On the Method of Lagrange Multipliers

Size: px
Start display at page:

Download "On the Method of Lagrange Multipliers"

Transcription

1 On the Method of Lagrange Multipliers Reza Nasiri Mahalati November 6, 2016 Most of what is in this note is taken from the Convex Optimization book by Stephen Boyd and Lieven Vandenberghe. This should hopefully demystify the method of lagrange multipliers to some extent, and help you understand why and when this method works. The Lagrange dual function Generally, an optimization problem in the standard form is given by: minimize f 0 (x) subject to f i (x) 0, i = 1,...,m h i (x) = 0, i = 1,...,p, (1) with variable x R n. We assume its domain D = m i=0 domf i p domh i is nonempty, and denote the optimal value of (1) by p. We use dom to denote the domain of a function. As an example, the general norm minimization with equality constraints that we discussed in class is a special case of (1) where: f 0 (x) = (1/2) Ax b 2 h i (x) = c T i x d i, i = 1,...,p, (2) and there are no inequality constraints (i.e. there are no f i (x) i = 1,...,m). We simply write the p equality constraints in the matrix form as Cx d = 0. The basic idea in Lagrangian duality is to take the constraints in (1) into account by augmenting the objective function with a weighted sum of the constraint functions. We define the Lagrangian L : R n R m R p R associated with the problem (1) as L(x,λ,ν) = f 0 (x)+ λ i f i (x)+ ν i h i (x), with doml = D R m R p. We refer to λ i as the Lagrange multiplier associated with the ith inequality constraint f i (x) 0; similarly we refer to ν i as the Lagrange multiplier associated with the ith equality constraint h i (x) = 0. The vectors λ and ν are called the dual variables or Lagrange multiplier vectors associated with the problem (1). 1

2 We define the Lagrange dual function (or just dual function) g : R m R p R as the minimum value of the Lagrangian over x, for λ R m, ν R p, ( ) g(λ,ν) = minl(x,λ,ν) = min f 0 (x)+ λ i f i (x)+ ν i h i (x). x D x D When the Lagrangian is unbounded below in x, the dual function takes on the value. Since the dual function is the pointwise minimum of a family of affine functions of (λ,ν), it is always concave and hence, we can always find its maximum. Lower bounds on optimal value The dual function yields lower bounds on the optimal value p of the problem (1). For any λ 0 and any ν we have g(λ,ν) p. (3) This important property is easily verified. Suppose x is a feasible point for the problem (1), i.e., f i ( x) 0 and h i ( x) = 0, and λ 0. Then we have λ i f i ( x)+ ν i h i ( x) 0, since each term in the first sum is nonpositive, and each term in the second sum is zero, and therefore L( x,λ,ν) = f 0 ( x)+ λ i f i ( x)+ ν i h i ( x) f 0 ( x). Hence g(λ,ν) = min L(x,λ,ν) L( x,λ,ν) f 0( x). x D Since g(λ,ν) f 0 ( x) holds for every feasible point x, the inequality (3) follows. The lower bound (3) is illustrated in figure 1, for a simple problem with x R and one inequality constraint. The inequality (3) holds, but is vacuous, when g(λ,ν) =. The dual function givesanontrivial lower boundonp onlywhenλ 0and(λ,ν) domg, i.e., g(λ,ν) >. We refer to a pair (λ,ν) with λ 0 and (λ,ν) domg as dual feasible. Linear approximation interpretation The Lagrangian and lower bound property can be given a simple interpretation, based on a linear approximation of the indicator functions of the sets {0} and R +. We first rewrite the original problem (1) as an unconstrained problem, minimize f 0 (x)+ m I (f i (x))+ p I 0 (h i (x)), (4) where I : R R is the indicator function for the nonpositive reals, { 0 u 0 I (u) = u > 0, 2

3 x Figure 1: Lower bound from a dual feasible point. The solid curve shows the objective function f 0, and the dashed curve shows the constraint function f 1. The feasible set is the interval [ 0.46, 0.46], which is indicated by the two dotted vertical lines. The optimal point and value are x = 0.46, p = 1.54 (shown as a circle). The dotted curves show L(x,λ) for λ = 0.1, 0.2,...,1.0. Each of these has a minimum value smaller than p, since on the feasible set (and for λ 0) we have L(x,λ) f 0 (x). 3

