Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18

Size: px
Start display at page:

Download "Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18"

Transcription

1 Dynamics Basilio Bona DAUIN Politecnico di Torino Semester 1, B. Bona (DAUIN) Dynamics Semester 1, / 18

2 Dynamics Dynamics studies the relations between the 3D space generalized forces acting on a body in dynamical equilibrium and its motion (acceleration, velocity, position). With generalized forces, one refers to both linear forces and angular torques. The generalized forces may be of the following type External forces applied by some actuator or other physical cause. Inertial forces. Coriolis, centrifugal and gravitational forces. Elastic forces. Friction and other dissipative forces. Forces generated by electromagnetic interaction. B. Bona (DAUIN) Dynamics Semester 1, / 18

3 Moment of a Force Given a point mass located in a point P represented by the vector x and a force f applied to this point, both represented in R 0, the moment of the force with respect to the reference origin O is given by x f = x m dv dt = x dh L dt Applying the derivative rules we obtain x f = x dh L dt = d dt (x h L) dx dt h L = d dt (x h L) v h }{{ L = ḣ } A where the last term is always zero, since h L = mv and v are always collinear. The vector h A = x h L is called angular momentum and we know that is related by the angular velocity ω by h A = Γω. 0 B. Bona (DAUIN) Dynamics Semester 1, / 18

4 x f is often called torque produced by the force with respect to O, and we can write τ = d dt h A = ḣa Note the analogy with the linear force f = d dt h L = ḣ L = m v + ṁv }{{} =0 τ = d dt h A = ḣ A = Γ ω + Γω The generalized momentum H is the vector that includes both momenta, while the generalized force F include both forces and torques. Therefore we can write F = [ f = τ] d [ ] hl = dt h A [ḣl ḣ A ] = Ḣ B. Bona (DAUIN) Dynamics Semester 1, / 18

5 Generalization and Conclusions Generalized momentum H(t) [ ] [ ] hl (t) Mv(t) linear momentum H(t) = = h A (t) Γ(t)ω(t) angular momentum Generalized force F(t) [ ] [ ] f(t) M v(t) F(t) = = Ḣ(t) = τ(t) Γ(t) ω(t) + Γ(t)ω(t) Recall that Γω = ω [Γω] = S(ω) Γω where Γ is the inertia matrix with respect to the body center-of-mass. B. Bona (DAUIN) Dynamics Semester 1, / 18

6 Newton-Euler approach A rigid body system, composed by n rigid bodies is in dynamic equilibrium when The sum of all forces, including inertial forces, is zero. The sum of all angular torques (with respect to the body center of mass), including inertial torques, is zero. The first condition allows to write the so-called Newton equations, while the second condition allows to write the so-called Euler equations. Both equations are second order differential vector equations, i.e., they are equivalent to three scalar equations, one for each vector component. In a n body system, the number of vector equations is 2n and the number of scalar equations is 6n. B. Bona (DAUIN) Dynamics Semester 1, / 18

7 Newton equations Consider the following generic rigid body b i, identified with the index i. B. Bona (DAUIN) Dynamics Semester 1, / 18

8 Newton equations If: f i 1,i f i+1,i g i a ci resultant of the forces applied from body i 1 to body i resultant of the forces applied from body i + 1 to body i local gravity field acceleration vector total acceleration of the center-of-mass We can write the i-th Newton equation as: f i 1,i + f i+1,i + m i g i m i a ci = 0 B. Bona (DAUIN) Dynamics Semester 1, / 18

9 Euler equations If: N i 1,i N i+1,i Γ i x ci,i 1 x ci,i BRF resultant of the torques applied from body (i 1) to body i resultant of the forces applied from body (i + 1) to body i inertia matrix of body i with respect to its center-of-mass position of the (i 1) BRF origin with respect to center-of-mass position of the (i + 1) BRF with respect to center-of-mass Body Reference Frame We can write the i-th Euler equation as N i 1,i + N i+1,i + x ci,i 1 f i 1,i + x ci,i f i+1,i Γ i ω i ω i Γ i ω i = 0 }{{} moment of the forces f B. Bona (DAUIN) Dynamics Semester 1, / 18

10 Newton-Euler equations The 2n vectorial Newton-Euler (N-E) equations are difficult to solve, at least symbolically, since the internal constraints between the bodies are to be explicitly considered. These constraints are due to the forces f and torques N transmitted by one body to the other. The constraint forces may be relevant for the design of internal structures, etc., since they are related to stresses and strains in the materials, but they play no role in determining the dynamical behavior and the motion laws of the multi-body structure, and their determination is not relevant to the description of the body motion. Lagrange equations are much more immediate and easy to deal with, as they are scalar differential equations, obtained from energies. Nonetheless, from a purely numerical/algorithmic viewpoint N-E equations are easier to solve than Lagrange equations, and several recursive solutions are available in technical literature and simulation softwares. B. Bona (DAUIN) Dynamics Semester 1, / 18

