Influence of Terahertz Waves on the Penetration in Thick FRP Composite Materials

Size: px
Start display at page:

Download "Influence of Terahertz Waves on the Penetration in Thick FRP Composite Materials"

Transcription

1 Influence of Terahertz Waves on the Penetration in Thick FRP Composite Materials Kwang-Hee Im a, David K. Hsu b, Chien-Ping Chiou b, Daniel J. Barnard b, In-Young Yang c, and Je-Woong Park d a Department of Automotive Eng., Woosuk University, Chonbuk, , Korea b Center for Nondestructive Evaluation, Iowa State University, Ames, Iowa, 50011,USA c Department of Mechanical Design Engineering, Chosun University, Gwangju , Korea d Department of Naval Architecture and Ocean Eng., Chosun University, Gwangju , Korea Abstract. Fiber reinforced plastics (FRP) are increasingly utilized in engineering structures because of their performance and fabrication advantages. With this increased utilization, a technique to gage quality and further characterize the materials would be beneficial. The nondestructive applications for Terahertz (T-ray) methods have also experienced increased utilization for evaluating engineering materials and will be reported on here in applications for the inspection and characterization of FRP materials used in wind energy components. First, refraction and transmission T-ray modes are used to determine the refractive index (n) of a glass fiber reinforced plastic (GFRP) reference sample, and extended for calculating the refractive indices for a sample of GFRP, balsa and epoxy. Additionally, carbon fiber reinforced plastic (CFRP) samples were evaluated with respect to fiber directions versus T-ray electric field polarization direction to evaluate the level of penetration of T-ray energy due to the fiber orientation dependent conductivity of this composite material. Finally, an evaluation of T-ray data was made to evaluate resonance effects, where the resonance frequency was found to agree with that expected from reflections from individual plies in thick GFRP laminates. Keywords: Resonance Frequency, Penetration, Thick FRP Composites, Terahertz Waves PACS: g INTRODUCTION Recent changes of technology and NDE tools in the Terahertz (T-ray) have shown a challenge field on the electromagnetic (EM) spectrum because the terahertz radiation has a shorter wavelength, relatively higher resolution than microwaves, and lower attenuation. The terahertz radiation is of critical importance in the spectroscopy evaluation of airport security screening, medical imaging, polar liquids, industrial systems and composites as well [1]. Also the terahertz time domain spectroscopy (TDz-TDS) is leading noncontact and accurate detection of defects and impact damages in composites [2], in which the TDz-TDS is based on photoconductive switches, which rely on the production of few-cycle terahertz pulses using a femtosecond laser to excite a photoconductive antenna [3]. This can generate sub-picosecond bursts of THz radiation, and subsequently detect them with high signal-to-noise. With the emitted power distributed over several T-rays, they consequently span a very broad bandwidth. A transient change of the emitter occurs in the resistance of a photoconductive switch on a terahertz timescale. An external dc bias can create a current flow that contains components at terahertz frequencies. The current induces a terahertz EM field in the planar and metallic antenna. The terahertz dipole radiation is connected from the antenna into free space as a quasi-collimated beam [4]. Also, another method is optical heterodyne conversion, or photomixing, which can be obtained using two continuous-wave (CW) lasers [5-6]. The mixing of two lasers could produce beating, which can modulate the conductance of a photoconductive switch by the terahertz difference frequency. So, the CW-terahertz (CW-THz) radiation is produced. Here this terahertz T-ray technology constitutes of imaging, real-time acquisition of the T- ray waveforms and advanced signal processing. In some cases, the T-ray images could tell

2 chemical compositions from the objects. These features of the T-ray imaging have generated interest in commercial applications in diverse areas as moisture analysis, quality control of plastic parts and packaging inspection (monitoring) [7-10]. Many T-ray NDE reports, however, have rarely made for materials evaluation and structural testing regardless of recent advances of technology and instrumentation in terahertz radiation. An investigation of terahertz radiation was made for the NDE of composite materials and structures. The T-ray can readily penetrate some thickness of dielectric materials; so that non-conducting polymer composites reinforced with glass, quartz, or Kevlar fibers are well suited for the T-ray inspection. Structures such as aircraft radomes, designed for passing radar signals, are good cases for the T-ray inspection. Also, wind energy turbine blades, being constructed of glass fiber composites, balsa wood, and adhesive, can also be penetrated with terahertz radiation. The T-ray was investigated as an NDE tool for detecting and characterizing flaws and damage in nonconducting composites. Carbon fiber reinforced polymer composites, on the other hand, are generally considered as some conducting material due to carbon fibers. However resin is considered as nonconducting material; so the T-ray goes to penetrate the resin. The degree of penetration in carbon composites by the T-ray, especially as a function of fiber orientation, is handled quantitatively in this study. The degree of penetration was defined based on the angle of function between the carbon fiber direction and the E-field direction of T-ray. Also, the surface fiber angle plays an important role to penetrate the carbon composites. Additionally in a piece of GFRP composites for a use of wind energy, T-ray C-scan images were made and analyzed for detecting the defects in GFRP composites; also, T-ray A-scan data were measured; a regular difference of time (Δt) was shown, which was related to the thickness of each ply in the GFR P composites. Also, a relation between T-ray TOF and FFT data were analyzed in order to measure the thickness of each ply in the GFRP composites. EXPERIMENT The terahertz instrumentation systems used in this research were provided by TeraView Limited. The instrumentation includes a time domain spectroscopy (TDS) pulsed system and a frequency domain continuous wave (CW) system. The TDS system has a frequency range of 50GHz 4 THz and a fast delay line up to 300ps. The beam is focused to focal lengths of 50 mm and 150 mm and the full width at half maximum (FWHM) beam widths are respectively 0.8mm and 2.5mm. The TDS system can be configured for through-transmission or reflection (small angle pitch-catch) measurements. The frequency range of the CW system is 50GHz 1.5THz, with the best resolution being 100MHz. The focal lengths of the CW system are also 50mm and 150mm. Both the TDS and the CW systems are fully fiber optics connected [1, 11, 12]. Reflection Mode This method was to determine the index of refraction used to calculate the optical path length different between the front and back reflections in the time domain. A diagram showing the geometry of the two THz signals is shown as in Fig. 1. First of all, recall from a normal incident echo, a regular difference of time, Δt will be below [11];