4 and similarly, I 0 is the indicator function of {0}. In the formulation (4), the function I (u) can be interpreted as expressing our irritation or displeasure associated with a constraint function value u = f i (x): It is zero if f i (x) 0, and infinite if f i (x) > 0. In a similar way, I 0 (u) gives our displeasure for an equality constraint value u = h i (x). We can think of I as a brick wall or infinitely hard displeasure function; our displeasure rises from zero to infinite as f i (x) transitions from nonpositive to positive. Now suppose in theformulation (4) we replace thefunction I (u) with the linear function λ i u, where λ i 0, and the function I 0 (u) with ν i u. The objective becomes the Lagrangian function L(x,λ,ν), and the dual function value g(λ,ν) is the optimal value of the problem minimize L(x,λ,ν) = f 0 (x)+ m λ i f i (x)+ p ν i h i (x). (5) Inthisformulation, weuse alinear or soft displeasure functioninplaceofi andi 0. Foran inequality constraint, our displeasure is zero when f i (x) = 0, and is positive when f i (x) > 0 (assuming λ i > 0); our displeasure grows as the constraint becomes more violated. Unlike the original formulation, in which any nonpositive value of f i (x) is acceptable, in the soft formulation we actually derive pleasure from constraints that have margin, i.e., from f i (x) < 0. Clearly the approximation of the indicator function I (u) with a linear function λ i u is rather poor. But the linear function is at least an underestimator of the indicator function. Since λ i u I (u) and ν i u I 0 (u) for all u, we see immediately that the dual function yields a lower bound on the optimal value of the original problem. The Lagrange dual problem For each pair (λ,ν) with λ 0, the Lagrange dual function gives us a lower bound on the optimal value p of the optimization problem (1). Thus we have a lower bound that depends on some parameters λ, ν. A natural question is: What is the best lower bound that can be obtained from the Lagrange dual function? This leads to the optimization problem maximize g(λ, ν) subject to λ 0. (6) This problem is called the Lagrange dual problem associated with the problem (1). In this context the original problem (1) is sometimes called the primal problem. The term dual feasible, to describe a pair (λ,ν) with λ 0 and g(λ,ν) >, now makes sense. It means, as the name implies, that (λ,ν) is feasible for the dual problem (6). We refer to (λ,ν ) as dual optimal or optimal Lagrange multipliers if they are optimal for the problem (6). The Lagrange dual problem (6) is always a convex optimization problem, since the objective to be maximized is concave and the constraint is convex. Therefore, we can always solve this problem. 4

5 Weak duality The optimal value of the Lagrange dual problem, which we denote d, is, by definition, the best lower bound on p that can be obtained from the Lagrange dual function. In particular, we have the simple but important inequality d p, (7) which holds for any general optimization problem. This property is called weak duality. The weak duality inequality (7) holds when d and p are infinite. For example, if the primal problem is unbounded below, so that p =, we must have d =, i.e., the Lagrange dual problem is infeasible. Conversely, if the dual problem is unbounded above, so that d =, we must have p =, i.e., the primal problem is infeasible. We refer to the difference p d as the optimal duality gap of the original problem, since it gives the gap between the optimal value of the primal problem and the best (i.e., greatest) lower bound on it that can be obtained from the Lagrange dual function. The optimal duality gap is always nonnegative. The bound (7) can sometimes be used to find a lower bound on the optimal value of a problem that is difficult to solve, since the dual problem is always convex and can be solved efficiently, to find d. Strong duality If the equality d = p (8) holds, i.e., the optimal duality gapis zero, then we say that strong duality holds. This means that the best bound that can be obtained from the Lagrange dual function is tight. Strong duality does not, in general, hold. But if the primal problem (1) is convex, i.e., of the form minimize f 0 (x) subject to f i (x) 0, i = 1,...,m, (9) Cx = d, with f 0,...,f m convex functions, we usually (but not always) have strong duality. There are many results that establish conditions on the problem, beyond convexity, under which strong duality holds. These conditions are called constraint qualifications. The optimization problems we will be solving in EE263 are always convex, and since we don t work with inequality constraints in this course, we need not worry about constraint qualifications. In other words, strong duality always holds in EE263, except for the case where the constraint Cx = d cannot be satisfied for any x D, which means the problem is infeasible and cannot be solved. Now suppose that the primal and dual optimal values are attained and equal (so, in particular, strong duality holds). Let x be a primal optimal and (λ,ν ) be a dual optimal 5