11 Direct and inverse dynamics Assuming to have determined a set of generalized coordinates q, the direct dynamics problem consists in the computation of the joint accelerations q(t) (and hence of the joint velocities q(t) and positions q(t) by integration) from the knowledge of the command generalized forces F c (t), and the external generalized forces F e (t); the initial conditions q(0) and q(0) at time t = 0. The direct dynamics is at the base of any dynamical simulation algorithm. The inverse dynamics problem consists in the computation of the generalized forces F c (t) that must be applied by the actuators in order to obtain the desired dynamic behavior, given the motion variables q(t), q(t) and q(t). The solution of this inverse problem is useful for the trajectory planning problems and for the control algorithms implementation. B. Bona (DAUIN) Dynamics Semester 1, / 18

12 Example: robotics Let start from the dynamic model equation that one obtains from a generic robotic structure j H ij (q) q j + j h ijk (q) q j q k + g i (q) = τ i k The various terms (H ij, h ijk and g i ) depend on the time configuration q(t) as indicated. To solve them, a large number of computations is necessary; it has been demonstrated that the product number is proportional to n 4, i.e., its complexity is O(n 4 ). B. Bona (DAUIN) Dynamics Semester 1, / 18

13 Recursive algorithm To overcome this problem, efficient recursive algorithms have been introduced; they consist of two steps: Forward recursion: we use the kinematic functions, that, given a generic q i allow to compute q i and q i 1 given q 1, q 1 and q 1, one computes the linear and angular velocities and the acceleration v c1, ω 1, a c1, ω 1 of the center-of-mass c 1 2 using these values and given q 2, q 2 and q 2, one computes the linear and angular velocities and the acceleration v c2, ω 2, a c2, ω 2 of the center-of-mass c 2 ; 3 the procedure is repeated until the last body quantities are computed. Backward recursion: knowing the gravitational forces and the externally applied forces, the command forces are computed backward from the last body link to the first. B. Bona (DAUIN) Dynamics Semester 1, / 18

14 Notation - 1 These notations are valid for an open-chain robotic structure. ω l k, αl k, al k are respectively the angular velocity, the angular acceleration and the linear acceleration of the joint k, expressed in R l attached to link l; R k k 1 is the rotation matrix from R k to R k 1 ; i.e., x k = R k k 1 x k 1 d l k 1,k is the translation of the origin of R k 1 from the origin of R k, represented in R l ; d l k 1,k c is the translation of the origin of R k 1 to the center-of-mass of link k, represented in R l ; f l k 1,k is the constraint force transmitted from link k 1 to link k, represented in R l ; τ l k 1,k is the constraint torque transmitted from link k 1 to link k, represented in R l ; B. Bona (DAUIN) Dynamics Semester 1, / 18

15 Notation -2 F l k,c is the resulting force applied on link k, having its action line across the center-of-mass of the link k, represented in R l ; T l kc is the resulting torque applied on link k, equal to the moment with respect to the center-of-mass of the link k, represented in R l ; Γ l k/c is the inertia matrix of link k with respect to the center-of-mass of the link k, represented in R l ; m k is the mass of link k; k = [ ] T ; recall that d k k,k c = (d k k 1,k c d k k 1,k ) and dk k,k c, d k k 1,k c, d k k 1,k are constant in R k, B. Bona (DAUIN) Dynamics Semester 1, / 18

16 Recursive algorithm - 1 Recursive Algorithm for a revolute joint manipulator: Initialization ω 0 0 = 0, α 0 0 = 0, a 0 0 = g 0 where g 0 is the gravitational acceleration vector. Forward recursion (k = 1,...,n). ω k k = Rk k 1 (ωk 1 k 1 + θ k k) (1) α k k = Rk k 1 (αk 1 k 1 + S(ωk 1 k 1 ) θ k k + θ k k) (2) a k k = Rk k 1 ak 1 k 1 + S(αk k )dk k 1,k + S(ωk k )S(ωk k )dk k 1,k (3) Center-of-mass motion computation (k = 1,...,n) ) F k kc = m k (a k k + S(αk k )dk k,kc + S(ω k k )S(ωk k )dk k,kc (4) T k kc = Γk k/c αk k + S(ωk k )Γk k/c ωk k (5) B. Bona (DAUIN) Dynamics Semester 1, / 18