3 t = 2d v (1) Where d is the sample thickness and v is the sample velocity. Consider both the geometry time delay, δ as shown in Fig.1 and oblique T-ray trace length, l in the reflection mode above a regular difference of time, Δt between front echo and back surface echo will be obtained below [11]; t = 2l v δ C a Where l = d, δ = 2lsin 2 θ cosθ a = 2 sin 2 θ r cosθ a r d Where Ca is the velocity in air, d is the sample thickness, v is the sample velocity, θa is the angle of reflection mode, θr is the refractive angle in sample. Resonance frequency, Δf is obtained based on considering geometry time delay and oblique T-ray trace length below; f = 1 = 1 2d = ( v cosθr δ Ca ) 2d ( v cosθr 2d sin2 θa cosθr Ca ) 1 2d cosθr (1 v sin2 θa Ca ) (3) (2) FIGURE 1. Diagram showing the geometry of the reflection mode. Where the transmission time of the sample, d is the sample thickness, V is the speed in sample, Ca is the light speed in air, θr is the incident angle of the sample and θa is the incident angle in air ; so we will suggest a procedure to estimate the electromagnetic properties such as the refractive index. Refractive index (n) for the reflection mode can be solved as Eq.(4) [11-12] n An Asin p1 0 (4) where d is the sample thickness, Vair is a light speed in air and Vs is a light speed in sample, t (T) 2 2 T Vair is the difference time between with sample and without sample and A. 2 4d 2

4 Through-Transmission Mode In through-transmission mode, the index of refraction (n) could be calculated using the following equation [11]. n = 1 + t v air (5) d Where Δt is the difference time between with sample and without sample, d is the sample thickness, Vair is the light speed in air. RESULTS AND DISCUSSION Measurement of Refractive Index In order to measure parameters of T-ray that shows the material's physical property, THz pulse was obtained from GFRP in both reflection mode and through-transmission mode. Table 1 shows refractive indices of GFRP composites, Balsa, PMMA, Fused quartz and Epoxy samples measured in the both modes. Standard deviation of data did not spread away from 1 to 2 %. When measuring the refractive index, the through-transmission mode is being used a lot because terahertz measuring technique in through-transmission mode is relatively easy in experiment compared to other methods even though there are many parameters to consider in actual measuring. Materials TABLE 1. Average THz refractive indices of the material studied. Through- Reflection transmission mode mode PMMA * 1.60 ± ± 0.01 Fused quartz * 1.92 ± ± 0.03 GFRP 2.18 ± ± 0.06 Epoxy 1.77 ± ± 0.04 Balsa 1.19 ± ± 0.06 *PMMA and Fused quartz were known data by References 8-9 In case of test specimen of PMMA and fused quartz materials; however, there was difficulty in comparing the result to the existing data because the method of fabrication and properties were different among them [8-9]. E-Field Characterization in Carbon Fiber T-ray waves can penetrate dielectric materials quite easily but not electrically conducting materials. The application of terahertz waves to the inspection of carbon composites is mentioned in the literature [8-10] but there has not been in depth studies. Carbon fiber reinforced polymer composites (CFRP) are poor conductors for electricity and the conductivity is anisotropic, so it is worthwhile to quantify the penetration of terahertz waves in carbon composites. The carbon fibers used in the manufacturing of CFRP are highly anisotropic microscopically; the electrical conductivity along the fiber axis is about three orders of magnitude greater than that in the radial

5 direction. In a unidirectional laminate of carbon fiber composite, the transverse electrical conductivity is further impeded by the lack of continuity. The conduction mechanism in the transverse direction (perpendicular to the fiber axis) is a percolation process that relies on the random contact between adjacent fibers. In the literature, the electrical conductivity data for carbon composites are somewhat sparse [9]. Experimentally, we have measured the angular dependence of the power transmission through a 1-ply unidirectional carbon composite laminate using the CW terahertz system. Near the low end of the frequency spectrum (f ~ 0.1 THz), the transmitted power is more than 30 db above the noise floor. The angular dependence of the transmitted power at 0.1 THz is shown in Fig. 2. Figure 2(a) shows asset up for T-ray testing based on E-field direction; so the transmission powers were measured at every 15 degree angles. Figure 2(b) shows the highest transmission power amplitude at around 90 and 270 deg. and does lowest amplitude at around 0 and 180 deg. And the measured power amplitudes were plotted as a function of angles as shown in Fig. 2(b). FIGURE 2. Angular dependence of transmitted power of THz terahertz waves through a 1-ply unidirectional CFRP laminate. When compared to the theory prediction [10] based on the angular dependent conductivity, the measured power transmission at angles away from 90 degree much higher the predicted. The value would have the unidirectional carbon composites behaving like a polarizer with a sharp cut-off under the assumptions that the incident terahertz ray is linearly polarized and that the fiber axes in the laminate are all parallel. It seems that the discrepancy in some angles contributes to the above involved things. However, it is found that the transmission of terahertz power depend on the fiber direction of conducting CFRP composite laminates. So, it is assumed that the E-field direction is normal to the carbon fiber direction as shown in Fig.2 (b). However, there is no difference in case of GFRP composites as shown in Fig. 2(b) due to non-conducting materials.

6 THZ Images in Thick GFRP Composites Figure 3 shows two photos (a) and (b) of wind turbine blade and Terahertz system. Experimentation of a through-transmission mode was made as shown in Fig. 3 (a). Figure 4 exhibits a C-scan image and B-scan image in the blade. A red area could be observed with the relatively high amplitude, which area can be expected to some defects. FIGURE 3. Wind turbine blade and setup for scanning the blade. FIGURE 4. T-ray scan images in the wind turbine blade (a) C-scan in through-transmission mode (b) B-scan image at A-A line (c) B-scan image at B-B line.

