Laser Physics 5 Inhomogeneous broadening

Size: px
Start display at page:

Download "Laser Physics 5 Inhomogeneous broadening"

Transcription

1 Laser Physics 5 Inhomogeneous broadening Fabien Bretenaker Fabien.Bretenaker@u-psud.fr Laboratoire Aimé Cotton Orsay - France

2 Homogeneous vs Inhomogeneous Homogeneous broadening: all the atoms have the same behavior, are described by the same cross sec8on σ(ν) α( ν ) = σ( ν )Δn Broadening mechanism: short coherence life8me (dephasing collisions, phonons, magne8c fields, electric fields, ) Inhomogeneous broadening: the atoms behave slightly differently, resul8ng in slightly shibed resonances This dispersion in resonance leads to an overall broadening of the transi8on If this dispersion is much broader than the homogeneous profile, the width is referred to as purely inhomogeneous. 2

3 Example: Gaussian inhomogeneous profile Sta8s8cal nature of the physical origin oben (but not always!) leads to a Gaussian profile: Example: Doppler broadening. Frequency shib due to atom velocity: Probability distribu8on for the velocity component along the z axis is Gaussian at thermal equilibrium 3

4 Example: Gaussian inhomogeneous profile The probablity for the resonance to lie in the interval [ν, ν + ν] seen along the z axis is propor8onal to this velocity distribu8on This leads to the following normalized profile and Doppler linewidth (M is molar mass, R is the ideal gas constant) Other examples of inhomogeneous broadening: ions in a crystalline host, isotopic mixture, etc 4

5 Unsaturated amplifica;on coefficient In the general case, distribu8on of resonance frequencies ν i denoted as P(ν i - ν 0 ), centered in ν 0 Assume pumping is the same for all atom class ( n 0 does not depend on ν i ) Popula8on inversion for atoms whose resonance frequencies lie in the range [ν i, ν i + dν i ] : 5

6 Unsaturated amplifica;on coefficient For the atom with resonance frequency ν i, the cross-sec8on σ i (ν) is given by the normalized homogeneous profile g(ν - ν i ) Overall unsaturated gain obtained by summing over all classes of atoms 6

7 Unsaturated amplifica;on coefficient: limi;ng cases In the limi8ng cases: purely homogeneous or purely inhomogeneous, becomes 7

8 Spectral hole burning Now let us consider satura8on of popula8on inversion by a wave at frequency ν. The satura8on intensity at frequency ν for atoms in the class i is I sat0 = hν/2*σ 0 τ is the satura8on intensity at resonance. Popula8on inversion for this class of atoms is therefore: 8

9 Spectral hole burning Unsaturated spectral population inversion Saturation term Satura8on term is nonzero only close to resonance Burn a hole with rela8ve depth given by 9

10 Spectral hole burning for Lorentzian homogeneous profile For a Lorentzian homogeneous profile The satura8on term reads In the purely inhomogenous approxima8on, this leads to a hole of width Saturation broadening Only the atoms close to resonance par8cipate, the others are passive spectators 10

11 Saturated amplifica;on coefficient Gain is obtained by summing over all classes of atoms Leading to = + σi( )dδni α( ν ) ν In the purely inhomogeneous case with P = G and g = L, one can assume P(ν i - ν 0 ) P(ν - ν 0 ), and take it out of the integral Satura8on reproduces the inhomogeneous profile, but reduces the gain 11

12 Laser opera;on in purely inhomogenous case In a mostly inhomogeneously broadened gain medium, several longitudinal modes may oscillate simultaneously Indeed each mode oscilla8ng at ν q correponds to a class of atoms that interact only with this mode if the homogeneous width is much smaller than the FSR of the laser Mul8ple spectral holes are burnt in the popula8on inversion 12

13 Laser opera;on in purely inhomogenous case If I q is the intensity of mode q, we write the equality of gain and losses for each mode Leading to the following expression for I q Intensity of the mode varies like the square of the inhomogeneous profile. Output power is 13

14 Mode compe;;on CW opera8on of a mul8mode laser leads to several new physical problems Mode compe88on: do the mode oscillate simultaneously, or does one of them oscillate alone? Mode intensi8es: what happens to the previous result when the broadening is not purely inhomogeneous Mode phase: what is the rela8ve phase of simultaneously oscilla8ng modes, and what does it imply? 14

