Eindhoven University of Technology. Performance Analysis of the Clinical Chemistry Laboratory

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Eindhoven University of Technology. Performance Analysis of the Clinical Chemistry Laboratory"

Transcription

1 Eindhoven University of Technology Department of Mathematics and Computer Science Performance Analysis of the Clinical Chemistry Laboratory Waterland Hospital Purmerend Author: Maike Op het Veld Supervisors: Dr. J.A.C Resing TU/e Ir. M.S. van den Broek, Dr.ir. M. van Vuuren CQM Eindhoven I. Estany-Stoelwinder, P. Hofman Waterlandziekenhuis Purmerend August, 2011

2

3 Abstract This thesis contains the performance analysis of the clinical chemistry laboratory in the Waterland Hospital in Purmerend. The object is to improve the processes at the laboratory. The system is modeled as a large network of queues. Due to the size of the network, only the part of the laboratory at which all samples arrive and are prepared for testing (SAP) is investigated in detail. The analysis is mainly done by simulation and approximative methods, as the processes are too complex for exact analysis. The simulation reveals that the throughput times are good in the current situation and the occupation rate of the employees is relatively low. The simulation also shows that the occupation rate cannot be increased while keeping the throughput times at an acceptable level in the current situation, because the samples mainly arrive in batches. It is also found that there are many options for decreasing throughput times. Two machines at the SAP serve the customers in batches. To investigate the effect of the machine batch policy on the throughput times, a simplified model of the machines is analyzed by exact and approximative methods. The analysis shows that machines with a low workload should be started already when there are only a few samples present, in order to achieve optimal throughput times. The analysis also shows that the minimal batch size for which the waiting time is minimal increases when the workload of the system increases.

4

5 Acknowledgements With this thesis I complete the master Industrial and Applied Mathematics, with the specialization Statistics, Probability and Operations Research, at the University of Technology in Eindhoven. I am greatly indebted to a number of people, from whom I have received support during the nine months of this project, and during the rest of my study. First of all, I would like to thank Jacques Resing, Monique Van den Broek and Marcel van Vuuren. The weekly discussions with Jacques at the TU/e, and with Marcel and Monique at CQM have guided me through this project. I am also grateful for the support and enthusiasm from Ilonka Estany and Peter Hofman from the Waterland hospital in Purmerend. The other employees of the clinical chemistry laboratory, and Ilona den Besten in particular, have always been very helpful and eager to introduce me into the laboratory world as well, for which I am very thankful. Further, I am very grateful for the enthusiasm, interest, and support of everyone at CQM, which has contributed very much to the pleasure I found in performing this project. As this project also ends my study period, I would also like to give a special thanks to my parents and brother, who have always supported me in everything I did and do. Last but not least, I would also like to thank Ruud, and my other friends just for being there. Maike Op het Veld, August 2011 ii

6

7 Contents 1 Introduction Waterland Hospital Purmerend Clinical Chemistry Laboratory Current developments in health care and lean thinking Problem description Thesis outline Clinical Chemistry Laboratory Laboratory structure Sample arrival and preparation Test execution Administration Result administration Priorities Employee behavior Model Data analysis Data format Arrival patterns General description Arrival types Routing patterns in the laboratory Process times Throughput times Data conclusions Research conclusions iv

8 CONTENTS v 4 Sample arrival and preparation Arrival types Servers Priorities Tasks at the sample arrival and preparation area Routing patterns Conclusion Simulation model Simulation set up Simulation input (Inter) Arrival times Batch sizes Cito tests Process times Disturbances Task priorities Verification and validation Simulation output Key performance indicators Waiting times Conclusions Simulation scenarios Basic scenarios Basic scenario results Cito shorter No disturbing factors Move outpatient clinic Blood withdrawal round Move sorting activities BWO 2x Batch size outpatient clinic train One employee No cito type Preanalyzer Scenario combinations Sensitivity analysis Sensitivity to arrival parameters Sensitivity to task priority setting

9 CONTENTS vi 6.5 Conclusions Scenarios Sensitivity Analysis Machine batch policy M/G a,n / Model description Results M X /D a,n / Model description M/D a,n /c Model description Performance measures Results Conclusions and suggestions for further research Conclusions Suggestions for further research Conclusions Conclusions Laboratory Simulation Analysis Suggestions for further research Laboratory Analysis A Simulation Input and Output 120 A.1 (Inter) Arrival distributions A.2 Batch size distributions A.3 Cito probabilities A.4 Process times A.5 Task priority setting A.6 Validation by sampling B Goodness-of-fit tests 125 B.1 Continuous distributions B.2 Discrete distributions

10 CONTENTS vii C Results from the imbedded Markov chain for M/G a,n /1 127

11 Chapter 1 Introduction This research is performed for the clinical chemistry laboratory of the Waterland Hospital in Purmerend. This chapter gives some background information about the hospital (Section 1.1) and the clinical chemistry laboratory (Section 2), explains the developments that have led to this research, (Section 1.3), describes the problem and solution approach, (Section 1.4) and gives an outline of this thesis, (Section 1.5). 1.1 Waterland Hospital Purmerend The Waterland Hospital is the result of a fusion between two hospitals in the region Waterland in The current location in Purmerend is in use since 1988 and the name of the hospital was Streekziekenhuis Waterland until January Since 2002, the hospital also has a secondary location in Volendam called Waterland-Oost. The Waterland hospital counts 359 beds, which makes it a small to middle-sized hospital. Approximately inpatients are treated and outpatients visit the hospital each year. Slightly more than employees and 160 volunteers work in the hospital. 1.2 Clinical Chemistry Laboratory The clinical chemistry laboratory is the department in the hospital in which all body fluids are tested. These tests show for example if a patient is contaminated with a disease, which blood group a patient has, if medicines are working or if a patient is pregnant. There are nearly 1000 different tests that can be performed. Body fluids are tested each day for nearly every 1

12 CHAPTER 1. INTRODUCTION 2 inpatient and many outpatients come to the hospital for blood withdrawal or to bring body fluid samples that have to be investigated. This means that over tests are performed per day with more than 800 body fluid samples. Most of the tests are done by a machine, and several tests are done by hand. On a week day, eleven or twelve employees work in the laboratory, in the weekend two or three employees are present and during the evening and night one employee runs the tests that are urgent. There are two types of requests; regular requests and urgent requests. The results of the tests that are marked as urgent should be available within an hour after requesting. The results of regular requests are generally available within one day, except for tests that are done by external institutions. The laboratory consists of three departments; a sample arrival and preparation department, a department in which all tests are executed and an administration department. Most analysts can work at any place in the laboratory, and each day the analysts are assigned to work in one of the departments. 1.3 Current developments in health care and lean thinking Currently, many developments concerning health care are taking place in the Netherlands. Hospitals are facing a shortage in staff, privatization, and budget cuts. This has led to more awareness for the efficiency, service and quality of the processes in hospitals. The Waterland Hospital also faces the same problems and introduced lean thinking in 2009 to reach improvements in efficiency, quality and service of the processes in the hospital. Lean manufacturing stems from the car manufacturer Toyota and concerns the efficiency of processes. The theory focuses on improving flow and eliminating waste, every process step that does not add value to the end product for the consumer is considered to be wasteful. The consumer plays a central role in lean theory, because the most important goal is a satisfied customer. There are five essential steps in lean thinking [11]: 1. Identify which features create value. 2. Identify the sequence of activities called the value stream. 3. Make the activities flow. 4. Let the customer pull products or service through the system.

13 CHAPTER 1. INTRODUCTION 3 5. Pursue perfection. The theory provides several tools to take these steps, such as value stream mapping, 5S and kanban systems. For further information about lean thinking and the tools it provides, the reader is referred to [11]. The goal of introducing lean thinking in the hospital can be formulated as follows: Transform the organization from an output controlled organization to a process minded and possibly process controlled organization. Before lean thinking was introduced in the hospital, the main focus for evaluating the efficiency of a process was the result of the process, such as costs, the number of treated patients and the number of complaints from patients. By introducing lean thinking, the hospital tries to realize a switch to a focus on the processes itself. This switch cannot be made quickly, it is a time-consuming process that involves all employees of the hospital; it is expected to take 5 to 10 years. At the moment, the implementation of lean thinking is still in an initial phase. A lean manager is employed to regulate the activities concerning lean thinking and education projects about lean thinking for employees to become a lean coach in his or her department have started. A lean coach is expected to function as an accelerator for the introduction of lean thinking in his or her department by introducing changes and motivating and guiding the employees. The first two rounds of lean education projects are nearly finished and each lean coach has to create a lean improvement project in his or her department. Next to the lean education projects, much information about the processes in the hospital is gathered. This information is gathered by data analysis and actual measurements. For example, at the emergency department, the operating rooms and the radiology department measurements concerning process times and throughput times have been performed. There are still many departments for which the processes have to be mapped and improvements concerning quality, service and efficiency can be reached. 1.4 Problem description The clinical chemistry laboratory is a large and busy department and as nearly every patient that comes to the hospital also needs body fluid tests, it is valuable for nearly all other departments of the hospital. The developments mentioned in the previous section also apply to the laboratory. Therefore the quality, service and efficiency of the processes are a main topic