7 FIGURE 5. A-scan and FFT image in the thick GFRP plate. So a shorter TOF (time-of-flight) was measured. Figure 4(b) displays a B-scan image from Fig. 4(a). See a point A; there is a line around the time of 240ps. We expected that that area could be very uniform at the A-A section. However, take a look of Fig. 4(c); there is some lines on a point A at the right side, which means the uniform region. At a point B, there is a declined line at the right side. This means that the blade are consisted of GFRP, balsa and epoxy with shapes of roundness and curves; so it seemed that the shapes were corresponding with that of the blades. Also, see a point C; a yellow line with high amplitude was observed. This line was corresponding with that in Fig. 4(a). Thus, it was thought that the yellow line could be related with the defects in the wind turbine blade. THz Signal Based on Resonance Frequency A GFRP plate for a use of wind turbine blade was scanned using T-ray system. Also, Fig. 5 shows a A-scan and FFT images respectively. Notice that a T-ray time domain data in Fig. 5(a) seemed to show peaks with a regular spacing (see a Δt). We estimated in the lab and found that the value of delta-t (Δt= 12ps) seemed to be consistent with a ply thickness as measured in the lab. One thing was done for a FFT on the data and resonance frequency (Δf=0.08THz) was obtained as shown in Fig. 5(b), which was obvious with the close relation between TOF and FFT. This does prove that there are reflections or echoes at the ply interfaces in the GFRP plate due to the regularly spaced peaks. CONCLUSION Recently, T-ray waves can show unique characteristics for nondestructive evaluation on the conducting and non-conducting composites. It was found that the index of refraction of samples could be easily measured using both a reflection mode and a transmission configuration as a study for application of T-ray.

8 THz- TDS through-transmission scan images of GFRP composite laminates were made with some defects for wind turbine blade composites; also TOF of terahertz wave in transmission mode was measured for evaluating the wind turbine blade. It was found that a T-ray time domain data seemed to show peaks with a regular spacing (Δt) which was obvious with the close relation between TOF and FFT. ACKNOWLEDGMENT This terahertz work was helped by CNDE of Iowa State University and was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology ( ). REFERENCES 1. C. P. Chiou, J. L. Blackshire, R. B. Thompson and B. B. Hu, Terahertz Ray System Calibration and Material Characterzations, Review of QNDE, 28, pp , R. Huber, A. Brodschelm, A. Tauser and A. Leitenstorfer, Generation and Field-Resolved Detection of Femtosecond Electromagnetic Pulses Tunable up to 41 THz, Appl. Phys.Lett.,Vol.76, pp , J. V. Rudd and D. M. Mittleman D. M., Influence of Substrate-Lens Design in Terahertz Time-Domain Spectroscopy, J.Opt.Soc.Amer.B, Vol. 19, no. 2, pp , I. S. Gregory, C. Baker, W. Tribe, I. V. Bradley, M. J. Evans and E. H. Linfield, Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission, IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 41, NO. 5, pp , E. R. Brown, F. W. Smith and K. A. McIntosh, Coherent Millimeterwave Generation by Heterodyne Conversion in Low- Temperature-Grown GaAs Photoconductors, J.Appl.Phys.,Vol.73, No.3,pp , E. R. Brown K. A. McIntosh, K. B. Nichols and C. L. Dennis, Photomixing up to 3.8 THz in Low-Temperature-Grown GaAs, Appl.Phys.Lett.,Vol.66,No.3,pp , Mittleman, D. Jacobsen, R.H. and M. C. Nuss, Tray imaging, IEEE J. Sel. Top. Quant. Elec., Vol. 2, pp , R. Schueler, S. P. Joshi, and K. Schulte K., Damage Detection in CFRP by Electrical Conductivity Mapping, Composite Science and Technology, Vol. 61, 6, pp , David K. Hsu, Characterization of a Graphite/Epoxy Laminate by Electrical Resistivity Measurements, Rev. Prog. in Quantitative NDE, Vol. 4, Plenum Press, pp K. W. Tse, C. A. Moyer, and S. Arajs,, Electrical Conductivity of Graphite Fiber-Epoxy Resin Composites, Materials Science and Engineering, Vol.49, pp.41-46, K. H. Im, D. K. Hsu, C.P. Chiou, D. J. Barnard, I. Y. Yang and J. W. Park, Terahertz Radiation Study on FRP Composite Solid Laminates, Review of QNDE, Vol. 31, pp , K. H. Im, D. K. Hsu, C.P. Chiou, D. J. Barnard, I. Y. Yang and J. W. Park, Influence of Terahertz Waves on the Fiber Direction of CFRP Composite Laminates, Review of QNDE, Vol. 32, pp , 2013.

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium with thickness L. Supplementary Figure Measurement of

More information

Mandatory Assignment 2013 INF-GEO4310

Mandatory Assignment 2013 INF-GEO4310 Mandatory Assignment 2013 INF-GEO4310 Deadline for submission: 12-Nov-2013 e-mail the answers in one pdf file to vikashp@ifi.uio.no Part I: Multiple choice questions Multiple choice geometrical optics

More information

MEASUREMENT OF REFLECTANCE FUNCTION FOR LAYERED STRUCTURES USING FOCUSED ACOUSTIC WAVES INTRODUCTION

MEASUREMENT OF REFLECTANCE FUNCTION FOR LAYERED STRUCTURES USING FOCUSED ACOUSTIC WAVES INTRODUCTION MEASUREMENT OF REFLECTANCE FUNCTION FOR LAYERED STRUCTURES USING FOCUSED ACOUSTIC WAVES w.-j. Xu and M. Ourak Institut d'electronique et de Microelectronique du Nord Departement Opto-Acousto-Electronique

More information

Supporting Information for. Graphene conductance uniformity mapping

Supporting Information for. Graphene conductance uniformity mapping Supporting Information for Graphene conductance uniformity mapping Jonas D. Buron 1, 2, Dirch H. Petersen 2, Peter Bøggild 2, David G. Cooke 3, Michael Hilke 3, Jie Sun 4, Eric Whiteway 3, Peter F. Nielsen