15 Spectral hole burning in a linear cavity For a single-mode gas laser in a linear cavity, the light interacts with two velocity classes d N/dv z d N/dv z v z Δv c z = Δ ν ν h v z v - v z v + v z 15

16 Spectral hole burning in a linear cavity The laser extracts energy from two velocity classes If ν = ν 0, the two holes merge, and atoms with zero longitudianl velocity interact with both counterpropaga8ng waves Neglec8ng spa8al hole burning, the gain is As a consequence, when ν = ν 0, the total power decreases by a factor of 2, over a width equal to the homogeneous linewidth of the gain medium This is known as the Lamb dip 16

17 Reverse Lamb dip The same phenomenon exists in absorp8on In a laser including a saturable absorber, an increase in intensity is observed when the laser frequency coincides with the resonance of the absorbing cell. Due to bleaching of the zero velocity class Used to stabilize lasers in frequency 17

18 Mode selec;on Mode selec8on in a laser can be performed by inser8ng a filter in the cavity (introducing frequency-dependent losses): Birefringent filter (Lyot filter) Prism or gra8ng Fabry Perot Etalon Subcavity ac8ng as filters Once single mode laser opera8on is reached, stabiliza8on is required for various applica8ons using an extenral reference (stabilized cavity, atomic resonance) and an ac8ve feedback loop on the laser cavity 18

Lecture 8 Con,nuous- Wave Laser*

Lecture 8 Con,nuous- Wave Laser* Lecture 8 Con,nuous- Wave Laser* Min Yan Op,cs and Photonics, KTH 24/04/15 1 * Some figures and texts belong to: O. Svelto, Principles of Lasers, 5th Ed., Springer. Reading Principles of Lasers (5th Ed.):

More information

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii ate LIST OF TOPICS Preface xiii Units and Notation xv List of Symbols xvii BASIC LASER PHYSICS Chapter 1 An Introduction to Lasers 1.1 What Is a Laser? 2 1.2 Atomic Energy Levels and Spontaneous Emission

More information

A few Experimental methods for optical spectroscopy Classical methods Modern methods. Remember class #1 Generating fast LASER pulses

A few Experimental methods for optical spectroscopy Classical methods Modern methods. Remember class #1 Generating fast LASER pulses A few Experimental methods for optical spectroscopy Classical methods Modern methods Shorter class Remember class #1 Generating fast LASER pulses, 2017 Uwe Burghaus, Fargo, ND, USA W. Demtröder, Laser

More information

Quantum Electronics Laser Physics PS Theory of the Laser Oscillation

Quantum Electronics Laser Physics PS Theory of the Laser Oscillation Quantum Electronics Laser Physics PS407 6. Theory of the Laser Oscillation 1 I. Laser oscillator: Overview Laser is an optical oscillator. Resonant optical amplifier whose output is fed back into its input

More information

Cavity decay rate in presence of a Slow-Light medium

Cavity decay rate in presence of a Slow-Light medium Cavity decay rate in presence of a Slow-Light medium Laboratoire Aimé Cotton, Orsay, France Thomas Lauprêtre Fabienne Goldfarb Fabien Bretenaker School of Physical Sciences, Jawaharlal Nehru University,

More information

CHAPTER FIVE. Optical Resonators Containing Amplifying Media

CHAPTER FIVE. Optical Resonators Containing Amplifying Media CHAPTER FIVE Optical Resonators Containing Amplifying Media 5 Optical Resonators Containing Amplifying Media 5.1 Introduction In this chapter we shall combine what we have learned about optical frequency

More information

Who we are. Lectures - Fabien Bretenaker (LAC) - Marc Hanna (LCF) - Thierry Ruchon (LIDyL)

Who we are. Lectures - Fabien Bretenaker (LAC) - Marc Hanna (LCF) - Thierry Ruchon (LIDyL) ! Laser Physics Who we are Lectures - Fabien Bretenaker (LAC) - Marc Hanna (LCF) - Thierry Ruchon (LIDyL) Exercice classes - Frédéric Druon (LCF) - Sophie Kazamias (LPGP) - Dimitris Papadopoulos (LULI)

More information

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Lecture 10. Lidar Effective Cross-Section vs. Convolution Lecture 10. Lidar Effective Cross-Section vs. Convolution q Introduction q Convolution in Lineshape Determination -- Voigt Lineshape (Lorentzian Gaussian) q Effective Cross Section for Single Isotope --

More information

OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones

OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones OPTI 5, Spring 206 Problem Set 9 Prof. R. J. Jones Due Friday, April 29. Absorption and thermal distributions in a 2-level system Consider a collection of identical two-level atoms in thermal equilibrium.