6 point. This means that f 0 (x ) = g(λ,ν ) ( ) = inf f 0 (x)+ λ x i f i(x)+ νi h i(x) f 0 (x )+ λ i f i(x )+ νi h i(x ) f 0 (x ). The first line states that the optimal duality gap is zero, and the second line is the definition of the dual function. The third line follows since the infimum of the Lagrangian over x is less than or equal to its value at x = x. The last inequality follows from λ i 0, f i(x ) 0, i = 1,...,m, and h i (x ) = 0, i = 1,...,p. We conclude that the two inequalities in this chain hold with equality. We can draw several interesting conclusions from this. For example, since the inequality in the third line is an equality, we conclude that x minimizes L(x,λ,ν ) over x. (The Lagrangian L(x,λ,ν ) can have other minimizers; x is simply a minimizer.) Another important conclusion is that m λ if i (x ) = 0. Since each term in this sum is nonpositive, we conclude that λ i f i(x ) = 0, i = 1,...,m. (10) This condition is known as complementary slackness; it holds for any primal optimal x and any dual optimal (λ,ν ) (when strong duality holds). We can express the complementary slackness condition as λ i > 0 = f i(x ) = 0, or, equivalently, f i (x ) < 0 = λ i = 0. Roughly speaking, this means the ith optimal Lagrange multiplier is zero unless the ith constraint is active at the optimum. KKT conditions We now assume that the functions f 0,...,f m,h 1,...,h p are differentiable (and therefore have open domains), but we make no assumptions yet about convexity. As above, let x and (λ,ν ) be any primal and dual optimal points with zero duality gap. Since x minimizes L(x,λ,ν ) over x, it follows that its gradient must vanish at x, i.e., f 0 (x )+ λ i f i(x )+ νi h i(x ) = 0. 6

7 Thus we have f i (x ) 0, i = 1,...,m h i (x ) = 0, i = 1,...,p λ i 0, i = 1,...,m λ i f i(x ) = 0, i = 1,...,m f 0 (x )+ m λ i f i(x )+ p νi h i(x ) = 0, (11) which are called the Karush-Kuhn-Tucker (KKT) conditions. To summarize, for any optimization problem with differentiable objective and constraint functions for which strong duality obtains, any pair of primal and dual optimal points must satisfy the KKT conditions (11). When the primal problem is convex, the KKT conditions are also sufficient for the points to be primal and dual optimal. In other words, if f i are convex and h i are affine, and x, λ, ν are any points that satisfy the KKT conditions f i ( x) 0, i = 1,...,m h i ( x) = 0, i = 1,...,p λ i 0, i = 1,...,m λ i f i ( x) = 0, i = 1,...,m f 0 ( x)+ m λi f i ( x)+ p ν i h i ( x) = 0, then x and ( λ, ν) are primal and dual optimal, with zero duality gap. What we did with the method of Lagrange multipliers in class, was precisely to form and solve the KKT system. To see this, note that the KKT conditions for our general norm minimization problem would be: C x d = ν L( x, ν) = 0, f 0 ( x)+ p ν i h i ( x) = x L( x, ν) = 0, which is exactly the system of equations we got from the method of Lagrange multipliers. 7

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Duality Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Lagrangian Consider the optimization problem in standard form

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

Lagrangian Duality and Convex Optimization

Lagrangian Duality and Convex Optimization Lagrangian Duality and Convex Optimization David Rosenberg New York University February 11, 2015 David Rosenberg (New York University) DS-GA 1003 February 11, 2015 1 / 24 Introduction Why Convex Optimization?

