide a response for each question that is well thought out, satisfies the prompt, is clearly explained, and LEGIBLE. 1. In a closed system what basic fact must

More information

Temperature and Its Measurement

Temperature and Its Measurement Temperature and Its Measurement When the physical properties are no longer changing, the objects are said to be in thermal equilibrium. Two or more objects in thermal equilibrium have the same temperature.

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Dr.Salwa Alsaleh fac.ksu.edu.sa/salwams

Dr.Salwa Alsaleh fac.ksu.edu.sa/salwams Dr.Salwa Alsaleh Salwams@ksu.edu.sa fac.ksu.edu.sa/salwams What is Temperature? It is the measurement of the AVERAGE kinetic energy of the particles of matter. Temperature We associate the concept of temperature

More information

Heat & Temperature. What are heat & temperature and how do they relate?

Heat & Temperature. What are heat & temperature and how do they relate? Heat & Temperature What are heat & temperature and how do they relate? SPS7. Students will relate transformations and flow of energy within a system. a. Identify energy transformations within a system

More information

Thermal Energy. Practice Quiz Solutions

Thermal Energy. Practice Quiz Solutions Thermal Energy Practice Quiz Solutions What is thermal energy? What is thermal energy? Thermal energy is the energy that comes from heat. This heat is generated by the movement of tiny particles within

More information

SCED 204 Sample Activity SCED 204: Matter and Energy in Chemical Systems

SCED 204 Sample Activity SCED 204: Matter and Energy in Chemical Systems SCED 204 Sample Activity SCED 204: Matter and Energy in Chemical Systems Activity #2: DO THE SMALL PARTICLES OF MATTER MOVE? IF SO, HOW? Purpose: We have been developing a model of matter that involves

More information

Thermal Radiation Heat Transfer Mechanisms

Thermal Radiation Heat Transfer Mechanisms 18-6 Heat Transfer Mechanisms Thermal Radiation Radiation is an energy transfer via the emission of electromagnetic energy. The rate P rad at which an object emits energy via thermal radiation is Here

More information

Unit 6: Energy. Aim: What is Energy? Energy: Energy is required to bring about changes in matter (atoms, ions, or molecules).

Unit 6: Energy. Aim: What is Energy? Energy: Energy is required to bring about changes in matter (atoms, ions, or molecules). Name: Date: Unit 6: Energy Aim: What is Energy? Energy: Energy is required to bring about changes in matter (atoms, ions, or molecules). Physical Changes Chemical Changes Example: Example: Energy is measured

More information

TEMPERATURE AND THERMAL EXPANSION

TEMPERATURE AND THERMAL EXPANSION TEMPERATURE AND THERMAL EXPANSION After boiling water, you will feel that the water is hotter than before, or you can say that the water temperature is higher than before. Otherwise, when you pick an ice,

More information

Physics 207 Lecture 23

Physics 207 Lecture 23 Thermodynamics A practical science initially concerned with economics, industry, real life problems. DYNAMICS -- Concerned with the concepts of energy transfers between a system and its environment and

More information