17 Recursive algorithm - 2 Backward recursion (k = n 1,...,0) Motion Torques f k k 1,k = Rk+1 k f k+1 k,k+1 + Fk kc (6) τ k k 1,k = Rk+1 k τ k+1 k,k+1 + S(dk k 1,k )Rk+1 k f k+1 k,k+1 (7) + S(d k k 1,k c )F k kc + Tk kc (8) τ k = k T R k 1 k τ k k 1,k This algorithm requires 117n 24 products and 103n 21 sums, that for a manipulator with n = 6, results in 678 products and 597 sums, a much smaller number compared with the Lagrangian approach. B. Bona (DAUIN) Dynamics Semester 1, / 18

18 Conclusions Dynamics equations are essential for modelling and control purposes Modelling is easier to understand adopting the Lagrange energy function Computer program are more efficient if they implement recursive Newton-Euler approach Nonlinear state equations have this form H(q) q(t) + C(q, q) q(t) + B q + g(q) = τ B. Bona (DAUIN) Dynamics Semester 1, / 18

Multibody simulation

Multibody simulation Multibody simulation Dynamics of a multibody system (Euler-Lagrange formulation) Dimitar Dimitrov Örebro University June 16, 2012 Main points covered Euler-Lagrange formulation manipulator inertia matrix

More information

Rigid body dynamics. Basilio Bona. DAUIN - Politecnico di Torino. October 2013

Rigid body dynamics. Basilio Bona. DAUIN - Politecnico di Torino. October 2013 Rigid body dynamics Basilio Bona DAUIN - Politecnico di Torino October 2013 Basilio Bona (DAUIN - Politecnico di Torino) Rigid body dynamics October 2013 1 / 16 Multiple point-mass bodies Each mass is

More information

Rigid Manipulator Control

Rigid Manipulator Control Rigid Manipulator Control The control problem consists in the design of control algorithms for the robot motors, such that the TCP motion follows a specified task in the cartesian space Two types of task

More information

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J. Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik Robot Dynamics Dr.-Ing. John Nassour 25.1.218 J.Nassour 1 Introduction Dynamics concerns the motion of bodies Includes Kinematics

More information

Dynamics. describe the relationship between the joint actuator torques and the motion of the structure important role for

Dynamics. describe the relationship between the joint actuator torques and the motion of the structure important role for Dynamics describe the relationship between the joint actuator torques and the motion of the structure important role for simulation of motion (test control strategies) analysis of manipulator structures

More information

Multibody simulation

Multibody simulation Multibody simulation Dynamics of a multibody system (Newton-Euler formulation) Dimitar Dimitrov Örebro University June 8, 2012 Main points covered Newton-Euler formulation forward dynamics inverse dynamics

More information

Kinematics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Kinematics Semester 1, / 15

Kinematics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Kinematics Semester 1, / 15 Kinematics Basilio Bona DAUIN Politecnico di Torino Semester 1, 2016-17 B. Bona (DAUIN) Kinematics Semester 1, 2016-17 1 / 15 Introduction The kinematic quantities used to represent a body frame are: position

More information

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS DYNAMICS OF SERIAL ROBOTIC MANIPULATORS NOMENCLATURE AND BASIC DEFINITION We consider here a mechanical system composed of r rigid bodies and denote: M i 6x6 inertia dyads of the ith body. Wi 6 x 6 angular-velocity

More information

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings:

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings: Introduction Up to this point we have considered only the kinematics of a manipulator. That is, only the specification of motion without regard to the forces and torques required to cause motion In this

More information

Introduction to Robotics

Introduction to Robotics J. Zhang, L. Einig 277 / 307 MIN Faculty Department of Informatics Lecture 8 Jianwei Zhang, Lasse Einig [zhang, einig]@informatik.uni-hamburg.de University of Hamburg Faculty of Mathematics, Informatics

More information

MSMS Basilio Bona DAUIN PoliTo

MSMS Basilio Bona DAUIN PoliTo MSMS 214-215 Basilio Bona DAUIN PoliTo Problem 2 The planar system illustrated in Figure 1 consists of a bar B and a wheel W moving (no friction, no sliding) along the bar; the bar can rotate around an

More information

Manipulator Dynamics 2. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

Manipulator Dynamics 2. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA Manipulator Dynamics 2 Forward Dynamics Problem Given: Joint torques and links geometry, mass, inertia, friction Compute: Angular acceleration of the links (solve differential equations) Solution Dynamic

More information

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation ECE5463: Introduction to Robotics Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio,