More information

EE/AA 578, Univ of Washington, Fall Duality

EE/AA 578, Univ of Washington, Fall Duality 7. Duality EE/AA 578, Univ of Washington, Fall 2016 Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

The Lagrangian L : R d R m R r R is an (easier to optimize) lower bound on the original problem:

The Lagrangian L : R d R m R r R is an (easier to optimize) lower bound on the original problem: HT05: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford Convex Optimization and slides based on Arthur Gretton s Advanced Topics in Machine Learning course

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

Lecture: Duality of LP, SOCP and SDP

Lecture: Duality of LP, SOCP and SDP 1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

ICS-E4030 Kernel Methods in Machine Learning

ICS-E4030 Kernel Methods in Machine Learning ICS-E4030 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 28. September, 2016 Juho Rousu 28. September, 2016 1 / 38 Convex optimization Convex optimisation This

More information

CSCI : Optimization and Control of Networks. Review on Convex Optimization

CSCI : Optimization and Control of Networks. Review on Convex Optimization CSCI7000-016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one

More information

A Brief Review on Convex Optimization

A Brief Review on Convex Optimization A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review

More information

Lagrange duality. The Lagrangian. We consider an optimization program of the form

Lagrange duality. The Lagrangian. We consider an optimization program of the form Lagrange duality Another way to arrive at the KKT conditions, and one which gives us some insight on solving constrained optimization problems, is through the Lagrange dual. The dual is a maximization

More information

Lecture: Duality.

Lecture: Duality. Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness.

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness. CS/ECE/ISyE 524 Introduction to Optimization Spring 2016 17 14. Duality ˆ Upper and lower bounds ˆ General duality ˆ Constraint qualifications ˆ Counterexample ˆ Complementary slackness ˆ Examples ˆ Sensitivity

More information

Tutorial on Convex Optimization for Engineers Part II

Tutorial on Convex Optimization for Engineers Part II Tutorial on Convex Optimization for Engineers Part II M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

EE364a Review Session 5

EE364a Review Session 5 EE364a Review Session 5 EE364a Review announcements: homeworks 1 and 2 graded homework 4 solutions (check solution to additional problem 1) scpd phone-in office hours: tuesdays 6-7pm (650-723-1156) 1 Complementary

More information

Lecture Notes on Support Vector Machine

Lecture Notes on Support Vector Machine Lecture Notes on Support Vector Machine Feng Li fli@sdu.edu.cn Shandong University, China 1 Hyperplane and Margin In a n-dimensional space, a hyper plane is defined by ω T x + b = 0 (1) where ω R n is

More information

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014 Convex Optimization Dani Yogatama School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA February 12, 2014 Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12,

More information

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 7 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Convex Optimization Differentiation Definition: let f : X R N R be a differentiable function,

More information

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem:

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem: CDS270 Maryam Fazel Lecture 2 Topics from Optimization and Duality Motivation network utility maximization (NUM) problem: consider a network with S sources (users), each sending one flow at rate x s, through

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Duality Theory and Optimality Conditions 5th lecture, 12.05.2010 Jun.-Prof. Matthias Hein Program of today/next lecture Lagrangian and duality: the Lagrangian the dual

More information

Karush-Kuhn-Tucker Conditions. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Karush-Kuhn-Tucker Conditions. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Karush-Kuhn-Tucker Conditions Lecturer: Ryan Tibshirani Convex Optimization 10-725/36-725 1 Given a minimization problem Last time: duality min x subject to f(x) h i (x) 0, i = 1,... m l j (x) = 0, j =

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers Optimization for Communications and Networks Poompat Saengudomlert Session 4 Duality and Lagrange Multipliers P Saengudomlert (2015) Optimization Session 4 1 / 14 24 Dual Problems Consider a primal convex

More information

Convex Optimization Overview (cnt d)

Convex Optimization Overview (cnt d) Conve Optimization Overview (cnt d) Chuong B. Do November 29, 2009 During last week s section, we began our study of conve optimization, the study of mathematical optimization problems of the form, minimize