14 CHAPTER 1. INTRODUCTION 4 in the laboratory and the quality officer of the laboratory is educated to become a lean coach. One change initiated by the lean coach is to rearrange the machines, such that employees can easily work together and help each other when necessary and the work flows better through the laboratory. This is only the beginning, and there are many other aspects in the laboratory that can be improved, therefore this research is performed at the laboratory. The next list gives an overview of a few explicit reasons to investigate the processes in the clinical chemistry laboratory: 1. No good overview of the processes in the laboratory exists. There is no thorough knowledge about for example the actual number of body fluid samples that are investigated per day, the work load of the machines, the throughput time of test results or which tests are done most frequently. 2. Complaints about throughput times for test results. The laboratory sometimes receives complaints about throughput times, but no statistical information about throughput times is available. 3. The workload varies over the day. At some moments, the work load is very high, while no work is available at other moments. 4. The laboratory has to shrink by 3 fte. Due to budget cuts, most departments of the hospital have to shrink. 5. New division of workplaces. Machines and workplaces are rearranged, as a result of a previous lean project. 6. Many urgent request that are not really urgent. Each request can be marked as urgent by the doctor that is requesting it. This should only be done if the result should be available within an hour, however many doctors make a request urgent if they only need it on the same day. 7. New machines can be purchased. For example a new machine that takes over some activities in the arrival and preparation area can be purchased. This has led to the following research goal and approach:

15 CHAPTER 1. INTRODUCTION 5 Research goal: Investigate and improve the processes in the clinical chemistry laboratory. Research approach: 1. Process mapping and data analysis Create an overview of the processes in the laboratory and investigate throughput times of tests, the number of performed tests, the origin of requests, process step times etcetera. 2. Find improvement possibilities in the processes Find a part of the laboratory that appears to have possibilities for improvement. 3. Investigate improvement possibilities Investigate improvement possibilities with mathematical tools. 1.5 Thesis outline In Chapter 2, the structure and characteristics of the laboratory are discussed and the laboratory is modeled as a network of queues. Because the network is too large and complex to analyze entirely, a part of the laboratory is analyzed in detail. To investigate which part of the laboratory is the most interesting to analyze, and to obtain insight in the network concerning arrival streams, routing patterns and processing times, Chapter 3 contains a data analysis of the laboratory. With the information from the data analysis and from consultation with the laboratory staff, it is chosen to analyze the part of the laboratory at which all samples arrive and are prepared for testing. Chapter 4 explains the structure of this part of the laboratory, and models it as a queueing network. Because the network is too complex for exact analysis, Chapter 5 develops a simulation model. In Chapter 6, test scenarios and the results from the scenarios are discussed, and a sensitivity analysis is performed. An exact and approximative analysis concerning the influence of the machine batch policy on the throughput times is performed in Chapter 7. The final chapter contains conclusions and recommendations for further research.

16 Chapter 2 Clinical Chemistry Laboratory As mentioned in Section 2, more than 3000 tests with over 800 samples are performed on an average weekday, all these tests are done in the laboratory and all samples find their way through the laboratory. This chapter explains the structure and the processes in the laboratory. The laboratory structure is clarified in Section 2.1, the procedure for processing the results is explained in Section 2.2, the different request priorities are discussed in Section 2.3 and the employee behavior is the subject of Section Laboratory structure The clinical chemistry laboratory consists of three main areas: 1. Sample arrival and preparation 2. Test execution 3. Administration Sample arrival and preparation The sample arrival and preparation area (SAP) is the area at which all body fluids arrive in the laboratory and the samples are prepared for the tests. Two employees receive, register, sort and centrifuge the body fluid samples such that the samples are ready to go to the test execution area. The samples arrive from several origins: 6

17 CHAPTER 2. CLINICAL CHEMISTRY LABORATORY 7 Inpatient care Pneumatic mail There exists a transportation network for body fluid samples from emergency departments such as the intensive care unit (ICU), cardiac care unit (CCU) and the emergency unit (SEH). Each morning at approximately 7:00, the nurses or doctors from the ICU and CCU send body fluid samples from their patients to the laboratory. During the day, any sample from these three departments is sent by pneumatic mail as well. Some other departments also send their samples to the laboratory by pneumatic mail. Inpatient blood withdrawal Each morning, all employees of the laboratory, except for the administrative employee and one or two analysts that have to stay in the laboratory to handle the urgent test requests, go into the hospital to withdraw blood from the patients in all departments except the ICU, CCU and SEH. During the rest of the day, analysts can also be requested to withdraw blood. Brought samples During the day, nurses or doctors from the hospital units physically bring body fluid samples to the laboratory. Outpatient clinic Waterlandziekenhuis The outpatient clinic is located in the hospital and opened from 8:00 until 17:00 on week days, only on Tuesdays, the clinic is open until 20:00. Patients come to this clinic to withdraw blood or hand in body fluid samples. It is located in the hospital, but at a different floor than the laboratory. The clinic sends the body fluid samples to the laboratory with a small train that arrives at the sample arrival and preparation area. Outpatient clinic Waterland Oost This clinic is located in Volendam and is only opened from 8:00 until 12:30 on each week day. The body fluid samples are collected after 12:30 and brought to the laboratory by a carrier. External arrivals The laboratory from the Waterland hospital cooperates with other laboratories by exchanging tests, so each day samples from other laboratories arrive in Purmerend. Each Tuesday, an analyst goes to a

18 CHAPTER 2. CLINICAL CHEMISTRY LABORATORY 8 psychiatric clinic and takes the body fluid samples of these patients to the laboratory. Figure 2.1 gives an overview of the arrivals of body fluid samples in the sample arrival and preparation area. Inpatient: Pneumatic mail Inpatient: Blood withdrawal Inpatient: Brought samples Outpatient clinic WLZ Sample arrival and preparation area Outpatient clinic W-O External Figure 2.1: Arrivals at Sample Arrival and Preparation Area Test execution After processing the samples at the arrival and preparation area, the samples are ready for the test execution phase. The tests can be split into seven types: 1. Blood gas 2. Coagulation 3. Haematology 4. Transfusion 5. Chemistry 6. Urine 7. External

19 CHAPTER 2. CLINICAL CHEMISTRY LABORATORY 9 The blood gas machine is located at the sample arrival and preparation area, because these tests can only be conducted shortly after blood withdrawal. The other test types all have a separate area in the laboratory at which one or more machines are located, except the external tests, as these are done in other laboratories. The analysts have to operate the machines, check the results and do manual tests. When a machine is finished with a test, an analyst should confirm the result. If the result is too abnormal, the clinical chemist or the team leader has to confirm the result. The samples are stored in the laboratory for a few days, after which they are eliminated. For an overview of the test execution area, see Figure 2.2. Samples Results Blood gas Coagulation Sample arrival and preparation area Haematology Transfusion Chemistry Confirmation Urine External Sample arrival and preparation Test execution Figure 2.2: Test Execution Area Administration The administration activities consist of handling the external tests. This consists of preparing, registering and sending the requests and receiving and processing the results. Also other small administrative activities are handled by the administration. 2.2 Result administration Each inpatient and outpatient is registered in a digital information system called Labosys. All qualified employees of the hospital can enter the digital

20 CHAPTER 2. CLINICAL CHEMISTRY LABORATORY 10 information system and request information about patients. Body fluid test requests and results are also registered in this system. The machines at the clinical chemistry laboratory are linked with the information system. The machine can recognize the patient that belongs to the body fluid sample by the code on the sample and puts the result in the information system immediately. The laboratory staff only has to confirm the results, after which the doctor that requested the test for the patient can see the confirmed result in Labosys. 2.3 Priorities Three different priority types for the test requests exist: 1. Blood gas determination request This is the most urgent request type, because this test should be performed immediately after blood withdrawal, so it is given priority over all other tests. 2. Cito request The result of a cito request should be available within one hour, so it is given priority over all other requests, except for blood gas determination tests. 3. Regular request This type contains all other requests. The standard for these requests is that the result is available within one day. Among the regular type requests, one can still observe some priority handling, as inpatients are generally prioritized over outpatient requests. 2.4 Employee behavior Each day, the employees of the laboratory are assigned to a work spot. This work spot generally differs each day, so nearly all employees can work at any place in the laboratory. At 7:00, one or two employees from the morning shift start their work day and handle all cito requests, set up the machines and prepare the blood withdrawal round. The rest of the employees start their working day with the inpatient round at 7:45, and after this round, everyone starts working at the work spot he or she is assigned to for that day. This means that the morning shift employees also start working at their spot. At 16:00 the morning shift employees end their working day,

