Ferroelectric Tunnel Junction for Dense Cross-Point

Size: px
Start display at page:

Download "Ferroelectric Tunnel Junction for Dense Cross-Point"

Transcription

1 Supporting Information Ferroelectric Tunnel Junction for Dense Cross-Point Arrays Hong-Sub Lee, Wooje Han, Hee-Yoon Chung, Marcelo Rozenberg,, Kangsik Kim, Zonghoon Lee, Geun Young Yeom, and Hyung-Ho Park*, *corresponding author: Hyung-Ho Park, Department of Materials Science and Engineering, Yonsei University, Seodaemun-Ku, Seoul , Korea Laboratoire de Physique des Solides, CNRS-UMR 8502 Université Paris-Sud, Orsay 91405, France IFIBA-Conicet and Departamento de Física, FCEN, Universidad de Buenos Aires, Ciudad Universitaria Pabellón I, (1428) Buenos Aires, Argentina School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan , Korea Department of Advanced Materials Science and Engineering and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon, Kyunggi-do , Republic of Korea S-1

2 Table of contents A. Carrier transport mechanisms in metal/insulator/metal structure B. Perovskite manganite family Pr 0.98 Ca 0.02 MnO 3 and Ca 0.98 Pr 0.02 MnO 3 C. GI-WAXD of BaTiO 3 /Pt (111) reference and the X-ray photoelectron spectroscopy D. Piezoresponse force microscopy E. Simulation method for the number of N of cross point array A. Carrier transport mechanisms in metal/insulator/metal structure In general, the carrier transport mechanisms in metal/insulator/metal structure as Figure 1c considered by direct tunneling (DT), Fowler Nordheim tunneling (FNT), thermionic emission (TI) and the J DT, J FNT, and J TI can be written as shown below in Equations (S1), (S2), and (S3) respectively. 1 j DT = C exp[α{(φ B,2 ev 3 2 ) 2 (φb,1 + ev 3 2 ) 2 }] α 2 [ φ B,2 ev 2 φ B,1+ ev 2 ] 2 sinh [ 3eV α { φ 4 B,2 ev φ 2 B,1 + ev }] (S1), 2 where C = 4em e,ox 9π 2 ħ 3, α = 4d 2m e,ox 3ħ(φ B,1 +ev φ B,2 ), and m e,ox is the effective tunneling electron mass. d, φ B,1, and φ B,2 are the thickness of the potential barrier, the potential barrier height between insulator and electrodes 1 and 2, respectively. J DT passes through the rectangular barrier as shown in Figure 1c. 2 j FNT = e3 m e E 2 exp [ 8π 2m 3 e,ox φ 2 B ] (S2), 8πhm e,ox φ B 3he E S-2

3 basically, J FNT is the physical phenomenon to J DT that is also the function of the height and width of the potential barrier as shown in Equation (S2). However, J FNT only appears when the rectangular and/or trapezoidal potential barrier are tiled to a triangle shape by the applied electric field and J FNT exponentially increases with decreasing potential barrier width. Therefore, in the rectangular and/or trapezoidal potential barrier, the carrier transport mechanism transfers from J DT at a low voltage region to J FNT at a high voltage region. 3 j Schottky = A T 2 exp [ 1 (φ k B T B e3 E )] 4πε 0 ε ifl (S3), A** is the effective Richardson s constant, ε o is the permittivity of the vacuum, and ε ifl is the permittivity of the insulator. J TI indicates passing electrons over the potential barrier and the barrier height is reduced by image force lowering, called the Schottky effect. In Equation (S3), the current density can be described for sufficiently high voltages (approx. V >100 mv at room temperature, i.e., approximately 3k B T/e). 4 When we set the parameters as d=3.2 nm, φ B,1 =φ B,2 =1 ev, m e,ox = m e, ε ifl =10, A**=10 6 Am -2 K -2, and T=300 K, the current-voltage curve of J DT, J FNT, and J TI was indicated as Figure 1c. B. Perovskite manganite family Pr 0.98 Ca 0.02 MnO 3 and Ca 0.98 Pr 0.02 MnO 3 Figure S1a and b shows a schematic band diagram of the Mn 3d band of PMO and CMO, respectively. In the perovskite manganite family RE 3+ 1-xAE 2+ xmno 3 (RE: rare earth AE: alkaline earth), RE and AE outer electrons were transferred to the oxygen atom to complete the O 2p shell. 5-7 S-3