More information

subject to (x 2)(x 4) u,

subject to (x 2)(x 4) u, Exercises Basic definitions 5.1 A simple example. Consider the optimization problem with variable x R. minimize x 2 + 1 subject to (x 2)(x 4) 0, (a) Analysis of primal problem. Give the feasible set, the

More information

Lagrangian Duality Theory

Lagrangian Duality Theory Lagrangian Duality Theory Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapter 14.1-4 1 Recall Primal and Dual

More information

Tutorial on Convex Optimization: Part II

Tutorial on Convex Optimization: Part II Tutorial on Convex Optimization: Part II Dr. Khaled Ardah Communications Research Laboratory TU Ilmenau Dec. 18, 2018 Outline Convex Optimization Review Lagrangian Duality Applications Optimal Power Allocation

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

Support Vector Machines: Maximum Margin Classifiers

Support Vector Machines: Maximum Margin Classifiers Support Vector Machines: Maximum Margin Classifiers Machine Learning and Pattern Recognition: September 16, 2008 Piotr Mirowski Based on slides by Sumit Chopra and Fu-Jie Huang 1 Outline What is behind

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - A) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

Generalization to inequality constrained problem. Maximize

Generalization to inequality constrained problem. Maximize Lecture 11. 26 September 2006 Review of Lecture #10: Second order optimality conditions necessary condition, sufficient condition. If the necessary condition is violated the point cannot be a local minimum

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 4 Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 2 4.1. Subgradients definition subgradient calculus duality and optimality conditions Shiqian

More information

Machine Learning. Lecture 6: Support Vector Machine. Feng Li.

Machine Learning. Lecture 6: Support Vector Machine. Feng Li. Machine Learning Lecture 6: Support Vector Machine Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Warm Up 2 / 80 Warm Up (Contd.)

More information

Convex Optimization and SVM

Convex Optimization and SVM Convex Optimization and SVM Problem 0. Cf lecture notes pages 12 to 18. Problem 1. (i) A slab is an intersection of two half spaces, hence convex. (ii) A wedge is an intersection of two half spaces, hence

More information

Optimality, Duality, Complementarity for Constrained Optimization

Optimality, Duality, Complementarity for Constrained Optimization Optimality, Duality, Complementarity for Constrained Optimization Stephen Wright University of Wisconsin-Madison May 2014 Wright (UW-Madison) Optimality, Duality, Complementarity May 2014 1 / 41 Linear

More information

Linear and Combinatorial Optimization

Linear and Combinatorial Optimization Linear and Combinatorial Optimization The dual of an LP-problem. Connections between primal and dual. Duality theorems and complementary slack. Philipp Birken (Ctr. for the Math. Sc.) Lecture 3: Duality

More information

Homework Set #6 - Solutions

Homework Set #6 - Solutions EE 15 - Applications of Convex Optimization in Signal Processing and Communications Dr Andre Tkacenko JPL Third Term 11-1 Homework Set #6 - Solutions 1 a The feasible set is the interval [ 4] The unique

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

Lecture 7: Convex Optimizations

Lecture 7: Convex Optimizations Lecture 7: Convex Optimizations Radu Balan, David Levermore March 29, 2018 Convex Sets. Convex Functions A set S R n is called a convex set if for any points x, y S the line segment [x, y] := {tx + (1

More information

Lagrange Relaxation and Duality

Lagrange Relaxation and Duality Lagrange Relaxation and Duality As we have already known, constrained optimization problems are harder to solve than unconstrained problems. By relaxation we can solve a more difficult problem by a simpler

More information

Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers)

Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers) Support vector machines In a nutshell Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers) Solution only depends on a small subset of training

More information

Lagrangian Duality. Richard Lusby. Department of Management Engineering Technical University of Denmark

Lagrangian Duality. Richard Lusby. Department of Management Engineering Technical University of Denmark Lagrangian Duality Richard Lusby Department of Management Engineering Technical University of Denmark Today s Topics (jg Lagrange Multipliers Lagrangian Relaxation Lagrangian Duality R Lusby (42111) Lagrangian