21 CHAPTER 2. CLINICAL CHEMISTRY LABORATORY 11 while the employee from the evening and night shift starts at either 14:00 or 17:00. At 17:15, the normal shift employees end their day and the evening shift employee is the only one left in the laboratory. This employee prepares the inpatient round for the next day and handles all cito requests during the evening and night. He or she is allowed to leave when the employees for the next day arrive at 7:00. In the weekend, there are much less requests than on a week day, so two or three employees handle all requests. Each day, every employee has two short breaks of 15 minutes and a long break of 30 minutes. The night shift has a dinner break, and he or she can go to sleep in between cito requests during the night. 2.5 Model Based on the information in the previous sections, the processes in the laboratory can be modeled as a network of queues. The sample arrival and preparation area and the test execution area together form a network of queues in which the body fluid samples are the customers. The administration area exists separately from this network, because only paper work is done here. The network formed by the sample arrival and preparation area and the test execution area is displayed in a global way in Figure 2.3. Each block in the figure consists again of more detailed process steps. Samples Samples are stored Results Inpatient: Pneumatic mail Blood gas Inpatient: Blood withdrawal Coagulation Haematology Inpatient: Brought samples Sample arrival and preparation area Transfusion Confirmation Outpatient clinic WLZ Chemistry Outpatient clinic W-O Urine External External Sample arrival and preparation area Test execution area Figure 2.3: Sample arrival and test execution network The network contains some complicating factors that differentiate it from a general queueing network: Many different arrival types, mainly in batches

22 CHAPTER 2. CLINICAL CHEMISTRY LABORATORY 12 Three different customer priorities Servers have multiple tasks At many places in the laboratory, an employee has to perform more than one task. This means that the tasks do not have a server available all the time, and the server has to choose which task to perform. The network is also quite large, Figure 2.3 already shows six different arrival types and eight different process blocks. Some of the arrival types are again split in different streams and each of the blocks contains different jobs and routings again, so it is hard to model the complete network in detail. Therefore, this research focuses on a part of the laboratory. To investigate which part of the laboratory is the most interesting to investigate, and to obtain input for the network concerning arrival streams, routing patterns and processing times, the next chapter contains a data analysis of the laboratory.

23 Chapter 3 Data analysis This chapter discusses data concerning the laboratory, to find which part of the laboratory is most interesting to investigate, and to obtain input for the queueing network model. First, in Section 3.1, the data format is discussed, after which the arrival patterns are investigated in 3.2, the routing patterns in 3.3, the process times in 3.4 and finally the throughput times in 3.5. The conclusions concerning the data are discussed in 3.6 and the consequences for the research are explained in Section Data format The laboratory has a digital information system, called Labosys, in which all requested tests are registered and the results are saved. Many details are registered for each test, such as the test type, the urgency type of the test, the time the request form is read into the system, the time the result is available, the time the result is confirmed and the origin of the request. Unfortunately, much information is not registered, for example the throughput time per part of the laboratory, the actual time of arrival in the laboratory, or the process times. In this chapter, a data set containing laboratory data from March 2010 until February 2011 is used. Weekdays are structured differently than the days in the weekends, so they should be investigated separately. It would become too extensive to investigate both day structures separately, and the laboratory has the most interest in improving weekdays, so it is chosen to focus on weekdays in this research. There are three dimensions in the data: 1. Lab numbers: Each time tests are requested for a patient, a lab number is assigned 13

24 CHAPTER 3. DATA ANALYSIS 14 to the patient. 2. Body fluid samples: Per patient, and thus lab number, generally more than one body fluid sample has to be investigated. The number of samples depends on the tests that are requested. Some tests need a preparation substance, and each machine receives a separate sample, such that tests can be done simultaneously. 3. Tests: More than one test is performed per body fluid sample in general, every test that can be done on one machine is performed with the same sample. There are nearly 1000 different tests that can be requested. 3.2 Arrival patterns In this section, a general description of the arrivals of body fluid samples in the laboratory is given first (Section 3.2.1), after which each arrival stream is discussed in detail (Section 3.2.2) General description The arrival time of body fluid samples in the laboratory is not available, but the registration time in Labosys does give an impression of the arrival times for many samples. Figure 3.1 gives an impression of the mean number of registrations of body fluid samples per half hour on a weekday for all arrival types in the investigated year, except for the samples from the outpatient clinic in Volendam (BWO), and the samples from the blood withdrawal round. The registration times for these two types differ very much from the arrival times. BWO samples are registered at withdrawal in Volendam in the morning, while they only arrive in the afternoon in Purmerend. The samples from the blood withdrawal round are registered the day and night before the round, while they are only withdrawn and arrive in the laboratory in the morning. Therefore, these sample types are filtered and gathered in one time slot, 13:30-14:00 for BWO and 8:00-8:30 for the blood withdrawal round. Figure 3.1 shows that the peak moments are caused by BWO and the blood withdrawal round, and that the morning is the busiest part of the day. Figure 3.2(a) shows that the outpatient clinic in Purmerend and the inpatient care provide the most samples, but the outpatient clinic in Volendam and the external arrivals also provide a significant amount of

25 CHAPTER 3. DATA ANALYSIS 15 Body fluid samples Body fluid samples over time on a weekday 0:00 06:00 12:00 18:00 24:00 Time Figure 3.1: Mean number of body fluid sample arrivals per half hour on a weekday samples. It is also interesting to see whether each week day is equally busy, or if a trend exists in the week. Figure 3.3 shows that the mean number of body fluid samples per day differs between approximately 800 on Friday to 950 on Tuesday. The mean number of body fluid samples appears to decrease over the week. The urgent samples arrive through the same arrival streams as the regular samples. On a weekday, on average 116 of the 876 samples that arrive in the laboratory are cito samples, and 17 samples need blood gas determination. The blood gas samples mainly originate from inpatient care, because this is a very urgent test and it is mainly done for the observation of patients. The outpatient clinic in Purmerend occasionally receives a blood gas sample as well, but the samples from the outpatient clinic in Volendam and from external arrivals never concern a blood gas request. Figure 3.2(b) shows the mean number of cito body fluid samples per origin on a week day. It shows that the most cito samples are provided by inpatient care, because most patients that need urgent tests are hospitalized. The outpatient clinic in Purmerend also provides a significant amount of cito samples, but these samples mainly concern requests from doctors that need the result on the same day, instead of within one hour Arrival types Figure 2.1 distinguishes six arrival types, but within some of these arrival types, different streams can be distinguished, these are also described in

26 CHAPTER 3. DATA ANALYSIS 16 Mean number of body fluid samples per origin on a weekday Body fluid samples Outpatient clinic WLZ Inpatient care External Outpatient clinic BWO (a) All samples Mean number of cito samples per origin on a weekday Cito body fluid samples Outpatient clinic WLZ Inpatient care External Outpatient clinic BWO (b) Cito samples Figure 3.2: Mean number of body fluid samples per origin on a weekday Section Inpatient care The body fluid samples can again be split in three categories: (a) Pneumatic mail i. Samples from IC and CCU at 7:00. ii. Samples from IC, CCU and SEH during the day. iii. Samples from other departments during the day. (b) Blood withdrawal i. Round at 7:45 at all departments except IC, CCU and SEH. ii. Samples during the day.

27 CHAPTER 3. DATA ANALYSIS 17 Body fluid samples ,000 Mean number of body fluid samples per day Monday Tuesday Wednesday Thursday Friday Figure 3.3: Average amount of body fluid samples on a week day per day (c) Brought samples from all departments in the hospital except CCU, IC and SEH. 2. Outpatient clinic Waterlandziekenhuis 3. Outpatient clinic Waterland Oost 4. External arrivals The previous section shows that the largest amount of cito samples stems from inpatient care. Within inpatient care, the cito samples are divided over the different arrival types. All lab numbers from IC, CCU and SEH contain cito samples, because these are the emergency departments. The blood withdrawal round generally only contains a small number of cito requests, 1 or 2 samples. 1(a)iii, 1(b)ii, and 1c concern cito samples more often, approximately 14% of the time. The number of cito samples per day for the other arrival types is already displayed in Figure 3.2(b). Each of the arrival types has its own characteristics. A characteristic that all arrival types share is that the body fluid samples arrive in the laboratory in batches per lab number. The number of body fluid samples in a lab number is determined by the tests that are requested for the lab number. In general, each machine type in the laboratory requires a separate sample, because the machines require different pre-processing steps (for example centrifugation, or a certain temperature), and this makes simultaneous testing possible. Therefore, the number of body fluid samples per lab number is generally equal to the number of machine types required

28 CHAPTER 3. DATA ANALYSIS 18 to perform the tests for the lab number. Table 3.1 gives some descriptive statistics concerning the number of body fluid samples per lab number. Mean St.dev. Min Max Body fluid samples per lab number Table 3.1: Body fluid samples per lab number Body fluid samples per lab number Fraction Number of body fluid samples Figure 3.4: Body fluid samples per lab number The arrival types can be split in two groups, arrivals that occur once a day around an expected time, and arrivals that occur more often during the day with stochastic interarrival times. The following subsections describe more characteristics of the arrival types per group. Once a day arrivals The samples from the outpatient clinic BWO, the blood withdrawal round in the morning, and the ICU and CCU at 7:00 belong to this type of arrivals. The samples from these origins arrive in batches of lab numbers; Table 3.3 gives some statistics concerning the number of lab numbers per arrival per type, and Figure 3.5 displays the distribution of the batch sizes. The employees of the laboratory know when to expect a batch of samples from these origins. The actual arrival times are not registered, but it is wellknown that the samples from the ICU and CCU arrive a few minutes after 7:00, and the samples from BWO arrive around 13:30. The samples from the blood withdrawal round generally arrive in the laboratory between 8:00 and 9:30, but no specific arrival time is known. The arrival time of the samples from the blood withdrawal round depends on the number of patients (i.e.