More information

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19 OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19 1. (a) Suppose you want to use a lens focus a Gaussian laser beam of wavelength λ in order to obtain a beam waist radius w

More information

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1

More information

Wavelength Frequency Measurements

Wavelength Frequency Measurements Wavelength Frequency Measurements Frequency: - unit to be measured most accurately in physics - frequency counters + frequency combs (gear wheels) - clocks for time-frequency Wavelength: - no longer fashionable

More information

Wolfgang Demtroder. Laser Spectroscopy. Basic Concepts and Instrumentation. Second Enlarged Edition With 644 Figures and 91 Problems.

Wolfgang Demtroder. Laser Spectroscopy. Basic Concepts and Instrumentation. Second Enlarged Edition With 644 Figures and 91 Problems. Wolfgang Demtroder Laser Spectroscopy Basic Concepts and Instrumentation Second Enlarged Edition With 644 Figures and 91 Problems Springer Contents 1. Introduction 1 2. Absorption and Emission of Light

More information

Photon Physics. Week 4 26/02/2013

Photon Physics. Week 4 26/02/2013 Photon Physics Week 4 6//13 1 Classical atom-field interaction Lorentz oscillator: Classical electron oscillator with frequency ω and damping constant γ Eqn of motion: Final result: Classical atom-field

More information

arxiv: v1 [physics.optics] 29 Jul 2011

arxiv: v1 [physics.optics] 29 Jul 2011 Observation of noise phase locking in a single-frequency VECSEL A. El Amili 1, V. Pal 2, F. Goldfarb 1, R. Ghosh 2, M. Alouini 3,4, I. Sagnes 5, and F. Bretenaker 1 1 Laboratoire Aimé Cotton, CNRS-Université

More information

Chapter9. Amplification of light. Lasers Part 2

Chapter9. Amplification of light. Lasers Part 2 Chapter9. Amplification of light. Lasers Part 06... Changhee Lee School of Electrical and Computer Engineering Seoul National Univ. chlee7@snu.ac.kr /9 9. Stimulated emission and thermal radiation The

More information

Noise Correlations in Dual Frequency VECSEL

Noise Correlations in Dual Frequency VECSEL Noise Correlations in Dual Frequency VECSEL S. De, A. El Amili, F. Bretenaker Laboratoire Aimé Cotton, CNRS, Orsay, France V. Pal, R. Ghosh Jawaharlal Nehru University, Delhi, India M. Alouini Institut

More information

Lecture 7 Pumping & Popula3on Inversion*

Lecture 7 Pumping & Popula3on Inversion* Lecture 7 Pumping & Popula3on Inversion* Min Yan Op3cs and Photonics, KTH 15/04/16 1 * Some figures and texts belong to: O. Svelto, Principles of Lasers, 5th Ed., Springer. Reading Principles of Lasers

More information

Chapter-4 Stimulated emission devices LASERS

Chapter-4 Stimulated emission devices LASERS Semiconductor Laser Diodes Chapter-4 Stimulated emission devices LASERS The Road Ahead Lasers Basic Principles Applications Gas Lasers Semiconductor Lasers Semiconductor Lasers in Optical Networks Improvement

More information

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion All-Optical Delay with Large Dynamic Range Using Atomic Dispersion M. R. Vanner, R. J. McLean, P. Hannaford and A. M. Akulshin Centre for Atom Optics and Ultrafast Spectroscopy February 2008 Motivation

More information

B 2 P 2, which implies that g B should be

B 2 P 2, which implies that g B should be Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS Stimulated Brillouin scattering is a nonlinear three-wave interaction between a forward-going laser pump beam P, a forward-going

More information

The Generation of Ultrashort Laser Pulses II

The Generation of Ultrashort Laser Pulses II The Generation of Ultrashort Laser Pulses II The phase condition Trains of pulses the Shah function Laser modes and mode locking 1 There are 3 conditions for steady-state laser operation. Amplitude condition

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

Spectral Broadening Mechanisms

Spectral Broadening Mechanisms Spectral Broadening Mechanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

ATOMIC AND LASER SPECTROSCOPY

ATOMIC AND LASER SPECTROSCOPY ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates

More information

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful Main Requirements of the Laser Optical Resonator Cavity Laser Gain Medium of 2, 3 or 4 level types in the Cavity Sufficient means of Excitation (called pumping) eg. light, current, chemical reaction Population

More information

ECE 484 Semiconductor Lasers

ECE 484 Semiconductor Lasers ECE 484 Semiconductor Lasers Dr. Lukas Chrostowski Department of Electrical and Computer Engineering University of British Columbia January, 2013 Module Learning Objectives: Understand the importance of

More information

! Fiber!Laser!Intracavity!Absorption! Spectroscopy!(FLICAS)!of!CO/CO2! mixture.!!! This experiment will expose you to tools and approaches, common in

! Fiber!Laser!Intracavity!Absorption! Spectroscopy!(FLICAS)!of!CO/CO2! mixture.!!! This experiment will expose you to tools and approaches, common in FiberLaserIntracavityAbsorption Spectroscopy(FLICAS)ofCO/CO2 mixture. This experiment will expose you to tools and approaches, common in modern laser spectroscopy. During the following weeks we will cover

More information

Physics 221 Lecture 31 Line Radiation from Atoms and Molecules March 31, 1999

Physics 221 Lecture 31 Line Radiation from Atoms and Molecules March 31, 1999 Physics 221 Lecture 31 Line Radiation from Atoms and Molecules March 31, 1999 Reading Meyer-Arendt, Ch. 20; Möller, Ch. 15; Yariv, Ch.. Demonstrations Analyzing lineshapes from emission and absorption

More information

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41 Supplementary Figure γ 4 Δ+δe Γ34 Γ43 γ 3 Δ Ω3,4 Pump Ω3,4, Ω3 Γ3 Γ3 Γ4 Γ4 Γ Γ Supplementary Figure Schematic picture of theoretical model: The picture shows a schematic representation of the theoretical

More information

Some Topics in Optics

Some Topics in Optics Some Topics in Optics The HeNe LASER The index of refraction and dispersion Interference The Michelson Interferometer Diffraction Wavemeter Fabry-Pérot Etalon and Interferometer The Helium Neon LASER A

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Optogalvanic spectroscopy of the Zeeman effect in xenon

Optogalvanic spectroscopy of the Zeeman effect in xenon Optogalvanic spectroscopy of the Zeeman effect in xenon Timothy B. Smith, Bailo B. Ngom, and Alec D. Gallimore ICOPS-2006 10:45, 5 Jun 06 Executive summary What are we reporting? Xe I optogalvanic spectra

More information

B 1 Π A 1 Σ + electronic transfer in NaK

B 1 Π A 1 Σ + electronic transfer in NaK ISMS Urbana 2017 Session MH-11 B 1 Π A 1 Σ + electronic transfer in NaK Amanda Ross, Heather Harker, Maxime Giraud, Ella Wyllie Ins%tut Lumière Ma%ère*, Université de Lyon, France * Descrip%on of collisionally-induced

More information

Ver Chap Lecture 15- ECE 240a. Q-Switching. Mode Locking. ECE 240a Lasers - Fall 2017 Lecture Q-Switch Discussion

Ver Chap Lecture 15- ECE 240a. Q-Switching. Mode Locking. ECE 240a Lasers - Fall 2017 Lecture Q-Switch Discussion ing Ver Chap. 9.3 Lasers - Fall 2017 Lecture 15 1 ing ing (Cavity Dumping) 1 Turn-off cavity - prevent lasing 2 Pump lots of energy into upper state - use pulsed pump 3 Turn cavity back on - all the energy

More information

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening Spectral Broadening echanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Quantum Electronics Laser Physics. Chapter 5. The Laser Amplifier

Quantum Electronics Laser Physics. Chapter 5. The Laser Amplifier Quantum Electronics Laser Physics Chapter 5. The Laser Amplifier 1 The laser amplifier 5.1 Amplifier Gain 5.2 Amplifier Bandwidth 5.3 Amplifier Phase-Shift 5.4 Amplifier Power source and rate equations

More information

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015 MEFT / Quantum Optics and Lasers Suggested problems Set 4 Gonçalo Figueira, spring 05 Note: some problems are taken or adapted from Fundamentals of Photonics, in which case the corresponding number is