More information

Multi-cycle THz pulse generation in poled lithium niobate crystals

Multi-cycle THz pulse generation in poled lithium niobate crystals Laser Focus World April 2005 issue (pp. 67-72). Multi-cycle THz pulse generation in poled lithium niobate crystals Yun-Shik Lee and Theodore B. Norris Yun-Shik Lee is an assistant professor of physics

More information

The generation of terahertz frequency radiation by optical rectification

The generation of terahertz frequency radiation by optical rectification University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 29 The generation of terahertz frequency radiation by optical

More information

Research on the defect types judgment in wind turbine blades using ultrasonic NDT

Research on the defect types judgment in wind turbine blades using ultrasonic NDT IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Research on the defect types judgment in wind turbine blades using ultrasonic NDT To cite this article: Suwei Li et al 05 IOP

More information

ULTRASONIC ATTENUATION RESULTS OF THERMOPLASTIC RESIN COMPOSITES UNDERGOING THERMAL AND FATIGUE LOADING

ULTRASONIC ATTENUATION RESULTS OF THERMOPLASTIC RESIN COMPOSITES UNDERGOING THERMAL AND FATIGUE LOADING 1 ULTRASONIC ATTENUATION RESULTS OF THERMOPLASTIC RESIN COMPOSITES UNDERGOING THERMAL AND FATIGUE LOADING Eric I. Madaras NASA Langley Research Center MS 231 Hampton,. VA 23681-0001 INTRODUCTION Before

More information

Defect detection with thermal imaging and phase shifting methods in lock-in thermography

Defect detection with thermal imaging and phase shifting methods in lock-in thermography More info about this article: http://www.ndt.net/?id=20672 Defect detection with thermal imaging and phase shifting methods in lock-in thermography Wontae Kim *, Ranjit Shrestha * and Manyong Choi ** *

More information

ATTENUATION AND POROSITY ESTIMATION USING THE FREQUENCY-INDEPENDENT PARAMETER Q

ATTENUATION AND POROSITY ESTIMATION USING THE FREQUENCY-INDEPENDENT PARAMETER Q ATTENUATION AND POROSITY ESTIMATION USING THE FREQUENCY-INDEPENDENT PARAMETER Q Kenneth I. McRae Defence Research Establishment Pacific F.M. O. Victoria, B. C. Canada VOS lbo Cedric A. Zala Barrodale Computing

More information

Progress In Electromagnetics Research B, Vol. 1, , 2008

Progress In Electromagnetics Research B, Vol. 1, , 2008 Progress In Electromagnetics Research B Vol. 1 09 18 008 DIFFRACTION EFFICIENCY ENHANCEMENT OF GUIDED OPTICAL WAVES BY MAGNETOSTATIC FORWARD VOLUME WAVES IN THE YTTRIUM-IRON-GARNET WAVEGUIDE COATED WITH

More information

Application of Electromagnetic Waves in Damage Detection of Concrete Structures

Application of Electromagnetic Waves in Damage Detection of Concrete Structures Application of Electromagnetic Waves in Damage Detection of Concrete Structures Maria Q. Feng a, Franco De Flaviis b, Yoo Jin Kim a, and Rudy Diaz c a Dept. of Civil and Environmental Engineering, University

More information

EFFECTS OF ACOUSTIC SCATTERING AT ROUGH SURFACES ON THE

EFFECTS OF ACOUSTIC SCATTERING AT ROUGH SURFACES ON THE EFFECTS OF ACOUSTIC SCATTERING AT ROUGH SURFACES ON THE SENSITIVITY OF ULTRASONIC INSPECTION Peter B. Nagy and Laszlo Adler Department of Welding Engineering The Ohio State University Columbus, Ohio 4321

More information

PHYSICS nd TERM Outline Notes (continued)

PHYSICS nd TERM Outline Notes (continued) PHYSICS 2800 2 nd TERM Outline Notes (continued) Section 6. Optical Properties (see also textbook, chapter 15) This section will be concerned with how electromagnetic radiation (visible light, in particular)

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Ms. Monika Srivastava Doctoral Scholar, AMR Group of Dr. Anurag Srivastava ABV-IIITM, Gwalior

Ms. Monika Srivastava Doctoral Scholar, AMR Group of Dr. Anurag Srivastava ABV-IIITM, Gwalior By Ms. Monika Srivastava Doctoral Scholar, AMR Group of Dr. Anurag Srivastava ABV-IIITM, Gwalior Unit 2 Laser acronym Laser Vs ordinary light Characteristics of lasers Different processes involved in lasers

More information

Applications of Terahertz Radiation (T-ray) Yao-Chang Lee, National Synchrotron Research Radiation Center

Applications of Terahertz Radiation (T-ray) Yao-Chang Lee, National Synchrotron Research Radiation Center Applications of Terahertz Radiation (T-ray) Yao-Chang Lee, yclee@nsrrc.org.tw National Synchrotron Research Radiation Center Outline Terahertz radiation (THz) or T-ray The Interaction between T-ray and

More information

ULTRASONIC A TTENUA TION RESULTS OF THERMOPLASTIC RESIN COMPOSITES UNDERGOING THERMAL AND FATIGUE LOADING

ULTRASONIC A TTENUA TION RESULTS OF THERMOPLASTIC RESIN COMPOSITES UNDERGOING THERMAL AND FATIGUE LOADING ULTRASONIC A TTENUA TION RESULTS OF THERMOPLASTIC RESIN COMPOSITES UNDERGOING THERMAL AND FATIGUE LOADING Eric I. Madaras NASA Langley Research Center MS 231 Hampton,. VA 23681-0001 INTRODUCTION Before

More information

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK 161 CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK 7.1 SUMMARY OF THE PRESENT WORK Nonlinear optical materials are required in a wide range of important applications, such as optical

More information

Investigation of Eddy Current Nondestructive Testing for Carbon Fiber-Reinforced Plastic (CFRP) Based on Electromagnetic Field Analysis