More information

ROBOTICS Laboratory Problem 02

ROBOTICS Laboratory Problem 02 ROBOTICS 2015-2016 Laboratory Problem 02 Basilio Bona DAUIN PoliTo Problem formulation The planar system illustrated in Figure 1 consists of a cart C sliding with or without friction along the horizontal

More information

Kinematics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Kinematics Semester 1, / 15

Kinematics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Kinematics Semester 1, / 15 Kinematics Basilio Bona DAUIN Politecnico di Torino Semester 1, 2014-15 B. Bona (DAUIN) Kinematics Semester 1, 2014-15 1 / 15 Introduction The kinematic quantities used are: position r, linear velocity

More information

Robot Dynamics II: Trajectories & Motion

Robot Dynamics II: Trajectories & Motion Robot Dynamics II: Trajectories & Motion Are We There Yet? METR 4202: Advanced Control & Robotics Dr Surya Singh Lecture # 5 August 23, 2013 metr4202@itee.uq.edu.au http://itee.uq.edu.au/~metr4202/ 2013

More information

MSMS Matlab Problem 02

MSMS Matlab Problem 02 MSMS 2014-2015 Matlab Problem 02 Basilio Bona DAUIN PoliTo Problem formulation The planar system illustrated in Figure 1 consists of a cart C sliding with friction along the horizontal rail; the cart supports

More information

Introduction to centralized control

Introduction to centralized control ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Control Part 2 Introduction to centralized control Independent joint decentralized control may prove inadequate when the user requires high task

More information

1/30. Rigid Body Rotations. Dave Frank

1/30. Rigid Body Rotations. Dave Frank . 1/3 Rigid Body Rotations Dave Frank A Point Particle and Fundamental Quantities z 2/3 m v ω r y x Angular Velocity v = dr dt = ω r Kinetic Energy K = 1 2 mv2 Momentum p = mv Rigid Bodies We treat a rigid

More information

Kinematics. Basilio Bona. October DAUIN - Politecnico di Torino. Basilio Bona (DAUIN - Politecnico di Torino) Kinematics October / 15

Kinematics. Basilio Bona. October DAUIN - Politecnico di Torino. Basilio Bona (DAUIN - Politecnico di Torino) Kinematics October / 15 Kinematics Basilio Bona DAUIN - Politecnico di Torino October 2013 Basilio Bona (DAUIN - Politecnico di Torino) Kinematics October 2013 1 / 15 Introduction The kinematic quantities used are: position r,

More information

(W: 12:05-1:50, 50-N202)

(W: 12:05-1:50, 50-N202) 2016 School of Information Technology and Electrical Engineering at the University of Queensland Schedule of Events Week Date Lecture (W: 12:05-1:50, 50-N202) 1 27-Jul Introduction 2 Representing Position

More information

f x f y or else = m a y

f x f y or else = m a y Rigid Body Dynamics If the aim of kinematics is to describe the body motion, the aim of dynamics is to explain it; the history of mechanics shows that the passage from description to explanation requires

More information

Dynamics of Open Chains

Dynamics of Open Chains Chapter 9 Dynamics of Open Chains According to Newton s second law of motion, any change in the velocity of a rigid body is caused by external forces and torques In this chapter we study once again the

More information

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space Motion in Space MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Suppose the position vector of a moving object is given by r(t) = f (t), g(t), h(t), Background

More information

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202)

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) J = x θ τ = J T F 2018 School of Information Technology and Electrical Engineering at the University of Queensland Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) 1 23-Jul Introduction + Representing

More information

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when

More information

Video 1.1 Vijay Kumar and Ani Hsieh

Video 1.1 Vijay Kumar and Ani Hsieh Video 1.1 Vijay Kumar and Ani Hsieh 1 Robotics: Dynamics and Control Vijay Kumar and Ani Hsieh University of Pennsylvania 2 Why? Robots live in a physical world The physical world is governed by the laws

More information

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions.

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions. Robotics II March 7, 018 Exercise 1 An automated crane can be seen as a mechanical system with two degrees of freedom that moves along a horizontal rail subject to the actuation force F, and that transports

More information

In most robotic applications the goal is to find a multi-body dynamics description formulated

In most robotic applications the goal is to find a multi-body dynamics description formulated Chapter 3 Dynamics Mathematical models of a robot s dynamics provide a description of why things move when forces are generated in and applied on the system. They play an important role for both simulation

More information

Lecture 41: Highlights

Lecture 41: Highlights Lecture 41: Highlights The goal of this lecture is to remind you of some of the key points that we ve covered this semester Note that this is not the complete set of topics that may appear on the final