More information

EE 472 Solutions to some chapter 4 problems

EE 472 Solutions to some chapter 4 problems EE 472 Solutions to some chapter 4 problems 4.4. Erbium doped fiber amplifier An EDFA is pumped at 1480 nm. N1 and N2 are the concentrations of Er 3+ at the levels E 1 and E 2 respectively as shown in

More information

Contents. Part I Fundamentals of Lasers 1 Introduction... 3

Contents. Part I Fundamentals of Lasers 1 Introduction... 3 Contents Part I Fundamentals of Lasers 1 Introduction... 3 2 Basic Optics... 9 2.1 Introduction...... 9 2.2 TheWaveEquation... 9 2.3 Linearly Polarized Waves.... 13 2.4 Circularly and Elliptically Polarized

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

Distributed feedback semiconductor lasers

Distributed feedback semiconductor lasers Distributed feedback semiconductor lasers John Carroll, James Whiteaway & Dick Plumb The Institution of Electrical Engineers SPIE Optical Engineering Press 1 Preface Acknowledgments Principal abbreviations

More information

A 21 spontaneous radia:ve decay (s - 1 ) B 12 induced excita:on (via photons) [B 12 U ν s - 1 ]

A 21 spontaneous radia:ve decay (s - 1 ) B 12 induced excita:on (via photons) [B 12 U ν s - 1 ] Collisionally- excited emission Lines Excita:on and emission in a - level atom Emission Lines Emission lines result from photon- emiang downward transi:ons, and provide key informa:on on the emiang objects,

More information

Lecture 15. Temperature Lidar (4) Doppler Techniques

Lecture 15. Temperature Lidar (4) Doppler Techniques Lecture 15. Temperature Lidar (4) Doppler Techniques q Doppler effects in absorption and backscatter coefficient vs. cross-section q Doppler Technique to Measure Temperature and Wind Ø Doppler Shift and

More information

Collisionally- excited emission Lines

Collisionally- excited emission Lines Collisionally- excited emission Lines Excita9on and emission in a 2- level atom Emission Lines Emission lines result from photon- emi@ng downward transi9ons, and provide key informa9on on the emi@ng objects,

More information

Lasers & Holography. Ulrich Heintz Brown University. 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1

Lasers & Holography. Ulrich Heintz Brown University. 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1 Lasers & Holography Ulrich Heintz Brown University 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1 Lecture schedule Date Topic Thu, Jan 28 Introductory meeting Tue, Feb 2 Safety training Thu, Feb 4 Lab

More information

Lecture 11: Doppler wind lidar

Lecture 11: Doppler wind lidar Lecture 11: Doppler wind lidar Why do we study winds? v Winds are the most important variable studying dynamics and transport in the atmosphere. v Wind measurements are critical to improvement of numerical

More information

Optical delay with spectral hole burning in Doppler broadened cesium vapor

Optical delay with spectral hole burning in Doppler broadened cesium vapor University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Air Force Research U.S. Department of Defense 2012 Optical delay with spectral hole burning in Doppler broadened cesium

More information

Laser spectroscopy of gas confined in nanoporous materials

Laser spectroscopy of gas confined in nanoporous materials Laser spectroscopy of gas confined in nanoporous materials Svensson, Tomas; Shen, Zhijian Published in: Applied Physics Letters DOI: 10.1063/1.3292210 Published: 2010-01-01 Link to publication Citation

More information

arxiv:quant-ph/ v1 2 Oct 2003

arxiv:quant-ph/ v1 2 Oct 2003 Slow Light in Doppler Broadened Two level Systems G. S. Agarwal and Tarak Nath Dey Physical Research Laboratory, Navrangpura, Ahmedabad-38 9, India (October 31, 218) We show that the propagation of light

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of 1 Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of the spin noise spectra calculated with Eq. (2) for

More information

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase

More information

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Laboratoire «Collisions, Agrégats, Réactivité», Université Paul Sabatier, Toulouse, France Context: - Dispersion

More information

Lecture 20. Wind Lidar (2) Vector Wind Determination

Lecture 20. Wind Lidar (2) Vector Wind Determination Lecture 20. Wind Lidar (2) Vector Wind Determination Vector wind determination Ideal vector wind measurement VAD and DBS technique for vector wind Coherent versus incoherent Detection Doppler wind lidar

More information

OPTI 511L Fall Objectives:

OPTI 511L Fall Objectives: RJ Jones OPTI 511L Fall 2017 Optical Sciences Experiment: Saturated Absorption Spectroscopy (2 weeks) In this experiment we explore the use of a single mode tunable external cavity diode laser (ECDL) to