Investigation of Eddy Current Nondestructive Testing for Carbon Fiber-Reinforced Plastic (CFRP) Based on Electromagnetic Field Analysis Journal of Mechanics Engineering and Automation 8 (2018) 127-131 doi: 10.17265/2159-5275/2018.03.004 D DAVID PUBLISHING Investigation of Eddy Current Nondestructive Testing for Carbon Fiber-Reinforced

More information

Temperature ( o C)

Temperature ( o C) Viscosity (Pa sec) Supplementary Information 10 8 10 6 10 4 10 2 150 200 250 300 Temperature ( o C) Supplementary Figure 1 Viscosity of fibre components (PC cladding blue; As 2 Se 5 red; CPE black) as

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Terahertz birefringence and attenuation properties of. wood and paper

Terahertz birefringence and attenuation properties of. wood and paper Terahertz birefringence and attenuation properties of wood and paper Matthew Reid and R. Fedosejevs Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada The far-infrared

More information

EDDY CURRENT DETECTION OF SUBSURFACE CRACKS IN ENGINE DISK BOLTHOLES

EDDY CURRENT DETECTION OF SUBSURFACE CRACKS IN ENGINE DISK BOLTHOLES EDDY CURRENT DETECTION OF SUBSURFACE CRACKS IN ENGINE DISK BOLTHOLES R. Palanisamy and D. O. Thompson Ames Laboratory, USDOE Iowa State University Ames, IA 50011 and G. L. Burkhardt and R. E. Beissner

More information

Light as a Transverse Wave.

Light as a Transverse Wave. Waves and Superposition (Keating Chapter 21) The ray model for light (i.e. light travels in straight lines) can be used to explain a lot of phenomena (like basic object and image formation and even aberrations)

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

POLARIZATION OF LIGHT

POLARIZATION OF LIGHT POLARIZATION OF LIGHT OVERALL GOALS The Polarization of Light lab strongly emphasizes connecting mathematical formalism with measurable results. It is not your job to understand every aspect of the theory,

More information

PHY410 Optics Exam #3

PHY410 Optics Exam #3 PHY410 Optics Exam #3 NAME: 1 2 Multiple Choice Section - 5 pts each 1. A continuous He-Ne laser beam (632.8 nm) is chopped, using a spinning aperture, into 500 nanosecond pulses. Compute the resultant

More information

Eddy Current Modeling in Composite Materials

Eddy Current Modeling in Composite Materials PIERS ONLINE, VOL. 5, NO. 6, 2009 59 Eddy Current Modeling in Composite Materials M. Cacciola, S. Calcagno, G. Megali, D. Pellicanó, M. Versaci, and F. C. Morabito University Mediterranea of Reggio Calabria,

More information

Graphene conductivity mapping by terahertz time-domain reflection spectroscopy

Graphene conductivity mapping by terahertz time-domain reflection spectroscopy Graphene conductivity mapping by terahertz time-domain reflection spectroscopy Xiaodong Feng, Min Hu *, Jun Zhou, and Shenggang Liu University of Electronic Science and Technology of China Terahertz Science

More information

Atomic and nuclear physics

Atomic and nuclear physics Atomic and nuclear physics Atomic shell Normal Zeeman effect LEYBOLD Physics Leaflets Observing the normal Zeeman effect in transverse and longitudinal Objects of the experiment Observing the line triplet

More information

DETERMINATION OF ELASTIC CONSTANTS OF ANISOTROPIC MATERIALS FROM OBLIQUE

DETERMINATION OF ELASTIC CONSTANTS OF ANISOTROPIC MATERIALS FROM OBLIQUE DETERMINATION OF ELASTIC CONSTANTS OF ANISOTROPIC MATERIALS FROM OBLIQUE ANGLE ULTRASONIC WAVE MEASUREMENTS II: EXPERIMENTAL R.B. Mignogna, N.K. Batra and K.E. Simmonds Mechanics of Materials Branch Naval

More information

The Electromagnetic Properties of Materials

The Electromagnetic Properties of Materials The Electromagnetic Properties of Materials Electrical conduction Metals Semiconductors Insulators (dielectrics) Superconductors Magnetic materials Ferromagnetic materials Others Photonic Materials (optical)

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

Technique for the electric and magnetic parameter measurement of powdered materials

Technique for the electric and magnetic parameter measurement of powdered materials Computational Methods and Experimental Measurements XIV 41 Technique for the electric and magnetic parameter measurement of powdered materials R. Kubacki,. Nowosielski & R. Przesmycki Faculty of Electronics,

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

THERMAL DIFFUSIVITY MEASUREMENTS ON COMPOSITE POROSITY SAMPLES. Joseph N. Zalameda

THERMAL DIFFUSIVITY MEASUREMENTS ON COMPOSITE POROSITY SAMPLES. Joseph N. Zalameda THERMAL DIFFUSIVITY MEASUREMENTS ON COMPOSITE POROSITY SAMPLES Joseph N. Zalameda US Army Aviation Research and Technology Activity - AVSCOM MS 231 Langley Research Center Hampton, VA 23665 William P.

More information

ELASTIC MODULI OF SILICON CARBIDE PARTICULATE REINFORCED ALUMINUM METAL MATRIX COMPOSITES

ELASTIC MODULI OF SILICON CARBIDE PARTICULATE REINFORCED ALUMINUM METAL MATRIX COMPOSITES ELASTIC MODULI OF SILICON CARBIDE PARTICULATE REINFORCED ALUMINUM METAL MATRIX COMPOSITES H. Jeong and O.K. Hsu Center for NDE Iowa State University Ames, IA 511 R.E. Shannon and P.K. Liaw Metals Technologies

More information

Propagation losses in optical fibers

Propagation losses in optical fibers Chapter Dielectric Waveguides and Optical Fibers 1-Fev-017 Propagation losses in optical fibers Charles Kao, Nobel Laureate (009) Courtesy of the Chinese University of Hong Kong S.O. Kasap, Optoelectronics