4 Figure S1. Schematic diagrams of Mn-O octahedron and Mn 3d band of (a) Pr 0.98 Ca 0.02 MnO 3 and (b) Ca 0.98 Pr 0.02 MnO 3, electrodes 1 and 2 with perovskite manganite family. Therefore, excess holes/electrons were primarily located in Mn 3d by stoichiometry x, which thus controls the Mn 3d filling. In the basic structure of the compound series Pr 1- xca x MnO 3, the Mn 3d e g band was singly occupied, with one electron per site, for x = 0, and it was the Mott insulator by on site coulomb repulsion U with Jahn Teller distortion as shown in Figure S1a. The completely depleted e g band as x=1 was the band insulator as shown in Figure S1b. This is consistent with the fact that both ends were insulators (Mott or band insulators, respectively for x=0 or 1), while the intermediate compounds were semiconductors. 5-9 Therefore, The PMO and CMO of this study were a hole-doped Mott insulator and an electron-doped band insulator. S-4

5 Current (A) Au/Ca doped PMO/Pt Au/Pr doped CMO/Pt Voltage (V) Figure S2. I-V characteristics of Au/ Pr 0.98 Ca 0.02 MnO 3 and Ca 0.98 Pr 0.02 MnO 3 / Pt structure. Figure S2 shows I-V characteristics of reference PMO and CMO thin film (thickness: 5 nm) using Au top and Pt bottom electrodes. The dot size of Au top electrode was 50 μm diameter. As shown in the Figure S2, the PMO and CMO films indicated ohmic behavior because they have smaller or almost same work function when compared with Au and Pt electrodes as shown in Figure 3 of the manuscript. As described in the Figure S1, PMO shows higher resistance than CMO though Ca doped PMO and Pr doped CMO have the same doping concentration (refer to Figure S4). C. GI-WAXD of BaTiO 3 /Pt (111) reference and the X-ray photoelectron spectroscopy S-5

6 Figure S3. GI-WAXD of BaTiO 3 /Pt (111) reference. The 2D intensity distribution (left), the horizontal (or out-of-plane) component of the scattering vector q y is plotted along the x-axis, and the vertical (or in-plane) component of the scattering vector q z is plotted along the y-axis. The observed diffraction peaks are addressed according to Miller indices (hkl). And the 1D diffraction intensity curve according to xy cut (red line). The incident angle was 0.06 o. Therefore BTO (111) plane which was formed to parallel with Pt (111) was not observed at vertical cut. And as the red line in the Figure S3, BTO (111) and Pt (111) planes were observed in same direction with different d-spacing. As observed dead layer in Figure 2f and g of the manuscript, BTO film on Pt (111) also had the dead layer as shown in Figure S3 (right). As shown in the 1D diffraction intensity curve of Figure S3, the intensity was observed between BTO (111) and Pt (111) peaks. S-6

7 Figure S4. The X-ray photoelectron spectroscopy for the dopant concentration using reference films as Pr 0.98 Ca 0.02 MnO 3 and Ca 0.98 Pr 0.02 MnO 3. The atomic percent of Pr and Ca dopant were confirmed to 0.5~0.6 at% as their stoichiometry (Pr 0.98 Ca 0.02 MnO 3 /Pt and Ca 0.98 Pr 0.02 MnO 3 ) Pt reference films which were measured by high energy resolution experiment settings on an XPS equipped (Thermo Scientific K-alpha) with a monochromatic Al K-alpha X-ray source. S-7

8 D. Piezoresponse force microscopy Figure S5. (a) Piezoresponse force microscopy (PFM) phase image of the surface region (5 5 μm 2 ) of BTO/CMO/Pt reference sample after downward and upward polarizations written with ±5 V. Hysteretic behavior of the PFM (b) amplitude and (c) phase signals. Ferroelectric properties of the BTO/CMO/Pt reference film was investigated at room temperature using the PFM. The local out-of-plane piezoresponse was measured on the bare surface of the reference film. Applying a constant voltage ±5 V to PFM tip and scanning the reference film surface, we poled different regions as shown in Figure S5a. Figure S5b and c showed a clear hysteresis behavior as both amplitude and phase (~180 difference) signals, respectively. E. Simulation method for the number of N of cross point array S-8