29 CHAPTER 3. DATA ANALYSIS 19 lab numbers) from which blood has to be withdrawn, the department type (blood withdrawal for children takes longer), and the number of employees that walk the round. Information concerning these parameters should be collected to find an estimate for the arrival time of the samples from the blood withdrawal round. Mean St.dev. Min Max BWO Blood withdrawal round ICU & CCU 7: Table 3.2: Lab numbers per arrival - Once a day arrivals Fraction Arrival batch size BWO Number of lab numbers Fraction Arrival batch size from blood withdrawal round Number of lab numbers Fraction Arrival batch size from ICU&CCU at 7: Number of lab numbers (a) BWO (b) Withdrawal round (c) ICU & CCU 07:00 Figure 3.5: Histogram of lab numbers per arrival - Once a day arrivals Continuous arrivals The arrival types 1(a)ii, 1(a)iii, 1(b)ii, 1c, 2, and 4 belong to this group. It is not possible to distinguish between 1(a)iii, 1(b)ii, and 1c in the data, so these are considered to be one group for now. The lab numbers from these groups do not always arrive individually, Table 3.3 gives some descriptive statistics for the batch sizes, except for the outpatient clinic in Purmerend. The outpatient clinic has some specific characteristics, so it is treated separately later in this section. Figure 3.6 depicts the distribution of the arrival batch sizes. The mean number of lab number registrations per half hour per weekday from ICU/CCU/SEH is displayed in Figure 3.7(a). The figure shows that the number of arrivals is low during the night, relatively high during the day, and it goes down in the evening. The arrivals from external origins are displayed in 3.7(b). The information concerning external arrivals is limited,

30 CHAPTER 3. DATA ANALYSIS 20 Mean St.dev. Min Max ICU/CCU/SEH (1(a)ii) External (4) Rest (1(a)iii, 1(b)ii, 1c) Table 3.3: Lab numbers per arrival - Continuous arrivals Arrival batch size from ICU&CCU&SEH Arrival batch size from external Arrival batch size from rest Fraction Number of lab numbers Fraction Number of lab numbers Fraction Number of lab numbers (a) ICU/CCU/SEH (b) External (c) Rest Figure 3.6: Histogram of lab numbers per arrival - Continuous arrivals because one cannot distinguish between the different external origins. The different origins all have specific characteristics, but this is ignored here and the external arrivals are considered to be one group. The figure shows that there might be a group of lab numbers that arrives typically around noon, as there exists a higher peak in Figure 3.7(b). The rest of the lab numbers from inpatient care, 1(a)iii, 1(b)ii, 1c, are displayed in Figure 3.7(c). Note that the number of lab numbers equals 0 between 6 and 9. This is due to the data filtering for the blood withdrawal round, it is assumed that all lab numbers from the non-urgent departments that are activated between 6 and 9 are taken in the blood withdrawal round. The figure shows a clear decrease of lab number registrations from this type over the day. The peak is in the morning, which may be caused by lab numbers that were forgotten in the blood withdrawal round. The later it gets on a day, the likelier it is to wait for the blood withdrawal round on the next day if the tests are not cito, so the number of lab numbers decreases over the day. Outpatient clinic WLZ The arrival time at the laboratory differs a lot from the registration times of the lab numbers at the outpatient clinic WLZ, so the arrival process at the laboratory cannot be obtained from this information. Because it is too time-

31 CHAPTER 3. DATA ANALYSIS 21 Lab numbers from ICU, CCU, and SEH over time on a weekday Lab numbers :00 06:00 12:00 18:00 24:00 Time (a) ICU/CCU/SEH External lab numbers over time on a weekday Lab numbers :00 06:00 12:00 18:00 24:00 Time (b) External Rest of lab numbers over time on a weekday Lab numbers :00 06:00 12:00 18:00 24:00 Time (c) Rest Figure 3.7: Lab number arrivals per type consuming to obtain accurate data for the arrival times at the laboratory,

32 CHAPTER 3. DATA ANALYSIS 22 and the process of withdrawal at the outpatient clinic and the transport to the laboratory is quite clear, the processes at the outpatient clinic are modeled separately in Section The output of this process is equal to the arrival process at the laboratory. The arrivals at the outpatient clinic are input for the model of the outpatient clinic. Figure 3.8 displays the average number of registrations at the outpatient clinic during a weekday. It is clear from this figure that the outpatient clinic is the busiest in the morning. During lunch time, the arrival intensity goes down, then after lunch, the intensity increases slightly again, after which it decreases again towards the end of the day. Lab numbers per half hour from outpatient clinic WLZ Lab numbers :00 06:00 12:00 18:00 24:00 Time Figure 3.8: Arrivals Outpatient Clinic WLZ 3.3 Routing patterns in the laboratory All samples for the laboratory arrive at the sample arrival and preparation area. After the pre-process steps at this area, the samples proceed to the test execution step. Figure 2.2 shows that there are seven different test types. Each sample is destined for one of the test execution areas, depending on the tests that have to be done with the sample. Figure 3.9(a) displays the mean number of body fluid samples per test type on a weekday. It is clear that the haematology (302 samples) and chemistry department (344 samples) process most of the samples, and the other departments process between 20 and 50 samples per weekday. Unfortunately, the data also contains on average 80 samples per day from which the test type is unknown, it is not registered. Part of the samples in Figure 3.9(a) concern cito samples, not all machines can process cito samples, only chemistry, coagulation and tests can be cito. Figure 3.9(b) shows the distribution of cito samples over the different

33 CHAPTER 3. DATA ANALYSIS 23 test types. It shows that the haematology and chemistry department also test the most cito samples. Number of body fluid samples per test type on a weekday Body fluid samples Coagulation Transfusion Haematology Chemistry Urine Blood gas External (a) Regular samples Cito samples per test type on a weekday Cito body fluid samples Coagulation Haematology Chemistry (b) Cito samples Figure 3.9: Average number of body fluid samples per test type/machine on a weekday 3.4 Process times The process times are not registered. For some machines, the process times are known, these are mainly deterministic. The process times for the human process steps are not known, only estimates by experience can be given.

34 CHAPTER 3. DATA ANALYSIS Throughput times The exact throughput times for the laboratory are not available, but an estimate can be obtained by subtracting the registration time from the result confirmation time. As explained earlier, the registration time does not coincide with the arrival time in the laboratory, but it does give an estimate for most samples. For the blood withdrawal round and BWO, the registration times are adjusted because they differ too much from the arrival times. Even though each machine has different process times, the throughput times are only considered per test type (see Section 2.1.2). This is done because there are too many different machines. Not only the observed throughput times are interesting, but also the sum of the individual process step times, i.e. the theoretical throughput times. It is then interesting to see whether the theoretical throughput times differ much from the observed throughput times, and for which test types the largest deviations occur. Each block in Figure 2.3 consists again of several process steps and/or machines; the process times of these steps and machines are not registered. Therefore, an overview of all process steps in the blocks is created and estimates for process times are made in consultation with the laboratory staff. Theoretical throughput times are then created by taking the sum of the estimated process times. Figure 3.10(a) shows the observed throughput times and the theoretical throughput times for regular samples and blood gas samples. The figure shows that the largest deviation between the observed and theoretical throughput times occurs for the transfusion tests. After investigating the throughput times for transfusion in detail, and consulting the laboratory staff, it can be concluded that this is mainly caused by the fact that many transfusion tests are done on the day after arrival at the laboratory. If the samples arrive in the afternoon, it is often decided to store the samples and do the tests on the next day. The chemistry tests also have a large deviation between theoretical and observed throughput times, the reason for this the same as for the transfusion tests, some tests are only done on the next day. Cito tests are only done on a few machines, so for cito tests, the throughput times are considered per machine. Also for cito tests, the observed throughput times are compared with theoretical throughput times. Figure 3.10(b) shows the results. The D-dimere and APTT machine perform tests of the coagulation test type, the Sapphire performs tests from the Haematology type and the Cobas6000 and the Axsym perform Chemistry tests. The Sapphire and Cobas6000 do approximately 90% of all cito tests, and these machines have small deviations between theoretical and observed through-

35 CHAPTER 3. DATA ANALYSIS 25 put times. Therefore, it can be concluded that the cito throughput times appear to be quite good. The throughput times only differ much from the theoretical times for samples that are tested on the Axsym, this is partially caused by the fact that this machine has no urgency entrance. When a cito sample arrives, the sample has to wait until all samples in the machine are finished. The process times for this machine are quite long, approximately 30 minutes, so the waiting times can become quite large. The other machines all have a separate entrance for cito tests. 3.6 Data conclusions It can be concluded that there are many different arrival types, of which a part arrives at fixed moments in large batches of lab numbers, and another part arrives in smaller batches or singly continuously over the day. All samples arrive in a batch of body fluid samples per lab number, on average 2.4 body fluid samples belong to one lab number. Figure 3.11 gives an overview of the mean number of lab number arrivals on a weekday per arrival type. The most samples arrive during the day, between 7:00 and 17:15. The haematology and chemistry department test 74% of all samples, the other samples are divided over the other 5 departments. Figure 3.11 also shows the mean number of samples per laboratory department on a weekday. Cito samples mainly stem from inpatient care and the outpatient clinic in the WLZ, and on average 13% of all samples is cito. The cito samples arrive through the same channels as the normal samples, but the pneumatic mail is the most common way for cito samples to arrive in the laboratory. The haematology and chemistry department also test the most cito samples, 90% of the cito samples goes to these departments, the rest is processed at the coagulation department. Only estimates of observed and theoretical throughput times can be evaluated. The throughput times appear quite good, especially for cito samples. The regular samples have long throughput times at the transfusion and chemistry department, but this is mainly caused by the policy of testing samples a day later than the arrival in the laboratory. These departments have not experienced any complaints about this.