More information

INTERNAL STRAIN MEASUREMENTS IN CFRP PLATES SUBJECTED TO IMPACT LOAD USING FBG SENSORS

INTERNAL STRAIN MEASUREMENTS IN CFRP PLATES SUBJECTED TO IMPACT LOAD USING FBG SENSORS INTERNAL STRAIN MEASUREMENTS IN CFRP PLATES SUBJECTED TO IMPACT LOAD USING FBG SENSORS J. Frieden, J. Cugnoni, J. Botsis, Th. Gmür, D. Coric Laboratoire de Mécanique appliquée et d Analyse de Fiabilité

More information

MIS 231, NASA LaRC Hampton, VA

MIS 231, NASA LaRC Hampton, VA COMBINED INVESTIGATION OF EDDY CURRENT AND ULTRASONIC TECHNIQUES FOR COMPOSITE MATERIALS NDE C. W. Davis US Anny ATCOM MIS 231, NASA LaRC Hampton, VA 23681-0001 S. Nath and J. P. Fulton Analytic Services

More information

Signal Loss. A1 A L[Neper] = ln or L[dB] = 20log 1. Proportional loss of signal amplitude with increasing propagation distance: = α d

Signal Loss. A1 A L[Neper] = ln or L[dB] = 20log 1. Proportional loss of signal amplitude with increasing propagation distance: = α d Part 6 ATTENUATION Signal Loss Loss of signal amplitude: A1 A L[Neper] = ln or L[dB] = 0log 1 A A A 1 is the amplitude without loss A is the amplitude with loss Proportional loss of signal amplitude with

More information

Extensional and Flexural Waves in a Thin-Walled Graphite/Epoxy Tube * William H. Prosser NASA Langley Research Center Hampton, VA 23665

Extensional and Flexural Waves in a Thin-Walled Graphite/Epoxy Tube * William H. Prosser NASA Langley Research Center Hampton, VA 23665 Extensional and Flexural Waves in a Thin-Walled Graphite/Epoxy Tube * William H. Prosser NASA Langley Research Center Hampton, VA 23665 Michael R. Gorman Aeronautics and Astronautics Naval Postgraduate

More information

ULTRASONIC INSPECTION, MATERIAL NOISE AND. Mehmet Bilgen and James H. Center for NDE Iowa State University Ames, IA 50011

ULTRASONIC INSPECTION, MATERIAL NOISE AND. Mehmet Bilgen and James H. Center for NDE Iowa State University Ames, IA 50011 ULTRASONIC INSPECTION, MATERIAL NOISE AND SURFACE ROUGHNESS Mehmet Bilgen and James H. Center for NDE Iowa State University Ames, IA 511 Rose Peter B. Nagy Department of Welding Engineering Ohio State

More information

Studying of the Dipole Characteristic of THz from Photoconductors

Studying of the Dipole Characteristic of THz from Photoconductors PIERS ONLINE, VOL. 4, NO. 3, 8 386 Studying of the Dipole Characteristic of THz from Photoconductors Hong Liu, Weili Ji, and Wei Shi School of Automation and Information Engineering, Xi an University of

More information

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Photonics group W. Claeys, S. Dilhair, S. Grauby, JM. Rampnoux, L. Patino Lopez,

More information

Chapter 22. Induction

Chapter 22. Induction Chapter 22 Induction Induced emf A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday A primary coil is connected to a battery A secondary coil is connected

More information

Laser Terahertz Emission Microscope

Laser Terahertz Emission Microscope Terahertz Science and Technology, Vol.1, No.1, March 2008 28 Laser Terahertz Emission Microscope M. Tonouchi, N. Uchida, S. Kim, R. Inoue, and H. Murakami Institute of Laser Engineering, Osaka University

More information

Effective testing for wafer reject minimization by terahertz analysis and sub-surface imaging

Effective testing for wafer reject minimization by terahertz analysis and sub-surface imaging Effective testing for wafer reject minimization by terahertz analysis and sub-surface imaging Anis Rahman and Aunik K. Rahman Applied Research & Photonics 470 Friendship Road, Suite 10 Harrisburg, PA 17111,

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

Pre-lab Quiz/PHYS 224. Your name Lab section

Pre-lab Quiz/PHYS 224. Your name Lab section Pre-lab Quiz/PHYS 224 THE DIFFRACTION GRATING AND THE OPTICAL SPECTRUM Your name Lab section 1. What are the goals of this experiment? 2. If the period of a diffraction grating is d = 1,000 nm, where the

More information

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Serena De Paolis *, Francesca Lionetto and Alfonso Maffezzoli

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 25 Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam: Date: Wednesday, March 6 th Time: 8:00 10:00 pm Room: PHYS 203 Material: French, chapters

More information

Electromagnetic Waves

Electromagnetic Waves 4/15/12 Chapter 26: Properties of Light Field Induction Ok, so a changing magnetic field causes a current (Faraday s law) Why do we have currents in the first place? electric fields of the charges Changing

More information

Nonlinear Acoustic NDT: Approaches, Methods, and Applications

Nonlinear Acoustic NDT: Approaches, Methods, and Applications Nonlinear Acoustic NDT: Approaches, Methods, and Applications Igor Solodov Department of Non-Destructive Testing, Institute of Polymer Technology (IKT), University of Stuttgart, Stuttgart, Germany 5th

More information

In Situ Ultrasonic NDT of Fracture and Fatigue in Composites

In Situ Ultrasonic NDT of Fracture and Fatigue in Composites ECNDT 26 - Mo.2.6.5 In Situ Ultrasonic NDT of Fracture and Fatigue in Composites I. SOLODOV, K. PFLEIDERER, and G. BUSSE Institute for Polymer Testing and Polymer Science (IKP), Non-destructive Testing

More information

UNIT-5 EM WAVES UNIT-6 RAY OPTICS

UNIT-5 EM WAVES UNIT-6 RAY OPTICS UNIT-5 EM WAVES 2 Marks Question 1. To which regions of electromagnetic spectrum do the following wavelengths belong: (a) 250 nm (b) 1500 nm 2. State any one property which is common to all electromagnetic