More information

Video 2.1a Vijay Kumar and Ani Hsieh

Video 2.1a Vijay Kumar and Ani Hsieh Video 2.1a Vijay Kumar and Ani Hsieh Robo3x-1.3 1 Introduction to Lagrangian Mechanics Vijay Kumar and Ani Hsieh University of Pennsylvania Robo3x-1.3 2 Analytical Mechanics Aristotle Galileo Bernoulli

More information

Case Study: The Pelican Prototype Robot

Case Study: The Pelican Prototype Robot 5 Case Study: The Pelican Prototype Robot The purpose of this chapter is twofold: first, to present in detail the model of the experimental robot arm of the Robotics lab. from the CICESE Research Center,

More information

Trajectory-tracking control of a planar 3-RRR parallel manipulator

Trajectory-tracking control of a planar 3-RRR parallel manipulator Trajectory-tracking control of a planar 3-RRR parallel manipulator Chaman Nasa and Sandipan Bandyopadhyay Department of Engineering Design Indian Institute of Technology Madras Chennai, India Abstract

More information

112 Dynamics. Example 5-3

112 Dynamics. Example 5-3 112 Dynamics Gravity Joint 1 Figure 6-7: Remotely driven two d.o.r. planar manipulator. Note that, since no external force acts on the endpoint, the generalized forces coincide with the joint torques,

More information

Dynamics. 1 Copyright c 2015 Roderic Grupen

Dynamics. 1 Copyright c 2015 Roderic Grupen Dynamics The branch of physics that treats the action of force on bodies in motion or at rest; kinetics, kinematics, and statics, collectively. Websters dictionary Outline Conservation of Momentum Inertia

More information

Nonholonomic Constraints Examples

Nonholonomic Constraints Examples Nonholonomic Constraints Examples Basilio Bona DAUIN Politecnico di Torino July 2009 B. Bona (DAUIN) Examples July 2009 1 / 34 Example 1 Given q T = [ x y ] T check that the constraint φ(q) = (2x + siny

More information

Robotics. Dynamics. Marc Toussaint U Stuttgart

Robotics. Dynamics. Marc Toussaint U Stuttgart Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler recursion, general robot dynamics, joint space control, reference trajectory

More information

Newton-Euler Dynamics of Robots

Newton-Euler Dynamics of Robots 4 NewtonEuler Dynamics of Robots Mark L. Nagurka Marquette University BenGurion University of the Negev 4.1 Introduction Scope Background 4.2 Theoretical Foundations NewtonEuler Equations Force and Torque

More information

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Dynamics. Dynamics of mechanical particle and particle systems (many body systems) Dynamics Dynamics of mechanical particle and particle systems (many body systems) Newton`s first law: If no net force acts on a body, it will move on a straight line at constant velocity or will stay at

More information

Chapter 5. . Dynamics. 5.1 Introduction

Chapter 5. . Dynamics. 5.1 Introduction Chapter 5. Dynamics 5.1 Introduction The study of manipulator dynamics is essential for both the analysis of performance and the design of robot control. A manipulator is a multilink, highly nonlinear

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Kinematic Functions Kinematic functions Kinematics deals with the study of four functions(called kinematic functions or KFs) that mathematically

More information

Fuzzy Based Robust Controller Design for Robotic Two-Link Manipulator

Fuzzy Based Robust Controller Design for Robotic Two-Link Manipulator Abstract Fuzzy Based Robust Controller Design for Robotic Two-Link Manipulator N. Selvaganesan 1 Prabhu Jude Rajendran 2 S.Renganathan 3 1 Department of Instrumentation Engineering, Madras Institute of

More information

RECURSIVE INVERSE DYNAMICS

RECURSIVE INVERSE DYNAMICS We assume at the outset that the manipulator under study is of the serial type with n+1 links including the base link and n joints of either the revolute or the prismatic type. The underlying algorithm

More information

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar Video 8.1 Vijay Kumar 1 Definitions State State equations Equilibrium 2 Stability Stable Unstable Neutrally (Critically) Stable 3 Stability Translate the origin to x e x(t) =0 is stable (Lyapunov stable)

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

Robotics. Dynamics. University of Stuttgart Winter 2018/19

Robotics. Dynamics. University of Stuttgart Winter 2018/19 Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler, joint space control, reference trajectory following, optimal operational

More information

Physical Dynamics (SPA5304) Lecture Plan 2018

Physical Dynamics (SPA5304) Lecture Plan 2018 Physical Dynamics (SPA5304) Lecture Plan 2018 The numbers on the left margin are approximate lecture numbers. Items in gray are not covered this year 1 Advanced Review of Newtonian Mechanics 1.1 One Particle