More information

Support Vector Machines for Regression

Support Vector Machines for Regression COMP-566 Rohan Shah (1) Support Vector Machines for Regression Provided with n training data points {(x 1, y 1 ), (x 2, y 2 ),, (x n, y n )} R s R we seek a function f for a fixed ɛ > 0 such that: f(x

More information

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus 1/41 Subgradient Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes definition subgradient calculus duality and optimality conditions directional derivative Basic inequality

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

Machine Learning. Support Vector Machines. Manfred Huber

Machine Learning. Support Vector Machines. Manfred Huber Machine Learning Support Vector Machines Manfred Huber 2015 1 Support Vector Machines Both logistic regression and linear discriminant analysis learn a linear discriminant function to separate the data

More information

2.098/6.255/ Optimization Methods Practice True/False Questions

2.098/6.255/ Optimization Methods Practice True/False Questions 2.098/6.255/15.093 Optimization Methods Practice True/False Questions December 11, 2009 Part I For each one of the statements below, state whether it is true or false. Include a 1-3 line supporting sentence

More information

Outline. Roadmap for the NPP segment: 1 Preliminaries: role of convexity. 2 Existence of a solution

Outline. Roadmap for the NPP segment: 1 Preliminaries: role of convexity. 2 Existence of a solution Outline Roadmap for the NPP segment: 1 Preliminaries: role of convexity 2 Existence of a solution 3 Necessary conditions for a solution: inequality constraints 4 The constraint qualification 5 The Lagrangian

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Duality in Nonlinear Optimization ) Tamás TERLAKY Computing and Software McMaster University Hamilton, January 2004 terlaky@mcmaster.ca Tel: 27780 Optimality

More information

CONVEX OPTIMIZATION, DUALITY, AND THEIR APPLICATION TO SUPPORT VECTOR MACHINES. Contents 1. Introduction 1 2. Convex Sets

CONVEX OPTIMIZATION, DUALITY, AND THEIR APPLICATION TO SUPPORT VECTOR MACHINES. Contents 1. Introduction 1 2. Convex Sets CONVEX OPTIMIZATION, DUALITY, AND THEIR APPLICATION TO SUPPORT VECTOR MACHINES DANIEL HENDRYCKS Abstract. This paper develops the fundamentals of convex optimization and applies them to Support Vector

More information

Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers)

Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers) Support vector machines In a nutshell Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers) Solution only depends on a small subset of training

More information

Introduction to Machine Learning Spring 2018 Note Duality. 1.1 Primal and Dual Problem

Introduction to Machine Learning Spring 2018 Note Duality. 1.1 Primal and Dual Problem CS 189 Introduction to Machine Learning Spring 2018 Note 22 1 Duality As we have seen in our discussion of kernels, ridge regression can be viewed in two ways: (1) an optimization problem over the weights

More information

Rate Control in Communication Networks

Rate Control in Communication Networks From Models to Algorithms Department of Computer Science & Engineering The Chinese University of Hong Kong February 29, 2008 Outline Preliminaries 1 Preliminaries Convex Optimization TCP Congestion Control

More information

A Tutorial on Convex Optimization II: Duality and Interior Point Methods

A Tutorial on Convex Optimization II: Duality and Interior Point Methods A Tutorial on Convex Optimization II: Duality and Interior Point Methods Haitham Hindi Palo Alto Research Center (PARC), Palo Alto, California 94304 email: hhindi@parc.com Abstract In recent years, convex

More information

The Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker conditions Chapter 6 The Karush-Kuhn-Tucker conditions 6.1 Introduction In this chapter we derive the first order necessary condition known as Karush-Kuhn-Tucker (KKT) conditions. To this aim we introduce the alternative

More information

Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers)

Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers) Support vector machines In a nutshell Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers) Solution only depends on a small subset of training

More information

Convex Optimization and Support Vector Machine

Convex Optimization and Support Vector Machine Convex Optimization and Support Vector Machine Problem 0. Consider a two-class classification problem. The training data is L n = {(x 1, t 1 ),..., (x n, t n )}, where each t i { 1, 1} and x i R p. We

More information

Support vector machines

Support vector machines Support vector machines Guillaume Obozinski Ecole des Ponts - ParisTech SOCN course 2014 SVM, kernel methods and multiclass 1/23 Outline 1 Constrained optimization, Lagrangian duality and KKT 2 Support

More information

Support Vector Machine

Support Vector Machine Andrea Passerini passerini@disi.unitn.it Machine Learning Support vector machines In a nutshell Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers)

More information

FIN 550 Exam answers. A. Every unconstrained problem has at least one interior solution.