More information

Absolute Measurement and Relative Measurement of Ultrasonic Nonlinear Parameters

Absolute Measurement and Relative Measurement of Ultrasonic Nonlinear Parameters More info about this article: http://www.ndt.net/?id=20778 RESEARCH IN NONDESTRUCTIVE EVALUATION http://dx.doi.org/10.1080/09349847.2016.1174322 Absolute Measurement and Relative Measurement of Ultrasonic

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

Physics 313: Laboratory 8 - Polarization of Light Electric Fields

Physics 313: Laboratory 8 - Polarization of Light Electric Fields Physics 313: Laboratory 8 - Polarization of Light Electric Fields Introduction: The electric fields that compose light have a magnitude, phase, and direction. The oscillating phase of the field and the

More information

High Directivity Horn Antenna of Metamaterial in Terahertz Xiangjin Quan, Shiquan Zhang, Hui Li

High Directivity Horn Antenna of Metamaterial in Terahertz Xiangjin Quan, Shiquan Zhang, Hui Li International Power, Electronics and Materials Engineering Conference (IPEMEC 215) High Directivity Horn Antenna of Metamaterial in Terahertz Xiangjin Quan, Shiquan Zhang, Hui Li Engineering University

More information

Physics Common Assessment Unit 5-8 3rd Nine Weeks

Physics Common Assessment Unit 5-8 3rd Nine Weeks 1) What is the direction of the force(s) that maintain(s) circular motion? A) one force pulls the object inward toward the radial center while another force pushes the object at a right angle to the first

More information

Astronomy 203 practice final examination

Astronomy 203 practice final examination Astronomy 203 practice final examination Fall 1999 If this were a real, in-class examination, you would be reminded here of the exam rules, which are as follows: You may consult only one page of formulas

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter 1 Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

AISSCE 2016 EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016

AISSCE 2016 EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016 CLASS: XII AISSCE 2016 Subject: Physics EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016 Q3 Section A ( 1 Mark ) A force F is acting between two charges placed some distances apart in vacuum. If a brass

More information

MANUFACTURE OF FIBER OPTIC SENSORS TO MEASURE THE PH WATER

MANUFACTURE OF FIBER OPTIC SENSORS TO MEASURE THE PH WATER MANUFACTURE OF FIBER OPTIC SENSORS TO MEASURE THE PH WATER Bushra R. Mahdi*, Hadi Dawyich AL-Attabi**, Sadeq Dawood Salman*** * Ministry of Science and Technology, Laser and optoelectronic researcher center,

More information

PHYSICS 2005 (Delhi) Q3. The power factor of an A.C. circuit is 0.5. What will be the phase difference between voltage and current in this circuit?

PHYSICS 2005 (Delhi) Q3. The power factor of an A.C. circuit is 0.5. What will be the phase difference between voltage and current in this circuit? General Instructions: 1. All questions are compulsory. 2. There is no overall choice. However, an internal choke has been pro vided in one question of two marks, one question of three marks and all three

More information

Electromagnetic Metamaterials

Electromagnetic Metamaterials Electromagnetic Metamaterials Dr. Alkim Akyurtlu Center for Electromagnetic Materials and Optical Systems University of Massachusetts Lowell September 19, 2006 Objective Outline Background on Metamaterials

More information

Lednium Series Optimal X (10-watts,120 Viewing Angle)

Lednium Series Optimal X (10-watts,120 Viewing Angle) (10-watts,120 Viewing Angle) Revolutionary 3-dimensional packaged LED source Robust energy-efficient design with long operating life Low thermal resistance (2.5 C/W) Exceptional spatial uniformity Available

More information

A SINGLE TRANSDUCER BROADBAND TECHNIQUE FOR LEAKY LAMB WAVE DETECTION. P. B. Nagy*, W. R. Rose**, and L. Adler

A SINGLE TRANSDUCER BROADBAND TECHNIQUE FOR LEAKY LAMB WAVE DETECTION. P. B. Nagy*, W. R. Rose**, and L. Adler A SNGLE TRANSDUCER BROADBAND TECHNQUE FOR LEAKY LAMB WAVE DETECTON P. B. Nagy*, W. R. Rose**, and L. Adler Department of Welding Engineering The Ohio State University Columbus, Ohio 43210 NTRODUCTON The

More information

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002 151-232: Imaging Systems Laboratory II Laboratory 6: The Polarization of Light April 16 & 18, 22 Abstract. In this lab, we will investigate linear and circular polarization of light. Linearly polarized

More information

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2 55) The diagram shows the path of a light ray in three different materials. The index of refraction for each material is shown in the upper right portion of the material. What is the correct order for

More information

Lednium Series Optimal X OVTL09LG3x Series

Lednium Series Optimal X OVTL09LG3x Series (10-watts,120 Viewing Angle) x x x x x Revolutionary 3-dimensional packaged LED source Robust energy-efficient design with long operating life Low thermal resistance (2.5 C/W) Exceptional spatial uniformity

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a).

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a). 7.1. Low-Coherence Interferometry (LCI) Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a). The light is split by the beam splitter (BS) and

More information

CBSE Examination Paper

CBSE Examination Paper CBSE Examination Paper Time allowed : 3 hours Maximum marks: 70 General Instructions: Same as CBSE Examination Paper SET I 1. Using the concept of force between two infinitely long parallel current carrying

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

Lab #13: Polarization

Lab #13: Polarization Lab #13: Polarization Introduction In this experiment we will investigate various properties associated with polarized light. We will study both its generation and application. Real world applications

More information

In Situ Imaging of Cold Atomic Gases

In Situ Imaging of Cold Atomic Gases In Situ Imaging of Cold Atomic Gases J. D. Crossno Abstract: In general, the complex atomic susceptibility, that dictates both the amplitude and phase modulation imparted by an atom on a probing monochromatic

More information

Emissivity, Reflectivity and Transmissivity of Semitransparent Fibre Reinforced Plastic Composites

Emissivity, Reflectivity and Transmissivity of Semitransparent Fibre Reinforced Plastic Composites Thermographie-Kolloquium 2017 More info about this article: http://www.ndt.net/?id=22484 Emissivity, Reflectivity and Transmissivity of Semitransparent Fibre Reinforced Plastic Composites Albert ADIBEKYAN