36 CHAPTER 3. DATA ANALYSIS Research conclusions The data results have been discussed with the laboratory staff. Many results have given more insight, and the throughput times have not been evaluated as dramatically bad. It does not appear that one of the test type areas causes the most problems, and it is perceived that the machines in the test execution area have more than enough capacity to handle the samples. The idea lives that the sample arrival and preparation area is an area at which much improvement may be possible, due to the following reasons: The sample arrival and preparation area consists of very many different activities, which all have to be performed by two employees. These employees are disturbed by phone calls and people entering the laboratory, because the sample arrival and preparation area is located at the entrance of the laboratory. The large number of different activities also causes that the employees experience this work place as a busy place, whilst the clinical chemist thinks the activities can be performed by one employee instead of two employees. The work load fluctuations are also experienced most at the sample arrival and preparation, which is mainly caused by the batch arrivals. There are many moments at which no work is available, but also many moments at which many samples arrive at once. Currently, there are some plans for changing the laboratory that also affect the sample arrival and preparation area. The outpatient clinic may be moved next to the laboratory and the sample and arrival preparation area may get closer to the test execution area. The effect of these plans are not investigated yet, so there is much interest for this. The throughput times of all samples benefit from improvements at the sample arrival and preparation area, because all samples arrive at the sample arrival and preparation area. A machine that takes over some of the activities at the sample arrival and preparation area is available, and the laboratory staff is interested in buying this. Therefore it is interesting for them to see what the effect of this machine would be. For all these reasons, it is concluded that the research continues with investigating the sample arrival and preparation area. The next chapters first describe the sample arrival and preparation area in detail, and then investigate improvement possibilities.

Exercises Stochastic Performance Modelling. Hamilton Institute, Summer 2010

Exercises Stochastic Performance Modelling. Hamilton Institute, Summer 2010 Exercises Stochastic Performance Modelling Hamilton Institute, Summer Instruction Exercise Let X be a non-negative random variable with E[X ]

More information

Scheduling I. Today. Next Time. ! Introduction to scheduling! Classical algorithms. ! Advanced topics on scheduling

Scheduling I. Today. Next Time. ! Introduction to scheduling! Classical algorithms. ! Advanced topics on scheduling Scheduling I Today! Introduction to scheduling! Classical algorithms Next Time! Advanced topics on scheduling Scheduling out there! You are the manager of a supermarket (ok, things don t always turn out

More information

Queuing Analysis. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall

Queuing Analysis. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Queuing Analysis Chapter 13 13-1 Chapter Topics Elements of Waiting Line Analysis The Single-Server Waiting Line System Undefined and Constant Service Times Finite Queue Length Finite Calling Problem The

More information

Paper A Maths Paper 11+ Name:... Candidate Number... Seat Number... This paper has 50 questions, and you have 40 minutes to complete the test.

Paper A Maths Paper 11+ Name:... Candidate Number... Seat Number... This paper has 50 questions, and you have 40 minutes to complete the test. Paper A. 201. Maths Paper 11+ Name:... Candidate Number... Seat Number... This paper has 50 questions, and you have 0 minutes to complete the test. Read the questions carefully. If you cannot answer a

More information

Responsibilities: Effective Date: November Revision Date: February 8, VP, Facilities and Construction Management. Issuing Authority:

Responsibilities: Effective Date: November Revision Date: February 8, VP, Facilities and Construction Management. Issuing Authority: Title: Chemical Hygiene Written Program Effective Date: November 2005 Revision Date: February 8, 2017 Issuing Authority: Responsible Officer: VP, Facilities and Construction Management Director Environmental

More information

Slides 9: Queuing Models

Slides 9: Queuing Models Slides 9: Queuing Models Purpose Simulation is often used in the analysis of queuing models. A simple but typical queuing model is: Queuing models provide the analyst with a powerful tool for designing

More information

Antti Salonen PPU Le 2: Forecasting 1

Antti Salonen PPU Le 2: Forecasting 1 - 2017 1 Forecasting Forecasts are critical inputs to business plans, annual plans, and budgets Finance, human resources, marketing, operations, and supply chain managers need forecasts to plan: output

More information

Value of Clinical IVD Systems

Value of Clinical IVD Systems Value of Clinical IVD Systems EAC, Enterprise Analysis Corporation, Stamford, CT Summary Having the flexibility to adapt as the healthcare landscape continues to change is critical to your success. ARCHITECT

More information

Chemical Hygiene Plan for Laboratories

Chemical Hygiene Plan for Laboratories SAFETY POLICIES AND PROCEDURES MANUAL LABORATORY SAFETY 4.12.1 OVERVIEW Washington State University has developed the chemical hygiene plan to aid units in promoting a high standard of health and safety.

More information

3. If a forecast is too high when compared to an actual outcome, will that forecast error be positive or negative?

3. If a forecast is too high when compared to an actual outcome, will that forecast error be positive or negative? 1. Does a moving average forecast become more or less responsive to changes in a data series when more data points are included in the average? 2. Does an exponential smoothing forecast become more or

More information

Honors Math 2 Unit 5 Exponential Functions. *Quiz* Common Logs Solving for Exponents Review and Practice

Honors Math 2 Unit 5 Exponential Functions. *Quiz* Common Logs Solving for Exponents Review and Practice Honors Math 2 Unit 5 Exponential Functions Notes and Activities Name: Date: Pd: Unit Objectives: Objectives: N-RN.2 Rewrite expressions involving radicals and rational exponents using the properties of

More information

Algebra 1 Fall Semester Final Review Name

Algebra 1 Fall Semester Final Review Name It is very important that you review for the Algebra Final. Here are a few pieces of information you want to know. Your Final is worth 20% of your overall grade The final covers concepts from the entire

More information

ALGEBRA 1 SEMESTER 1 INSTRUCTIONAL MATERIALS Courses: Algebra 1 S1 (#2201) and Foundations in Algebra 1 S1 (#7769)

ALGEBRA 1 SEMESTER 1 INSTRUCTIONAL MATERIALS Courses: Algebra 1 S1 (#2201) and Foundations in Algebra 1 S1 (#7769) Multiple Choice: Identify the choice that best completes the statement or answers the question. 1. Ramal goes to the grocery store and buys pounds of apples and pounds of bananas. Apples cost dollars per

More information

Queuing Theory. The present section focuses on the standard vocabulary of Waiting Line Models.

Queuing Theory. The present section focuses on the standard vocabulary of Waiting Line Models. Queuing Theory Introduction Waiting lines are the most frequently encountered problems in everyday life. For example, queue at a cafeteria, library, bank, etc. Common to all of these cases are the arrivals

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle  holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/39637 holds various files of this Leiden University dissertation Author: Smit, Laurens Title: Steady-state analysis of large scale systems : the successive

More information

DDAS Accident Report

DDAS Accident Report DDAS Accident Report Accident details Report date: 26/07/2005 Accident number: 421 Accident time: 09:00 Accident Date: 21/09/2003 Where it occurred: Cambondo road, 2k km from Cambaixe, Malanje Province

More information

Ministry of Health and Long-Term Care Geographic Information System (GIS) Strategy An Overview of the Strategy Implementation Plan November 2009

Ministry of Health and Long-Term Care Geographic Information System (GIS) Strategy An Overview of the Strategy Implementation Plan November 2009 Ministry of Health and Long-Term Care Geographic Information System (GIS) Strategy An Overview of the Strategy Implementation Plan November 2009 John Hill, Health Analytics Branch Health System Information

More information

Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem. Wade Trappe

Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem. Wade Trappe Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem Wade Trappe Lecture Overview Network of Queues Introduction Queues in Tandem roduct Form Solutions Burke s Theorem What

More information

Hazard Communications

Hazard Communications 1 Hazard Communications 1 2 Hazard Communication Program Table of Contents 1. Purpose of the Hazard Communication Program 2. Access to Written Program 3. Responsibilities 4. Hazard Recognition/Determination

More information

PPU411 Antti Salonen. Forecasting. Forecasting PPU Forecasts are critical inputs to business plans, annual plans, and budgets

PPU411 Antti Salonen. Forecasting. Forecasting PPU Forecasts are critical inputs to business plans, annual plans, and budgets - 2017 1 Forecasting Forecasts are critical inputs to business plans, annual plans, and budgets Finance, human resources, marketing, operations, and supply chain managers need forecasts to plan: output

More information

SYMBIOSIS CENTRE FOR DISTANCE LEARNING (SCDL) Subject: production and operations management

SYMBIOSIS CENTRE FOR DISTANCE LEARNING (SCDL) Subject: production and operations management Sample Questions: Section I: Subjective Questions 1. What are the inputs required to plan a master production schedule? 2. What are the different operations schedule types based on time and applications?