9 As shown in Figure 1a (a cross-point array circuit), in the worst condition (the selected HRS cell surrounded by unselected LRS cells), the relationship between the number of word lines N and readout margin (RM) can be simulated by the Kirchhoff equation S4, RM = V V pu (N) = R pu ([R read ] [ 2R read 2 ])+R N 1 pu R pu ([R read ] [ 2R read 2 ])+R N 1 pu (S4) where R pu is the resistance of the pull-up resistor that can be optimized from (R read *R read ) 1/2. 10,11 When we read the resistance of selected HRS cells (selected R HRS ), the (2R read /2)/(N-1) should be greater than the selected R HRS. If the (2R read /2)/(N-1) is less than the selected R HRS, the sensing margin is reduced as shown in Equation (S4). Therefore, V read is defined from the consideration of the RS ratio@v read with R HRS (V read )/R LRS (V read /2) to maximize the number of N while V write is fixed by the RS voltage (a greater R write /2 reduces the voltage drop in the write operation). This study defined the V read to -1.5 V, in which the voltage showed a maximized N. References (1) Pantel, D.; Alexe, M. Electroresistance Effects in Ferroelectric Tunnel Barriers. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, (2) Gruverman, A. Tunneling Electroresistance Effect in Ferroelectric Tunnel Junctions at the Nanoscale. Nano Lett. 2009, 9, (3) Fowler, R. H.; Nordheim, L. Electron Emission in Intense Electric Fields. Proc. R. Soc. London, Ser. A 1928, 119, S-9

10 (4) Sze, S. M. Physics of Semiconductor Devices, 3rd ed. Wiley-Interscience, Hoboken, (5) Dagotto, E. Nanoscale Phase Separation and Colossal Magnetoresistance, Springer- Verlag, Berlin Heidelberg, (6) Salamon, M. B.; Jaime, M. The Physics of Manganites: Structure and Transport. Rev. Mod. Phys. 2001, 73, (7) Wadati, H.; Maniwa, A.; Chikamatsu, A.; Ohkubo, I.; Kumigashira, H.; Oshima, M.; Fujimori, A.; Lippmaa, M.; Kawasaki, M.; Koinuma, H. In Situ Photoemission Study of Pr 1- xca x MnO 3 Epitaxial Thin Films with Suppressed Charge Fluctuations. Phys. Rev. Lett. 2008, 100, (8) Satpathy, S.; Popović, Z. S.; Vukajlović, F. R. Electronic Structure of the Perovskite Oxides: La 1-x Ca x MnO 3. Phys. Rev. Lett. 1996, 76, (9) Raabe, S.; Mierwaldt, D.; Ciston, J.; Uijttewaal, M.; Stein, H.; Hoffmann, J.; Zhu, Y.; Blöchl, P.; Jooss, C. In Situ Electrochemical Electron Microscopy Study of Oxygen Evolution Activity of Doped Manganite Perovskites. Adv. Funct. Mater. 2012, 22, (10) Amsinck, C. J.; Di Spigna, N. H.; Nackashi, D. P.; Franzon, P. D. Scaling Constraints in Nanoelectronic Random-Access Memories. Nanotechnology 2005, 16, (11) Huang, J.-J.; Tseng, Y.-M.; Hsu, C.-W.; Hou, T.-H. Bipolar Nonlinear Selector for 1S1R Crossbar Array Applications. IEEE Electron Device Lett. 2011, 32, S-10

2 Title: "Ultrathin flexible electronic device based on tunneling effect: a flexible ferroelectric tunnel

2 Title: Ultrathin flexible electronic device based on tunneling effect: a flexible ferroelectric tunnel Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 208 Supplementary information 2 Title: "Ultrathin flexible electronic device

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Thickness calibration of PVDF layers using atomic force microscopy. (a-d) Tapping AFM images of 1 L, 2 Ls, 4 Ls and 20 Ls PVDF films, respectively on Au-coated

More information

Material Science II. d Electron systems

Material Science II. d Electron systems Material Science II. d Electron systems 1. Electronic structure of transition-metal ions (May 23) 2. Crystal structure and band structure (June 13) 3. Mott s (June 20) 4. Metal- transition (June 27) 5.

More information

Colossal electroresistance in metal/ferroelectric/semiconductor. tunnel diodes for resistive switching memories

Colossal electroresistance in metal/ferroelectric/semiconductor. tunnel diodes for resistive switching memories Colossal electroresistance in metal/ferroelectric/semiconductor tunnel diodes for resistive switching memories Zheng Wen, Chen Li, Di Wu*, Aidong Li and Naiben Ming National Laboratory of Solid State Microstructures

More information

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides Supporting information Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides Changsik Kim 1,, Inyong Moon 1,, Daeyeong Lee 1, Min Sup Choi 1, Faisal Ahmed 1,2, Seunggeol

More information

Song and Feng Pan b) * Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering,

Song and Feng Pan b) * Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supplementary Information to Forming-free and self-rectifying resistive switching of the simple