More information

Professor Dr. Wolfgang Demtröder

Professor Dr. Wolfgang Demtröder Wolfgang Demtröder Laser Spectroscopy Basic Concepts and Instrumentation Third Edition With 710 Figures,16 Tables 93 Problems and Hints for Solution 13 Professor Dr. Wolfgang Demtröder Universität Kaiserslautern

More information

Lecture 32. Lidar Error and Sensitivity Analysis

Lecture 32. Lidar Error and Sensitivity Analysis Lecture 3. Lidar Error and Sensitivity Analysis Introduction Accuracy in lidar measurements Precision in lidar measurements Error analysis for Na Doppler lidar Sensitivity analysis Summary 1 Errors vs.

More information

Space weathering and the color- color diagram of Plu6nos and Jupiter Trojans

Space weathering and the color- color diagram of Plu6nos and Jupiter Trojans Space weathering and the color- color diagram of Plu6nos and Jupiter Trojans M. Melita 1, Z. Kaňuchová 2, R. BruneGo 3, G. Strazzulla 4 1 Ins$tuto de Astronoma y Fsica del Espacio (IAFE), Buenos Aires,

More information

The Sun as a Typical Star. Stellar Spectra. Stellar Spectroscopy

The Sun as a Typical Star. Stellar Spectra. Stellar Spectroscopy Stellar Spectroscopy Resolved observa7ons of the sun allow us to look at varia7ons across the surface, but we can only look at (almost all) other stars in integrated light. In the visible, we see the photosphere

More information

Paper B2: Radiation and Matter - Basic Laser Physics

Paper B2: Radiation and Matter - Basic Laser Physics Paper B2: Radiation and Matter - Basic Laser Physics Dr Simon Hooker Michaelmas Term 2006 ii Contents 1 The Interaction of Radiation and Matter 1 1.1 Introduction.............................. 1 1.2 Radiation...............................

More information

LASERS. Amplifiers: Broad-band communications (avoid down-conversion)

LASERS. Amplifiers: Broad-band communications (avoid down-conversion) L- LASERS Representative applications: Amplifiers: Broad-band communications (avoid down-conversion) Oscillators: Blasting: Energy States: Hydrogen atom Frequency/distance reference, local oscillators,

More information

Lasers... the optical cavity

Lasers... the optical cavity Lasers... the optical cavity history principle, intuitive aspects, characteristics 2 levels systems Ti: Helium Al2O3 - Neon model-locked laser laser VCSEL bragg mirrors cleaved facets 13 ptical and/or

More information

Photon Physics. Week 5 5/03/2013

Photon Physics. Week 5 5/03/2013 Photon Physics Week 5 5/3/213 1 Rate equations including pumping dn 2 = R 2 N * σ 21 ( ω L ω ) I L N 2 R 2 2 dn 1 = R 1 + N * σ 21 ( ω L ω ) I L N 1 + N 2 A 21 ss solution: dn 2 = dn 1 = N 2 = R 2 N *

More information

Figure 5.1: Theodore Maiman constructed the first operational laser. Wikipedia). 5.1 Emission and absorption of electromagnetic radiation

Figure 5.1: Theodore Maiman constructed the first operational laser. Wikipedia). 5.1 Emission and absorption of electromagnetic radiation 5 Laser The word laser is an acronym for light amplification by stimulated emission of radiation. The first laser was demonstrated by Theodore Maiman in 1960. Figure 5.1: Theodore Maiman constructed the

More information

Molecular spectroscopy

Molecular spectroscopy Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering

More information

EE485 Introduction to Photonics

EE485 Introduction to Photonics Pattern formed by fluorescence of quantum dots EE485 Introduction to Photonics Photon and Laser Basics 1. Photon properties 2. Laser basics 3. Characteristics of laser beams Reading: Pedrotti 3, Sec. 1.2,

More information

Saturated Absorption Spectroscopy

Saturated Absorption Spectroscopy Saturated Absorption Spectroscopy Experiment SAS University of Florida Department of Physics PHY4803L Advanced Physics Laboratory Overview You will use a tunable diode laser to carry out spectroscopic

More information

S. Blair September 27,

S. Blair September 27, S. Blair September 7, 010 54 4.3. Optical Resonators With Spherical Mirrors Laser resonators have the same characteristics as Fabry-Perot etalons. A laser resonator supports longitudinal modes of a discrete