More information

The Conditions are Right

The Conditions are Right The Conditions are Right Standards Addressed in this Task MCC9-12.S.CP.2 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities,

More information

A Degree In Chemistry

A Degree In Chemistry A Degree In Chemistry Why chemistry? It is the central science Chemists contribute a lot to our quality of life New drugs Detecting disease Nanotechnology Batteries New materials Food production CHEMISTRY

More information

Troubleshooting the Problem Patient

Troubleshooting the Problem Patient Troubleshooting the Problem Patient Immucor User Group Meeting Livonia, Michigan May 5, 2015 Anne Rapundalo, MT(ASCP)BB, CLS(NCA) Section Leader, Transfusion Service St. Joseph Mercy Hospital Ann Arbor

More information

Module 5: CPU Scheduling

Module 5: CPU Scheduling Module 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation 5.1 Basic Concepts Maximum CPU utilization obtained

More information

Antti Salonen KPP Le 3: Forecasting KPP227

Antti Salonen KPP Le 3: Forecasting KPP227 - 2015 1 Forecasting Forecasts are critical inputs to business plans, annual plans, and budgets Finance, human resources, marketing, operations, and supply chain managers need forecasts to plan: output

More information

Snow Cover. Snow Plowing and Removal Services Best Practices Guide. l

Snow Cover. Snow Plowing and Removal Services Best Practices Guide.  l Snow Cover Snow Plowing and Removal Services Best Practices Guide 2015 2016 www.hortica.com l 800.851.7740 During a recent trip to upstate NY, Hortica Loss Control representatives met with several insureds

More information

EDEXCEL S2 PAPERS MARK SCHEMES AVAILABLE AT:

EDEXCEL S2 PAPERS MARK SCHEMES AVAILABLE AT: EDEXCEL S2 PAPERS 2009-2007. MARK SCHEMES AVAILABLE AT: http://www.physicsandmathstutor.com/a-level-maths-papers/s2-edexcel/ JUNE 2009 1. A bag contains a large number of counters of which 15% are coloured

More information

QUEUING SYSTEM. Yetunde Folajimi, PhD

QUEUING SYSTEM. Yetunde Folajimi, PhD QUEUING SYSTEM Yetunde Folajimi, PhD Part 2 Queuing Models Queueing models are constructed so that queue lengths and waiting times can be predicted They help us to understand and quantify the effect of

More information

Robust Optimization in a Queueing Context

Robust Optimization in a Queueing Context Robust Optimization in a Queueing Context W. van der Heide September 2015 - February 2016 Publishing date: April 18, 2016 Eindhoven University of Technology Department of Mathematics & Computer Science

More information

Readings: Finish Section 5.2

Readings: Finish Section 5.2 LECTURE 19 Readings: Finish Section 5.2 Lecture outline Markov Processes I Checkout counter example. Markov process: definition. -step transition probabilities. Classification of states. Example: Checkout

More information

Trip Generation Study: A 7-Eleven Gas Station with a Convenience Store Land Use Code: 945

Trip Generation Study: A 7-Eleven Gas Station with a Convenience Store Land Use Code: 945 Trip Generation Study: A 7-Eleven Gas Station with a Convenience Store Land Use Code: 945 Introduction The Brigham Young University Institute of Transportation Engineers student chapter (BYU ITE) completed

More information

Simulating a Medical Observation Unit for a Pediatric Emergency Department. Mark Grum July 29 th, 2015

Simulating a Medical Observation Unit for a Pediatric Emergency Department. Mark Grum July 29 th, 2015 Simulating a Medical Observation Unit for a Pediatric Emergency Department Mark Grum July 29 th, 2015 Acknowledgements Amy Cohn, Ph.D Gabriel Zayas-Caban, Ph.D Michelle Macy, MD Allison Cator, MD Hassan

More information

IS YOUR BUSINESS PREPARED FOR A POWER OUTAGE?

IS YOUR BUSINESS PREPARED FOR A POWER OUTAGE? IS YOUR BUSINESS PREPARED FOR A POWER OUTAGE? Keeping your power on is our business Whether your business is large, small or somewhere in between, we understand that a power outage presents special challenges

More information

Basic Queueing Theory

Basic Queueing Theory After The Race The Boston Marathon is a local institution with over a century of history and tradition. The race is run on Patriot s Day, starting on the Hopkinton green and ending at the Prudential Center

More information

HAZARD COMMUNICATION PROGRAM

HAZARD COMMUNICATION PROGRAM HAZARD COMMUNICATION PROGRAM UNIVERSITY RISK MANAGEMENT Occupational Safety and Health Programs 19 Hagood Avenue, Suite 908 Charleston SC 29425 843-792-3604 Revised: January, 2015 TABLE OF CONTENTS Safety

More information

Chapter 1 0+7= 1+6= 2+5= 3+4= 4+3= 5+2= 6+1= 7+0= How would you write five plus two equals seven?

Chapter 1 0+7= 1+6= 2+5= 3+4= 4+3= 5+2= 6+1= 7+0= How would you write five plus two equals seven? Chapter 1 0+7= 1+6= 2+5= 3+4= 4+3= 5+2= 6+1= 7+0= If 3 cats plus 4 cats is 7 cats, what does 4 olives plus 3 olives equal? olives How would you write five plus two equals seven? Chapter 2 Tom has 4 apples

More information

UC Santa Barbara. Operating Systems. Christopher Kruegel Department of Computer Science UC Santa Barbara

UC Santa Barbara. Operating Systems. Christopher Kruegel Department of Computer Science UC Santa Barbara Operating Systems Christopher Kruegel Department of Computer Science http://www.cs.ucsb.edu/~chris/ Many processes to execute, but one CPU OS time-multiplexes the CPU by operating context switching Between

More information

Hazard Communication

Hazard Communication Hazard Communication For Company: Address: LC-1009 Rev. 06/16 Page 1 Hazard Communication Program Ref: OSHA 1910.1200 Approved by: Title: Ranking Official's Signature Date: Hazard Communication Coordinator

More information

Stochastic Optimization

Stochastic Optimization Chapter 27 Page 1 Stochastic Optimization Operations research has been particularly successful in two areas of decision analysis: (i) optimization of problems involving many variables when the outcome

More information

The Urbana Free Library Parking and Transportation Study

The Urbana Free Library Parking and Transportation Study CHAMPAIGN COUNTY REGIONAL PLANNING COMMISSION The Urbana Free Library Parking and Transportation Study Final Report 7/18/2013 Champaign Urbana Urbanized Area Transportation Study (CUUATS) TABLE OF CONTENTS

More information

Every day, health care managers must make decisions about service delivery

Every day, health care managers must make decisions about service delivery Y CHAPTER TWO FORECASTING Every day, health care managers must make decisions about service delivery without knowing what will happen in the future. Forecasts enable them to anticipate the future and plan

More information

Introduction to Negative Numbers and Computing with Signed Numbers

Introduction to Negative Numbers and Computing with Signed Numbers Section 6. PRE-ACTIVITY PREPARATION Introduction to Negative Numbers and Computing with Signed Numbers In the previous five chapters of this book, your computations only involved zero and the whole numbers,

More information

IMPACT Improving Massachusetts Post-Acute Care Transfers

IMPACT Improving Massachusetts Post-Acute Care Transfers IMPACT Improving Massachusetts Post-Acute Care Transfers New England Home Care Conference May 31 st, 2012 Larry Garber, MD Medical Director for Informatics Reliant Medical Group Agenda IMPACT project overview

More information

For Excellence in Organic Chemistry

For Excellence in Organic Chemistry Organix Inc. Your Contract Research and Custom Synthesis Company www.organixinc.com For Excellence in Organic Chemistry Organix Inc. A Contract Research and Custom Synthesis Company At the discovery end

More information

Pooja Diagnostic Laboratory Mulund, Mumbai, India

Pooja Diagnostic Laboratory Mulund, Mumbai, India Pooja Diagnostic Laboratory Mulund, Mumbai, India Modern-day India is unrecognizable from the country that existed when the Pooja Laboratory was founded in 1987 and the two have developed in parallel.