FIN 550 Exam answers. A. Every unconstrained problem has at least one interior solution. FIN 0 Exam answers Phil Dybvig December 3, 0. True-False points A. Every unconstrained problem has at least one interior solution. False. An unconstrained problem may not have any solution at all. For

More information

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module - 5 Lecture - 22 SVM: The Dual Formulation Good morning.

More information

1. f(β) 0 (that is, β is a feasible point for the constraints)

1. f(β) 0 (that is, β is a feasible point for the constraints) xvi 2. The lasso for linear models 2.10 Bibliographic notes Appendix Convex optimization with constraints In this Appendix we present an overview of convex optimization concepts that are particularly useful

More information

Lagrangian Duality for Dummies

Lagrangian Duality for Dummies Lagrangian Duality for Dummies David Knowles November 13, 2010 We want to solve the following optimisation problem: f 0 () (1) such that f i () 0 i 1,..., m (2) For now we do not need to assume conveity.

More information

Numerical Optimization

Numerical Optimization Constrained Optimization Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Constrained Optimization Constrained Optimization Problem: min h j (x) 0,

More information

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7 Mathematical Foundations -- Constrained Optimization Constrained Optimization An intuitive approach First Order Conditions (FOC) 7 Constraint qualifications 9 Formal statement of the FOC for a maximum

More information

January 29, Introduction to optimization and complexity. Outline. Introduction. Problem formulation. Convexity reminder. Optimality Conditions

January 29, Introduction to optimization and complexity. Outline. Introduction. Problem formulation. Convexity reminder. Optimality Conditions Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis Dimensioning II Department of Electronics Communications Engineering Tampere University of Technology, Tampere, Finl January 29, 2014 1 2 3

More information

Interior Point Algorithms for Constrained Convex Optimization

Interior Point Algorithms for Constrained Convex Optimization Interior Point Algorithms for Constrained Convex Optimization Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Inequality constrained minimization problems

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009 UC Berkeley Department of Electrical Engineering and Computer Science EECS 227A Nonlinear and Convex Optimization Solutions 5 Fall 2009 Reading: Boyd and Vandenberghe, Chapter 5 Solution 5.1 Note that

More information

EE 227A: Convex Optimization and Applications October 14, 2008

EE 227A: Convex Optimization and Applications October 14, 2008 EE 227A: Convex Optimization and Applications October 14, 2008 Lecture 13: SDP Duality Lecturer: Laurent El Ghaoui Reading assignment: Chapter 5 of BV. 13.1 Direct approach 13.1.1 Primal problem Consider

More information

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006 Quiz Discussion IE417: Nonlinear Programming: Lecture 12 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University 16th March 2006 Motivation Why do we care? We are interested in

More information

Lagrangian Duality. Evelien van der Hurk. DTU Management Engineering

Lagrangian Duality. Evelien van der Hurk. DTU Management Engineering Lagrangian Duality Evelien van der Hurk DTU Management Engineering Topics Lagrange Multipliers Lagrangian Relaxation Lagrangian Duality 2 DTU Management Engineering 42111: Static and Dynamic Optimization

More information

Primal-dual Subgradient Method for Convex Problems with Functional Constraints

Primal-dual Subgradient Method for Convex Problems with Functional Constraints Primal-dual Subgradient Method for Convex Problems with Functional Constraints Yurii Nesterov, CORE/INMA (UCL) Workshop on embedded optimization EMBOPT2014 September 9, 2014 (Lucca) Yu. Nesterov Primal-dual