More information

Chapter 4 Layered Substrates 4.1 Introduction

Chapter 4 Layered Substrates 4.1 Introduction Chapter 4 Layered Substrates 4.1 Introduction The significant result of the previous chapter is that guided mode (surface wave) losses can be avoided on substrates with thicknesses of an odd integral multiple

More information

PULSED THZ INTERROGATION OF SOFI WITH KNIT LINES IN 2D

PULSED THZ INTERROGATION OF SOFI WITH KNIT LINES IN 2D PULSED THZ INTERROGATION OF SOFI WITH KNIT LINES IN 2D H. T. Banks 1, N. L. Gibson 1, and W. P. Winfree 2 1 Center for Research and Scientific Computation, Box 825, North Carolina State University, Raleigh,

More information

ACTIVE THERMOGRAPHY FOR MATERIALS NON-DESTRUCTIVE TESTING

ACTIVE THERMOGRAPHY FOR MATERIALS NON-DESTRUCTIVE TESTING ACTIVE THERMOGRAPHY FOR MATERIALS NON-DESTRUCTIVE TESTING Michal ŠVANTNER a, Zdeněk VESELÝ b a University of West Bohemia, Univerzitní 8, 30614 Plzeň, msvantne@ntc.zcu.cz b University of West Bohemia,

More information

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida Optical and Photonic Glasses : Femtosecond Laser Irradiation and Acoustooptic Effects Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Femto second

More information

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Jonathan Papa 1, * 1 Institute of Optics University of Rochester, Rochester,

More information

For more sample papers visit :

For more sample papers visit : PHYSICS (THEORY) (Three hours) For more sample papers visit : www.4ono.com Answer all questions in Part I and six questions from Part II, choosing two questions from each of the Sections A, B and C. All

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

phase retardance THz intensity ratio THz filling factor in air : 0.2 filling factor in si : 0.8 length of air : 4um length of si : 16um depth : 27.

phase retardance THz intensity ratio THz filling factor in air : 0.2 filling factor in si : 0.8 length of air : 4um length of si : 16um depth : 27. 3. Research on THz-wave applications using frequency-agile THz-wave source 3.1 Development of spectroscopic Stokes polarimeter by using tunable THz-wave source (T. Notake, H. Minamide) In THz frequency

More information

PHYSICS. Chapter 16 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 16 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 16 Lecture RANDALL D. KNIGHT 2017 Pearson Education, Inc. Chapter 16 Traveling Waves IN THIS CHAPTER, you will learn the basic properties

More information

Lecture 16 Light transmission and optical detectors

Lecture 16 Light transmission and optical detectors Lecture 6 Light transmission and optical detectors Charged particle traversing through a material can generate signal in form of light via electromagnetic interactions with orbital electrons of the atoms

More information

Optimization of the substrate height for a copper SWO radiator above a copper ground plane

Optimization of the substrate height for a copper SWO radiator above a copper ground plane Terahertz Memos Memo 05 September 2010 Optimization of the substrate height for a copper SWO radiator above a copper ground plane Prashanth Kumar 1, Carl E. Baum 1, Kenneth F. McDonald 2, Christos G. Christodoulou

More information

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT I. Objective: To study the Pockels electro-optic (EO) effect, and the property of light propagation in anisotropic medium, especially polarization-rotation effects.

More information

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L.

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L. Optical Science and Engineering 2013 Advanced Optics Exam Answer all questions. Begin each question on a new blank page. Put your banner ID at the top of each page. Please staple all pages for each individual

More information

Class XII Physics (Theory)

Class XII Physics (Theory) DATE : 0/03/209 SET-3 Code No. //3 Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-000. Ph.: 0-4762346 Class XII Physics (Theory) Time : 3 Hrs. Max. Marks : 70 (CBSE 209) GENERAL INSTRUCTIONS :. All

More information

SIMULATION OF ULTRASONIC NDT IN COMPOSITE RADIUS

SIMULATION OF ULTRASONIC NDT IN COMPOSITE RADIUS SIMULATION OF ULTRASONIC NDT IN COMPOSITE RADIUS N. Dominguez 1, O. Grellou 2, S. Van-der-Veen 2 1 European Aeronautic Defense and Space Company (EADS), Innovation Works Dept., 1 rue Marius Terce, 325

More information

Final Report for AOARD grant FA Measurement of the third-order nonlinear susceptibility of graphene and its derivatives

Final Report for AOARD grant FA Measurement of the third-order nonlinear susceptibility of graphene and its derivatives Final Report for AOARD grant FA2386-12-1-4095 Measurement of the third-order nonlinear susceptibility of graphene and its derivatives Principal investigator: A/Prof. Tang Dingyuan Division of Microelectronics

More information

3-1-2 GaSb Quantum Cascade Laser

3-1-2 GaSb Quantum Cascade Laser 3-1-2 GaSb Quantum Cascade Laser A terahertz quantum cascade laser (THz-QCL) using a resonant longitudinal optical (LO) phonon depopulation scheme was successfully demonstrated from a GaSb/AlSb material

More information

Nondestructive Determination of Elastic Constants of Thin Plates Based on PVDF Focusing Ultrasound Transducers and Lamb Wave Measurements

Nondestructive Determination of Elastic Constants of Thin Plates Based on PVDF Focusing Ultrasound Transducers and Lamb Wave Measurements 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China Nondestructive Determination of Elastic Constants of Thin Plates Based on PVDF Focusing Ultrasound Transducers and Lamb

More information

CHARACTERIZING CRACKS WITH ACTIVE THERMOGRAPHY

CHARACTERIZING CRACKS WITH ACTIVE THERMOGRAPHY CHARACTERIZING CRACKS WITH ACTIVE THERMOGRAPHY J. Schlichting, G. N. Kervalishvili, Ch. Maierhofer, M. Kreutzbruck BAM Federal Institute for Materials Research and Testing, Berlin, Germany 1. Introduction

More information