More information

Saturated Absorption Spectroscopy

Saturated Absorption Spectroscopy Saturated Absorption Spectroscopy Experiment SAS University of Florida Department of Physics PHY4803L Advanced Physics Laboratory Overview You will use a tunable diode laser to carry out spectroscopic

More information

Sta$s$cal mechanics of hystere$c capillary phenomena: predic$ons of contact angle on rough surfaces and liquid reten$on in unsaturated porous media

Sta$s$cal mechanics of hystere$c capillary phenomena: predic$ons of contact angle on rough surfaces and liquid reten$on in unsaturated porous media Sta$s$cal mechanics of hystere$c capillary phenomena: predic$ons of contact angle on rough surfaces and liquid reten$on in unsaturated porous media Michel Louge h@p://grainflowresearch.mae.cornell.edu/

More information

Laser-Based Measurements for Time and Frequency

Laser-Based Measurements for Time and Frequency Laser-Based Measurements for Time and Frequency Domain Applications A Handbook Pasquale Maddaloni Marco Bellini Paolo De Natale CRC Press Taylor Si Francis Croup Boca Raton London New York CRC Press is

More information

Characterization and Stabilization of Opto Power Fiber-Coupled Laser Diode Arrays. Abstract

Characterization and Stabilization of Opto Power Fiber-Coupled Laser Diode Arrays. Abstract Characterization and Stabilization of Opto Power Fiber-Coupled Laser Diode Arrays D. F. Phillips, G. P. Wong, D. Bear, R. E. Stoner and R. L. Walsworth Harvard Smithsonian Center for Astrophysics, Cambridge,

More information

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz toms and light Introduction toms Semi-classical physics: Bohr atom Quantum-mechanics: H-atom Many-body physics: BEC, atom laser Light Optics: rays Electro-magnetic fields: Maxwell eq. s Quantized fields:

More information

Krauskopf, B., Erzgraber, H., & Lenstra, D. (2006). Dynamics of semiconductor lasers with filtered optical feedback.

Krauskopf, B., Erzgraber, H., & Lenstra, D. (2006). Dynamics of semiconductor lasers with filtered optical feedback. Krauskopf, B, Erzgraber, H, & Lenstra, D (26) Dynamics of semiconductor lasers with filtered optical feedback Early version, also known as pre-print Link to publication record in Explore Bristol Research

More information

Slow, Fast, and Backwards Light Propagation in Erbium-Doped Optical Fibers. Zhimin Shi

Slow, Fast, and Backwards Light Propagation in Erbium-Doped Optical Fibers. Zhimin Shi Slow, Fast, and Backwards Light Propagation in Erbium-Doped Optical Fibers Zhimin Shi Institute of Optics and Department of Physics and Astronomy University of Rochester www.optics.rochester.edu/~boyd

More information

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz toms and light Introduction toms Semi-classical physics: Bohr atom Quantum-mechanics: H-atom Many-body physics: BEC, atom laser Light Optics: rays Electro-magnetic fields: Maxwell eq. s Quantized fields:

More information

Early time dynamics of strongly coupled ultracold neutral Ca + and Ca 2+ plasmas

Early time dynamics of strongly coupled ultracold neutral Ca + and Ca 2+ plasmas Early time dynamics of strongly coupled ultracold neutral Ca + and Ca 2+ plasmas M. Lyon and S. D. Bergeson Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602, USA For interacting

More information

Search for Vacuum Magne0c Birefringence with Pulsed Magnets Shusei Kamioka 1

Search for Vacuum Magne0c Birefringence with Pulsed Magnets Shusei Kamioka 1 Search for Vacuum Magne0c Birefringence with Pulsed Magnets Shusei Kamioka 1 X. Fan 1, T. Inada 2, T. Yamazaki 2, T. Namba 2, S. Asai 1, J. Omachi 1, K. Yoshioka 3, M. Kuwata- Gonokami 1, A. Matsuo 4,

More information

Lecture 11. Classification of Lidar by Topics

Lecture 11. Classification of Lidar by Topics Lecture 11. Classification of Lidar by Topics Effective cross section for resonance fluorescence Various lidar classifications What are topical lidars and why? Temperature techniques Wind techniques Aerosol

More information

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission. Lecture 10 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