More information

Generalized coordinates and constraints

Generalized coordinates and constraints Generalized coordinates and constraints Basilio Bona DAUIN Politecnico di Torino Semester 1, 2014-15 B. Bona (DAUIN) Generalized coordinates and constraints Semester 1, 2014-15 1 / 25 Coordinates A rigid

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,350 108,000 1.7 M Open access books available International authors and editors Downloads Our

More information

III. Work and Energy

III. Work and Energy Rotation I. Kinematics - Angular analogs II. III. IV. Dynamics - Torque and Rotational Inertia Work and Energy Angular Momentum - Bodies and particles V. Elliptical Orbits The student will be able to:

More information

Lecture 9 - Rotational Dynamics

Lecture 9 - Rotational Dynamics Lecture 9 - Rotational Dynamics A Puzzle... Angular momentum is a 3D vector, and changing its direction produces a torque τ = dl. An important application in our daily lives is that bicycles don t fall

More information

DYNAMICS OF PARALLEL MANIPULATOR

DYNAMICS OF PARALLEL MANIPULATOR DYNAMICS OF PARALLEL MANIPULATOR The 6nx6n matrices of manipulator mass M and manipulator angular velocity W are introduced below: M = diag M 1, M 2,, M n W = diag (W 1, W 2,, W n ) From this definitions

More information

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

More information

Robust Control of Robot Manipulator by Model Based Disturbance Attenuation

Robust Control of Robot Manipulator by Model Based Disturbance Attenuation IEEE/ASME Trans. Mechatronics, vol. 8, no. 4, pp. 511-513, Nov./Dec. 2003 obust Control of obot Manipulator by Model Based Disturbance Attenuation Keywords : obot manipulators, MBDA, position control,

More information

Dynamics 12e. Copyright 2010 Pearson Education South Asia Pte Ltd. Chapter 20 3D Kinematics of a Rigid Body

Dynamics 12e. Copyright 2010 Pearson Education South Asia Pte Ltd. Chapter 20 3D Kinematics of a Rigid Body Engineering Mechanics: Dynamics 12e Chapter 20 3D Kinematics of a Rigid Body Chapter Objectives Kinematics of a body subjected to rotation about a fixed axis and general plane motion. Relative-motion analysis

More information

Differential Kinematics

Differential Kinematics Differential Kinematics Relations between motion (velocity) in joint space and motion (linear/angular velocity) in task space (e.g., Cartesian space) Instantaneous velocity mappings can be obtained through

More information

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as 2 MODELING Once the control target is identified, which includes the state variable to be controlled (ex. speed, position, temperature, flow rate, etc), and once the system drives are identified (ex. force,

More information

Torque and Rotation Lecture 7

Torque and Rotation Lecture 7 Torque and Rotation Lecture 7 ˆ In this lecture we finally move beyond a simple particle in our mechanical analysis of motion. ˆ Now we consider the so-called rigid body. Essentially, a particle with extension

More information

Robot Control Basics CS 685

Robot Control Basics CS 685 Robot Control Basics CS 685 Control basics Use some concepts from control theory to understand and learn how to control robots Control Theory general field studies control and understanding of behavior

More information

Physical Dynamics (PHY-304)

Physical Dynamics (PHY-304) Physical Dynamics (PHY-304) Gabriele Travaglini March 31, 2012 1 Review of Newtonian Mechanics 1.1 One particle Lectures 1-2. Frame, velocity, acceleration, number of degrees of freedom, generalised coordinates.

More information

Symmetries 2 - Rotations in Space

Symmetries 2 - Rotations in Space Symmetries 2 - Rotations in Space This symmetry is about the isotropy of space, i.e. space is the same in all orientations. Thus, if we continuously rotated an entire system in space, we expect the system

More information

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation ECE5463: Introduction to Robotics Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio,

More information

Translational and Rotational Dynamics!

Translational and Rotational Dynamics! Translational and Rotational Dynamics Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 217 Copyright 217 by Robert Stengel. All rights reserved. For educational use only.

More information

Lecture II: Rigid-Body Physics

Lecture II: Rigid-Body Physics Rigid-Body Motion Previously: Point dimensionless objects moving through a trajectory. Today: Objects with dimensions, moving as one piece. 2 Rigid-Body Kinematics Objects as sets of points. Relative distances

More information

A j = 0.1 cm 2 10 cm 10 cm 10 cm. W j Wj. W j W j. W j. 10 cm 10 cm 10 cm. r i

A j = 0.1 cm 2 10 cm 10 cm 10 cm. W j Wj. W j W j. W j. 10 cm 10 cm 10 cm. r i ME 131B Fluid Mechanics Solutions to Week Eight Problem Session: Angular Momentum Principle (3/2/98) 1. In control volume analysis, all governing principles share the same common structure: storage = inow