More information

ECE Optimization for wireless networks Final. minimize f o (x) s.t. Ax = b,

ECE Optimization for wireless networks Final. minimize f o (x) s.t. Ax = b, ECE 788 - Optimization for wireless networks Final Please provide clear and complete answers. PART I: Questions - Q.. Discuss an iterative algorithm that converges to the solution of the problem minimize

More information

Note 3: LP Duality. If the primal problem (P) in the canonical form is min Z = n (1) then the dual problem (D) in the canonical form is max W = m (2)

Note 3: LP Duality. If the primal problem (P) in the canonical form is min Z = n (1) then the dual problem (D) in the canonical form is max W = m (2) Note 3: LP Duality If the primal problem (P) in the canonical form is min Z = n j=1 c j x j s.t. nj=1 a ij x j b i i = 1, 2,..., m (1) x j 0 j = 1, 2,..., n, then the dual problem (D) in the canonical

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients and quasigradients subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE392o, Stanford University Basic inequality recall basic

More information

In view of (31), the second of these is equal to the identity I on E m, while this, in view of (30), implies that the first can be written

In view of (31), the second of these is equal to the identity I on E m, while this, in view of (30), implies that the first can be written 11.8 Inequality Constraints 341 Because by assumption x is a regular point and L x is positive definite on M, it follows that this matrix is nonsingular (see Exercise 11). Thus, by the Implicit Function

More information

4. Convex optimization problems (part 1: general)

4. Convex optimization problems (part 1: general) EE/AA 578, Univ of Washington, Fall 2016 4. Convex optimization problems (part 1: general) optimization problem in standard form convex optimization problems quasiconvex optimization 4 1 Optimization problem

More information

Convex Optimization in Communications and Signal Processing

Convex Optimization in Communications and Signal Processing Convex Optimization in Communications and Signal Processing Prof. Dr.-Ing. Wolfgang Gerstacker 1 University of Erlangen-Nürnberg Institute for Digital Communications National Technical University of Ukraine,

More information

10-725/ Optimization Midterm Exam

10-725/ Optimization Midterm Exam 10-725/36-725 Optimization Midterm Exam November 6, 2012 NAME: ANDREW ID: Instructions: This exam is 1hr 20mins long Except for a single two-sided sheet of notes, no other material or discussion is permitted

More information

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings Structural and Multidisciplinary Optimization P. Duysinx and P. Tossings 2018-2019 CONTACTS Pierre Duysinx Institut de Mécanique et du Génie Civil (B52/3) Phone number: 04/366.91.94 Email: P.Duysinx@uliege.be

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis .. CS711008Z Algorithm Design and Analysis Lecture 9. Algorithm design technique: Linear programming and duality Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

More information

In applications, we encounter many constrained optimization problems. Examples Basis pursuit: exact sparse recovery problem

In applications, we encounter many constrained optimization problems. Examples Basis pursuit: exact sparse recovery problem 1 Conve Analsis Main references: Vandenberghe UCLA): EECS236C - Optimiation methods for large scale sstems, http://www.seas.ucla.edu/ vandenbe/ee236c.html Parikh and Bod, Proimal algorithms, slides and

More information

10 Numerical methods for constrained problems

10 Numerical methods for constrained problems 10 Numerical methods for constrained problems min s.t. f(x) h(x) = 0 (l), g(x) 0 (m), x X The algorithms can be roughly divided the following way: ˆ primal methods: find descent direction keeping inside

More information

Duality. Geoff Gordon & Ryan Tibshirani Optimization /

Duality. Geoff Gordon & Ryan Tibshirani Optimization / Duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Duality in linear programs Suppose we want to find lower bound on the optimal value in our convex problem, B min x C f(x) E.g., consider

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

9. Dual decomposition and dual algorithms

9. Dual decomposition and dual algorithms EE 546, Univ of Washington, Spring 2016 9. Dual decomposition and dual algorithms dual gradient ascent example: network rate control dual decomposition and the proximal gradient method examples with simple

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Support vector machines (SVMs) are one of the central concepts in all of machine learning. They are simply a combination of two ideas: linear classification via maximum (or optimal

More information