Optics, Light and Lasers

Optics, Light and Lasers Dieter Meschede Optics, Light and Lasers The Practical Approach to Modern Aspects of Photonics and Laser Physics Second, Revised and Enlarged Edition BICENTENNIAL.... n 4 '':- t' 1 8 0 7 $W1LEY 2007 tri

More information

Observing the Doppler Absorption of Rubidium Using a Tunable Laser Diode System

Observing the Doppler Absorption of Rubidium Using a Tunable Laser Diode System Observing the Doppler Absorption of Rubidium Using a Tunable Laser Diode System Ryan Prenger 5/5/00 Final Submission Purdue University Physics Department Abstract Using a tunable laser diode, Doppler absorption

More information

A characteriza+on/reliability oriented simula+on framework modeling charge transport and degrada+on in dielectric stacks

A characteriza+on/reliability oriented simula+on framework modeling charge transport and degrada+on in dielectric stacks A characteriza+on/reliability oriented simula+on framework modeling charge transport and degrada+on in dielectric stacks Luca Larcher University of Modena and Reggio Emilia MDLab Italy Outline Simula=on

More information

Principles of Lasers FIFTH EDITION

Principles of Lasers FIFTH EDITION Principles of Lasers FIFTH EDITION Principles of Lasers FIFTH EDITION Orazio Svelto Polytechnic Institute of Milan and National Research Council Milan, Italy Translated from Italian and edited by David

More information

Final laser project. Two approaches. Case- study: pick a specific laser design, model. Survey: pick a general class of lasers

Final laser project. Two approaches. Case- study: pick a specific laser design, model. Survey: pick a general class of lasers Final laser project Two approaches Case- study: pick a specific laser design, model Pumping, gain dynamics Resonator design Pulsed opera?on q- switching, mode locking Modeling of how a design can be scaled

More information

F.G. Major. The Quantum Beat. The Physical Principles of Atomic Clocks. With 230 Illustrations. Springer

F.G. Major. The Quantum Beat. The Physical Principles of Atomic Clocks. With 230 Illustrations. Springer F.G. Major The Quantum Beat The Physical Principles of Atomic Clocks With 230 Illustrations Springer Contents Preface Chapter 1. Celestial and Mechanical Clocks 1 1.1 Cyclic Events in Nature 1 1.2 The

More information

Slow light using spectral hole burning in a Tm 3+ -doped yttrium-aluminum-garnet crystal

Slow light using spectral hole burning in a Tm 3+ -doped yttrium-aluminum-garnet crystal PHYSICAL REVIEW A 79, 063844 2009 Slow light using spectral hole burning in a Tm 3+ -doped yttrium-aluminum-garnet crystal R. Lauro,* T. Chanelière, and J. L. Le Gouët Laboratoire Aimé Cotton, Université

More information

3.1 The Plane Mirror Resonator 3.2 The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator

3.1 The Plane Mirror Resonator 3.2 The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator Quantum Electronics Laser Physics Chapter 3 The Optical Resonator 3.1 The Plane Mirror Resonator 3. The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator

More information

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY Shaul Mukamel University of Rochester Rochester, New York New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1. Introduction 3 Linear versus Nonlinear Spectroscopy

More information

Linear and nonlinear spectroscopy

Linear and nonlinear spectroscopy Linear and nonlinear spectroscopy We ve seen that we can determine molecular frequencies and dephasing rates (for electronic, vibrational, or spin degrees of freedom) from frequency-domain or timedomain

More information

Engineering Medical Optics BME136/251 Winter 2017

Engineering Medical Optics BME136/251 Winter 2017 Engineering Medical Optics BME136/251 Winter 2017 Monday/Wednesday 2:00-3:20 p.m. Beckman Laser Institute Library, MSTB 214 (lab) Teaching Assistants (Office hours: Every Tuesday at 2pm outside of the

More information

Intersubband Response:

Intersubband Response: Intersubband Response: Lineshape,, Coulomb Renormalization, and Microcavity Effects F. T. Vasko Inst. of Semiconductor Physics Kiev, Ukraine In collaboration with: A.V. Korovin and O.E. Raichev (Inst.

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

Spectral Resolution. Spectral resolution is a measure of the ability to separate nearby features in wavelength space.

Spectral Resolution. Spectral resolution is a measure of the ability to separate nearby features in wavelength space. Spectral Resolution Spectral resolution is a measure of the ability to separate nearby features in wavelength space. R, minimum wavelength separation of two resolved features. Delta lambda often set to

More information