More information

The Green. Chemistry Checklist Why Green Chemistry? The Business Case. Inside. Support and Communication. Design and Innovation

The Green. Chemistry Checklist Why Green Chemistry? The Business Case. Inside. Support and Communication. Design and Innovation The Green Chemistry Checklist Green Chemistry and Safer Products Business Commitment, v.1.0 Why Green Chemistry? The Business Case Inside Why Use the Green Chemistry Checklist page 2 The Checklist: Green

More information

Jamati Orientation Update. Houston, Texas March 2018

Jamati Orientation Update. Houston, Texas March 2018 Jamati Orientation Update Houston, Texas March 2018 Entry Card Envelope Pick Up Date Fri, March 16 th (Last Day) Starting Sat, March 17 th to Wed, March 21 st 10 am - 10 pm CST Entry Card Pickup Site Jamatkhana

More information

PP - Work Centers HELP.PPBDWKC. Release 4.6C

PP - Work Centers HELP.PPBDWKC. Release 4.6C HELP.PPBDWKC Release 4.6C SAP AG Copyright Copyright 2001 SAP AG. All rights reserved. No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission

More information

Year 3. Term by Term Objectives. Year 3 Overview. Autumn. Spring. Summer. Number: Place Value

Year 3. Term by Term Objectives. Year 3 Overview. Autumn. Spring. Summer. Number: Place Value Spring Overview Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Autumn Number: Place Value Number: Addition and Subtraction Number: Multiplication and Division Measurement

More information

Analysis of Call Center Data

Analysis of Call Center Data University of Pennsylvania ScholarlyCommons Wharton Research Scholars Wharton School 4-1-2004 Analysis of Call Center Data Yu Chu Cheng University of Pennsylvania Follow this and additional works at: http://repository.upenn.edu/wharton_research_scholars

More information

Analyzing a queueing network

Analyzing a queueing network Universiteit Utrecht Analyzing a queueing network Author: William Schelling Supervisor: dr. Sandjai Bhulai dr. Karma Dajani A thesis submitted in fulfillment of the requirements for the degree of Master

More information

Name: (This only happens every four years or does it?)

Name: (This only happens every four years or does it?) Name: (This only happens every four years or does it?) Calendars: Then and Now Name: 1. What is a leap year? What do you already know about leap years? 2. List at least three questions about leap years

More information

Egyptian Fractions: Part I

Egyptian Fractions: Part I Egyptian Fractions: Part I Prepared by: Eli Jaffe October 8, 2017 1 Cutting Cakes 1. Imagine you are a teacher. Your class of 10 students is on a field trip to the bakery. At the end of the tour, the baker

More information

More with Systems of Equations

More with Systems of Equations More with Systems of Equations In 2008, 4.7 million Americans went on a rafting expedition. In Georgia, outfitters run whitewater expeditions for ages 8 and up on the Chattooga River. 12.1 Systems of Equations

More information

CS 798: Homework Assignment 3 (Queueing Theory)

CS 798: Homework Assignment 3 (Queueing Theory) 1.0 Little s law Assigned: October 6, 009 Patients arriving to the emergency room at the Grand River Hospital have a mean waiting time of three hours. It has been found that, averaged over the period of

More information

Robustness and performance of threshold-based resource allocation policies

Robustness and performance of threshold-based resource allocation policies Robustness and performance of threshold-based resource allocation policies Takayuki Osogami Mor Harchol-Balter Alan Scheller-Wolf Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue,

More information

An alternative to Red-Yellow-Green Board Reports

An alternative to Red-Yellow-Green Board Reports Tuesday, December 12 Session A9/B9 An alternative to Red-Yellow-Green Board Reports Dan Watson, MBA Valerie Craig, RN, MSN, MAOM Richard Scoville, PhD Objectives Describe how MHS transitioned to a systems-based

More information

MATHS WORKSHEETS TERM 2

MATHS WORKSHEETS TERM 2 NAME: GRADE: MATHS WORKSHEETS TERM 2 MULTIPLICATION / DIVISION / TIME TESSELATIONS / TANGRAMS 1 SYLLABUS INSTAMATHS WKSHEET Tables (multiplying) 18; 20; 23; 25; Tables (patterning) 30 Tables (dividing)

More information

Math 060/070 PAL: Elementary and Intermediate Algebra Spring 2016

Math 060/070 PAL: Elementary and Intermediate Algebra Spring 2016 Math 060/070 PAL: Elementary and Intermediate Algebra Spring 016 Instructor Dr. Ruzanna Baytaryan Office HSLH 341 Phone 661-36-5916 Office Hours Email MW :30PM-4:30PM or by appointment Ruzanna.baytaryan@canyons.edu

More information

Chemists Do you have the Bayer Spirit?

Chemists Do you have the Bayer Spirit? www.mybayerjob.de Chemists Do you have the Bayer Spirit? Research and Development, Synthesis, Analytics, In-house Consulting, Patents, Information Technology, Production, Marketing Chemists in Bayer s

More information

Capacity management for packet-switched networks with heterogeneous sources. Linda de Jonge. Master Thesis July 29, 2009.

Capacity management for packet-switched networks with heterogeneous sources. Linda de Jonge. Master Thesis July 29, 2009. Capacity management for packet-switched networks with heterogeneous sources Linda de Jonge Master Thesis July 29, 2009 Supervisors Dr. Frank Roijers Prof. dr. ir. Sem Borst Dr. Andreas Löpker Industrial

More information

NEW CONCEPTS - SOIL SURVEY OF THE FUTURE

NEW CONCEPTS - SOIL SURVEY OF THE FUTURE NEW CONCEPTS - SOIL SURVEY OF THE FUTURE The new process of doing soil surveys by Major Land Resource Areas (MLRA) highlights this section. Special emphasis is given to an overview of the National Soil

More information

University of Tennessee Safety Procedure

University of Tennessee Safety Procedure University of Tennessee Safety Procedure Program Subject: Chemicals Requiring Review Prior to Use Procedure Review/Revised: 12/15/08 Affected Area/Department: Laboratories at the University Date Effective:

More information

Shift Scheduling in Pediatric Emergency Medicine

Shift Scheduling in Pediatric Emergency Medicine Shift Scheduling in Pediatric Emergency Medicine Presenter : Young-Chae Hong M.S.E. Co-Authors : Amy Cohn, Ph.D. & Ed O'Brien M.D. University of Michigan INFOMS at San Francisco 11 / 10 / 2014 Collaborators

More information

CPU SCHEDULING RONG ZHENG

CPU SCHEDULING RONG ZHENG CPU SCHEDULING RONG ZHENG OVERVIEW Why scheduling? Non-preemptive vs Preemptive policies FCFS, SJF, Round robin, multilevel queues with feedback, guaranteed scheduling 2 SHORT-TERM, MID-TERM, LONG- TERM

More information

OCCUPANCY PROFILES FOR SINGLE ROOMS IN RESIDENTIAL BUILDINGS. RWTH Aachen University

OCCUPANCY PROFILES FOR SINGLE ROOMS IN RESIDENTIAL BUILDINGS. RWTH Aachen University 14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec 7-9, 2015 OCCUPANCY PROFILES FOR SINGLE ROOMS IN RESIDENTIAL BUILDINGS Michael Adolph 1, Rita reblow

More information

EGD (Upper Endoscopy)

EGD (Upper Endoscopy) Gastroenterology EGD (Upper Endoscopy) REMINDER FOR: ON THE DAY OF YOUR PROCEDURE Bring a list of all your medications (over-the-counter and prescription) You must have a driver to take you home following

More information

2013 NASCIO Award Submission Category: Cross-Boundary Collaboration and Partnerships. Project Title: Public Safety and Enterprise GIS in Tennessee

2013 NASCIO Award Submission Category: Cross-Boundary Collaboration and Partnerships. Project Title: Public Safety and Enterprise GIS in Tennessee 2013 NASCIO Award Submission Category: Cross-Boundary Collaboration and Partnerships Project Title: Public Safety and Enterprise GIS in Tennessee State of Tennessee, Board of Parole State of Tennessee,

More information

Grades 7 & 8, Math Circles 10/11/12 October, Series & Polygonal Numbers

Grades 7 & 8, Math Circles 10/11/12 October, Series & Polygonal Numbers Faculty of Mathematics Waterloo, Ontario N2L G Centre for Education in Mathematics and Computing Introduction Grades 7 & 8, Math Circles 0//2 October, 207 Series & Polygonal Numbers Mathematicians are

More information

λ, µ, ρ, A n, W n, L(t), L, L Q, w, w Q etc. These

λ, µ, ρ, A n, W n, L(t), L, L Q, w, w Q etc. These Queuing theory models systems with servers and clients (presumably waiting in queues). Notation: there are many standard symbols like λ, µ, ρ, A n, W n, L(t), L, L Q, w, w Q etc. These represent the actual

More information

New Vocabulary equivalent inequalities. x 1 4, 7 and x, 3 are equivalent inequalities.

New Vocabulary equivalent inequalities. x 1 4, 7 and x, 3 are equivalent inequalities. -. Plan - Solving Inequalities Using Addition and Subtraction Objectives To use addition to solve To use subtraction to solve Eamples Using the Addition Property of Inequality Solving and Checking Solutions

More information

Department of Mechanical & Mechatronics Engineering. Welcome to 4A Mechanical Engineering!