More information

Video 3.1 Vijay Kumar and Ani Hsieh

Video 3.1 Vijay Kumar and Ani Hsieh Video 3.1 Vijay Kumar and Ani Hsieh Robo3x-1.3 1 Dynamics of Robot Arms Vijay Kumar and Ani Hsieh University of Pennsylvania Robo3x-1.3 2 Lagrange s Equation of Motion Lagrangian Kinetic Energy Potential

More information

41514 Dynamics of Machinery

41514 Dynamics of Machinery 41514 Dynamics of Machinery Theory, Experiment, Phenomenology and Industrial Applications Ilmar Ferreira Santos 1. Recapitulation Mathematical Modeling & Steps 2. Example System of Particle 3. Example

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C and 11/15/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 Did you read Chapter 12 in the textbook on? 2 Must an object be rotating to have a moment

More information

Rigid body simulation. Once we consider an object with spatial extent, particle system simulation is no longer sufficient

Rigid body simulation. Once we consider an object with spatial extent, particle system simulation is no longer sufficient Rigid body dynamics Rigid body simulation Once we consider an object with spatial extent, particle system simulation is no longer sufficient Rigid body simulation Unconstrained system no contact Constrained

More information

Rigid Body Dynamics and Beyond

Rigid Body Dynamics and Beyond Rigid Body Dynamics and Beyond 1 Rigid Bodies 3 A rigid body Collection of particles Distance between any two particles is always constant What types of motions preserve these constraints? Translation,

More information

ENGG 5402 Course Project: Simulation of PUMA 560 Manipulator

ENGG 5402 Course Project: Simulation of PUMA 560 Manipulator ENGG 542 Course Project: Simulation of PUMA 56 Manipulator ZHENG Fan, 115551778 mrzhengfan@gmail.com April 5, 215. Preface This project is to derive programs for simulation of inverse dynamics and control

More information

Lecture 38: Equations of Rigid-Body Motion

Lecture 38: Equations of Rigid-Body Motion Lecture 38: Equations of Rigid-Body Motion It s going to be easiest to find the equations of motion for the object in the body frame i.e., the frame where the axes are principal axes In general, we can

More information

Exponential Controller for Robot Manipulators

Exponential Controller for Robot Manipulators Exponential Controller for Robot Manipulators Fernando Reyes Benemérita Universidad Autónoma de Puebla Grupo de Robótica de la Facultad de Ciencias de la Electrónica Apartado Postal 542, Puebla 7200, México

More information

Lesson Rigid Body Dynamics

Lesson Rigid Body Dynamics Lesson 8 Rigid Body Dynamics Lesson 8 Outline Problem definition and motivations Dynamics of rigid bodies The equation of unconstrained motion (ODE) User and time control Demos / tools / libs Rigid Body

More information

Some history. F p. 1/??

Some history. F p. 1/?? Some history F 12 10 18 p. 1/?? F 12 10 18 p. 1/?? Some history 1600: Galileo Galilei 1564 1642 cf. section 7.0 Johannes Kepler 1571 1630 cf. section 3.7 1700: Isaac Newton 1643 1727 cf. section 1.1 1750

More information

Final Review Prof. WAN, Xin

Final Review Prof. WAN, Xin General Physics I Final Review Prof. WAN, Xin xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ About the Final Exam Total 6 questions. 40% mechanics, 30% wave and relativity, 30% thermal physics. Pick

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Micro Aerial Vehicle Dynamics Dr. Kostas Alexis (CSE) Goal of this lecture The goal of this lecture is to derive the equations of motion that describe the motion of

More information

The... of a particle is defined as its change in position in some time interval.

The... of a particle is defined as its change in position in some time interval. Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

More information

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B-1A: ROTATIONAL DYNAMICS Essential Idea: The basic laws of mechanics have an extension when equivalent principles are applied to rotation. Actual

More information

DYNAMIC MODEL FOR AN ARTICULATED MANIPULATOR. Luis Arturo Soriano, Jose de Jesus Rubio, Salvador Rodriguez and Cesar Torres

DYNAMIC MODEL FOR AN ARTICULATED MANIPULATOR. Luis Arturo Soriano, Jose de Jesus Rubio, Salvador Rodriguez and Cesar Torres ICIC Express Letters Part B: Applications ICIC International c 011 ISSN 185-766 Volume, Number, April 011 pp 415 40 DYNAMIC MODEL FOR AN ARTICULATED MANIPULATOR Luis Arturo Soriano, Jose de Jesus Rubio,

More information

16. Rotational Dynamics

16. Rotational Dynamics 6. Rotational Dynamics A Overview In this unit we will address examples that combine both translational and rotational motion. We will find that we will need both Newton s second law and the rotational

More information

Modeling and Experimentation: Compound Pendulum

Modeling and Experimentation: Compound Pendulum Modeling and Experimentation: Compound Pendulum Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin Fall 2014 Overview This lab focuses on developing a mathematical

More information

The Modeling of Single-dof Mechanical Systems

The Modeling of Single-dof Mechanical Systems The Modeling of Single-dof Mechanical Systems Lagrange equation for a single-dof system: where: q: is the generalized coordinate; T: is the total kinetic energy of the system; V: is the total potential

More information

Chapter 4 Statics and dynamics of rigid bodies

Chapter 4 Statics and dynamics of rigid bodies Chapter 4 Statics and dynamics of rigid bodies Bachelor Program in AUTOMATION ENGINEERING Prof. Rong-yong Zhao (zhaorongyong@tongji.edu.cn) First Semester,2014-2015 Content of chapter 4 4.1 Static equilibrium

More information

Dynamics modeling of an electro-hydraulically actuated system

Dynamics modeling of an electro-hydraulically actuated system Dynamics modeling of an electro-hydraulically actuated system Pedro Miranda La Hera Dept. of Applied Physics and Electronics Umeå University xavier.lahera@tfe.umu.se Abstract This report presents a discussion

More information

Autonomous Underwater Vehicles: Equations of Motion

Autonomous Underwater Vehicles: Equations of Motion Autonomous Underwater Vehicles: Equations of Motion Monique Chyba - November 18, 2015 Departments of Mathematics, University of Hawai i at Mānoa Elective in Robotics 2015/2016 - Control of Unmanned Vehicles

More information

Modeling of a Mechanical System

Modeling of a Mechanical System Chapter 3 Modeling of a Mechanical System 3.1 Units Currently, there are two systems of units: One is the international system (SI) metric system, the other is the British engineering system (BES) the

More information

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

More information

Announcements. 1. Do not bring the yellow equation sheets to the miderm. Idential sheets will be attached to the problems.

Announcements. 1. Do not bring the yellow equation sheets to the miderm. Idential sheets will be attached to the problems. Announcements 1. Do not bring the yellow equation sheets to the miderm. Idential sheets will be attached to the problems. 2. Some PRS transmitters are missing. Please, bring them back! 1 Kinematics Displacement

More information

Dynamic Model of a Badminton Stroke

Dynamic Model of a Badminton Stroke ISEA 28 CONFERENCE Dynamic Model of a Badminton Stroke M. Kwan* and J. Rasmussen Department of Mechanical Engineering, Aalborg University, 922 Aalborg East, Denmark Phone: +45 994 9317 / Fax: +45 9815

More information

Robot Manipulator Control. Hesheng Wang Dept. of Automation

Robot Manipulator Control. Hesheng Wang Dept. of Automation Robot Manipulator Control Hesheng Wang Dept. of Automation Introduction Industrial robots work based on the teaching/playback scheme Operators teach the task procedure to a robot he robot plays back eecute

More information

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work.

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. In-Class Activities: 2. Apply the principle of work

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

Chapter 14 Periodic Motion

Chapter 14 Periodic Motion Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

More information

Advanced Robotic Manipulation

Advanced Robotic Manipulation Lecture Notes (CS327A) Advanced Robotic Manipulation Oussama Khatib Stanford University Spring 2005 ii c 2005 by Oussama Khatib Contents 1 Spatial Descriptions 1 1.1 Rigid Body Configuration.................

More information

EN Nonlinear Control and Planning in Robotics Lecture 2: System Models January 28, 2015

EN Nonlinear Control and Planning in Robotics Lecture 2: System Models January 28, 2015 EN53.678 Nonlinear Control and Planning in Robotics Lecture 2: System Models January 28, 25 Prof: Marin Kobilarov. Constraints The configuration space of a mechanical sysetm is denoted by Q and is assumed

More information

The Dynamics of Fixed Base and Free-Floating Robotic Manipulator

The Dynamics of Fixed Base and Free-Floating Robotic Manipulator The Dynamics of Fixed Base and Free-Floating Robotic Manipulator Ravindra Biradar 1, M.B.Kiran 1 M.Tech (CIM) Student, Department of Mechanical Engineering, Dayananda Sagar College of Engineering, Bangalore-560078

More information

Fundamental principles

Fundamental principles Dynamics and control of mechanical systems Date Day 1 (03/05) - 05/05 Day (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid

More information

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics Many interesting physics systems describe systems of particles on which many forces are acting. Some of these forces are immediately

More information