Department of Mechanical & Mechatronics Engineering. Welcome to 4A Mechanical Engineering! Department of Mechanical & Mechatronics Engineering Welcome to 4A Mechanical Engineering! Some People in Mechanical Engineering You Should Know Professor Fathy Ismail Interim Department Chair Professor

More information

1 Modelling and Simulation

1 Modelling and Simulation 1 Modelling and Simulation 1.1 Introduction This course teaches various aspects of computer-aided modelling for the performance evaluation of computer systems and communication networks. The performance

More information

UNCERTAINTY ANALYSIS FOR LABORATORY ACCREDITATION. Peter B. Crisp. Fluke Precision Measurement Ltd, 52 Hurricane Way, Norwich, UK

UNCERTAINTY ANALYSIS FOR LABORATORY ACCREDITATION. Peter B. Crisp. Fluke Precision Measurement Ltd, 52 Hurricane Way, Norwich, UK UNCERTAINTY ANALYSIS FOR LABORATORY ACCREDITATION Peter B. Crisp Fluke Precision Measurement Ltd, 5 Hurricane Way, Norwich, UK Introduction NAMAS Accredited laboratories are required to follow recommended

More information

Member Level Forecasting Using SAS Enterprise Guide and SAS Forecast Studio

Member Level Forecasting Using SAS Enterprise Guide and SAS Forecast Studio Paper 2240 Member Level Forecasting Using SAS Enterprise Guide and SAS Forecast Studio Prudhvidhar R Perati, Leigh McCormack, BlueCross BlueShield of Tennessee, Inc., an Independent Company of BlueCross

More information

Chapter 1 Basic Characteristics of Control Systems and their Representation Process and Instrument Diagrams

Chapter 1 Basic Characteristics of Control Systems and their Representation Process and Instrument Diagrams Chapter 1 Basic Characteristics of Control Systems and their Representation Process and Instrument Diagrams We need ways to describe process control systems. We will learn several ways in this course.

More information

IBIDEN Group Green Procurement Guidelines. (Version 6)

IBIDEN Group Green Procurement Guidelines. (Version 6) IBIDEN Group Green Procurement Guidelines (Version 6) October 1, 2017 [Table of Contents] 1. Introduction P3 2. IBIDEN Group s Basic Policy for the Environment P4 3. Objective of the Guideline P5 4. Definitions

More information

Actions SLT Staff Students, Parents/Carers Ensure all. with caution in all. gritted.

Actions SLT Staff Students, Parents/Carers Ensure all. with caution in all. gritted. CODE 1 BASED ON WETAHER FORECAST TEMPERATURES BELOW -3 / LIGHT SNOW OR FREEZING RAIN FORECAST PAVOL TO CALL PAUL AT 07.00 AND BRIEF ON STATUS OF SITE. NO ACTION IF SITE ACCESSIBLE AND SAFE. Code 1 conditions

More information

Spring 2015 MECH 2311 INTRODUCTION TO THERMAL FLUID SCIENCES

Spring 2015 MECH 2311 INTRODUCTION TO THERMAL FLUID SCIENCES Spring 2015 MECH 2311 INTRODUCTION TO THERMAL FLUID SCIENCES Course Description Instructor An introduction to basic concepts of thermodynamics and fluid mechanics to include properties, property relationships,

More information

Review Paper Machine Repair Problem with Spares and N-Policy Vacation

Review Paper Machine Repair Problem with Spares and N-Policy Vacation Research Journal of Recent Sciences ISSN 2277-2502 Res.J.Recent Sci. Review Paper Machine Repair Problem with Spares and N-Policy Vacation Abstract Sharma D.C. School of Mathematics Statistics and Computational

More information

Delay management with capacity considerations.

Delay management with capacity considerations. Bachelor Thesis Econometrics Delay management with capacity considerations. Should a train wait for transferring passengers or not, and which train goes first? 348882 1 Content Chapter 1: Introduction...

More information

7 = 8 (Type a simplified fraction.)

7 = 8 (Type a simplified fraction.) Student: Date: Assignment: Exponential and Radical Equations 1. Perform the indicated computation. Write the answer in scientific notation. 3. 10 6 10. 3. 4. 3. 10 6 10 = (Use the multiplication symbol

More information

How to buy a telescope for your institution

How to buy a telescope for your institution How to buy a telescope for your institution by Dr. Frank Melsheimer DFM Engineering, Inc. 1035 Delaware Avenue, Unit D Longmont, Colorado 80501 phone 303-678-8143 fax 303-772-9411 www.dfmengineering.com

More information

Lesson 1: Writing Equations Using Symbols

Lesson 1: Writing Equations Using Symbols COMMON CORE MATHEMATICS CURRICULUM Lesson 1 8 4 Lesson 1: Writing Equations Using Symbols Classwork Exercises Write each of the following statements using symbolic language. 1. The sum of four consecutive

More information

Creating a Staff Development Plan with Esri

Creating a Staff Development Plan with Esri Creating a Staff Development Plan with Esri Michael Green David Schneider Guest Presenter: Shane Feirer, University of California Esri UC 2014 Technical Workshop Agenda What is a Staff Development Plan?

More information

C h a p t e r 5 : W o r k p l a c e H a z a r d o u s M a t e r i a l s I n f o r m a t i o n S y s t e m ( W H M I S )

C h a p t e r 5 : W o r k p l a c e H a z a r d o u s M a t e r i a l s I n f o r m a t i o n S y s t e m ( W H M I S ) C h a p t e r 5 : W o r k p l a c e H a z a r d o u s M a t e r i a l s I n f o r m a t i o n S y s t e m ( W H M I S ) Overview WHMIS is a provincial legislative response to provincial employees and employers

More information

PART I. Performed by: Alexandra Jiménez

PART I. Performed by: Alexandra Jiménez PART I The beginning of this story takes place in Rota. Rota is a very small town in Spain. It is not far from the Bay of Cadiz. Rota is famous for its different kinds of fruit and vegetables. In particular,

More information

Quiz Queue II. III. ( ) ( ) =1.3333

Quiz Queue II. III. ( ) ( ) =1.3333 Quiz Queue UMJ, a mail-order company, receives calls to place orders at an average of 7.5 minutes intervals. UMJ hires one operator and can handle each call in about every 5 minutes on average. The inter-arrival

More information

DISCRETE VARIABLE PROBLEMS ONLY

DISCRETE VARIABLE PROBLEMS ONLY DISCRETE VARIABLE PROBLEMS ONLY. A biased die with four faces is used in a game. A player pays 0 counters to roll the die. The table below shows the possible scores on the die, the probability of each

More information

Analysis of an M/M/1/N Queue with Balking, Reneging and Server Vacations

Analysis of an M/M/1/N Queue with Balking, Reneging and Server Vacations Analysis of an M/M/1/N Queue with Balking, Reneging and Server Vacations Yan Zhang 1 Dequan Yue 1 Wuyi Yue 2 1 College of Science, Yanshan University, Qinhuangdao 066004 PRChina 2 Department of Information

More information

Article for the 28 th Sensing Forum

Article for the 28 th Sensing Forum Article for the 28 th Sensing Forum Investigation of the Basic Performance of Analytical Balances Proposal of a microbalance performance evaluation method that includes the installation environment Presented

More information

Planning Softproviding Meat User Documentation

Planning Softproviding Meat User Documentation Great ideas are always simple Softproviding simply makes them happen. Planning Softproviding Meat User Documentation Version: 1.00 Date: 24 August 2017 Release: v5.50 Softproviding AG Riehenring 175 CH-4058

More information

SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012

SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012 SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012 This exam is closed book. YOU NEED TO SHOW YOUR WORK. Honor Code: Students are expected to behave honorably, following the accepted

More information

WITHOUT CONTROLS IN PLACE

WITHOUT CONTROLS IN PLACE 1 SSESSMENT Materials (KS2) ctivity/situation General class room use Date of ssessment: January 20 S IDENTIFIED Grouped by s PERSONS T FROM EPOSURE TO WORST CSE OUTCOME LIKELIHOOD /PROILITY 1 2 4 5 1 2

More information

Materials for assessing adult numeracy

Materials for assessing adult numeracy Materials for assessing adult numeracy Number Task Write this number in figures. Two hundred and seventy two thousand four hundred and twenty nine. In which of these numbers is the 7 worth seventy? Write

More information

Counting Strategies: Inclusion/Exclusion, Categories

Counting Strategies: Inclusion/Exclusion, Categories Counting Strategies: Inclusion/Exclusion, Categories CSE21 Winter 2017, Day 16 (B00), Day 11 (A00) February 17, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Sum rule For any disjoint sets, A and B: A

More information

Standard 7.NS.1(b)(c)(d) Worksheet 2 Assessment ID: dna ib

Standard 7.NS.1(b)(c)(d) Worksheet 2 Assessment ID: dna ib 1 If y lies on a number line, and x is added to y, which of the following would be true about the location of y + x? Assume that x is not zero. A. The location of y + x would only be to the right of y.

More information

Season Finale: Which one is better?

Season Finale: Which one is better? CS4310.01 Introduction to Operating System Spring 2016 Dr. Zhizhang Shen Season Finale: Which one is better? 1 Background In this lab, we will study, and compare, two processor scheduling policies via

More information

Mass Asset Additions. Overview. Effective mm/dd/yy Page 1 of 47 Rev 1. Copyright Oracle, All rights reserved.

Mass Asset Additions.  Overview. Effective mm/dd/yy Page 1 of 47 Rev 1. Copyright Oracle, All rights reserved. Overview Effective mm/dd/yy Page 1 of 47 Rev 1 System References None Distribution Oracle Assets Job Title * Ownership The Job Title [list@yourcompany.com?subject=eduxxxxx] is responsible for ensuring

More information