More information

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model Journal of the Korean Physical Society, Vol. 55, No. 3, September 2009, pp. 1162 1166 A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model Y. S.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions Zheng Wen, Chen Li, Di Wu*, Aidong Li and Naiben Ming National Laboratory of Solid State Microstructures,

More information

Resistive Switching Mechanism of Single-Crystalline Oxide Schottky Junctions: Macroscopic and Nanoscopic Characterizations

Resistive Switching Mechanism of Single-Crystalline Oxide Schottky Junctions: Macroscopic and Nanoscopic Characterizations Resistive Switching Mechanism of SingleCrystalline Oxide Schottky Junctions: Macroscopic and Nanoscopic Characterizations Haeri Kim, Eunsongyi Lee, Minji Gwon, Ahrum Sohn, El Mostafa Bourim, and DongWook

More information

Presented by: Göteborg University, Sweden

Presented by: Göteborg University, Sweden SMR 1760-3 COLLEGE ON PHYSICS OF NANO-DEVICES 10-21 July 2006 Nanoelectromechanics of Magnetic and Superconducting Tunneling Devices Presented by: Robert Shekhter Göteborg University, Sweden * Mechanically

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Porous MoS 2 @C hetero shell with Si yolk structure

More information

A New High Voltage 4H-SiC Lateral Dual Sidewall Schottky (LDSS) Rectifier: Theoretical Investigation and Analysis

A New High Voltage 4H-SiC Lateral Dual Sidewall Schottky (LDSS) Rectifier: Theoretical Investigation and Analysis M. Jagadesh Kumar and C. Linga Reddy, "A New High Voltage 4H-SiC Lateral Dual Sidewall Schottky (LDSS) Rectifier: Theoretical Investigation and Analysis", IEEE Trans. on Electron Devices, Vol.50, pp.1690-1693,

More information

School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon , Korea.

School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon , Korea. Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary information (ESI) Highly Efficient and Bending Durable

More information

Review of typical behaviours observed in strongly correlated systems. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen.

Review of typical behaviours observed in strongly correlated systems. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. Review of typical behaviours observed in strongly correlated systems Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. Introduction : Major part of solid state physics of the second part

More information

Surface Studies by Scanning Tunneling Microscopy

Surface Studies by Scanning Tunneling Microscopy Surface Studies by Scanning Tunneling Microscopy G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel IBM Zurich Research Laboratory, 8803 Ruschlikon-ZH, Switzerland (Received by Phys. Rev. Lett. on 30th April,

More information

Bipolar resistive switching in amorphous titanium oxide thin films

Bipolar resistive switching in amorphous titanium oxide thin films Bipolar resistive switching in amorphous titanium oxide thin films Hu Young Jeong and Jeong Yong Lee Department of Materials Science and Engineering, KAIST, Daejeon 305-701, Korea Min-Ki Ryu and Sung-Yool

More information

Colossal magnetoresistance:

Colossal magnetoresistance: Colossal magnetoresistance: Ram Seshadri (seshadri@mrl.ucsb.edu) The simplest example of magnetoresistance is transverse magnetoresistance associated with the Hall effect: H + + + + + + + + + + E y - -

More information

Research Article Band Structure Analysis of La 0.7 Sr 0.3 MnO 3 Perovskite Manganite Using a Synchrotron

Research Article Band Structure Analysis of La 0.7 Sr 0.3 MnO 3 Perovskite Manganite Using a Synchrotron Advances in Condensed Matter Physics Volume 2015, Article ID 746475, 7 pages http://dx.doi.org/10.1155/2015/746475 Research Article Band Structure Analysis of La 0.7 Sr 0.3 MnO 3 Perovskite Manganite Using

More information

Magnetic Circular Dichroism spectroscopy in epitaxial La 0.7 Sr 0.3 MnO 3 thin films

Magnetic Circular Dichroism spectroscopy in epitaxial La 0.7 Sr 0.3 MnO 3 thin films Magnetic Circular Dichroism spectroscopy in epitaxial La 0.7 Sr 0.3 MnO 3 thin films T. K. Nath 1 and J. R. Neal 2, G. A. Gehring 2 1 Dept. of Physics and Meteorology, Indian Institute Technology of Kharagpur,

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information

Electrical Characterization with SPM Application Modules

Electrical Characterization with SPM Application Modules Electrical Characterization with SPM Application Modules Metrology, Characterization, Failure Analysis: Data Storage Magnetoresistive (MR) read-write heads Semiconductor Transistors Interconnect Ferroelectric

More information

Lecture 9: Metal-semiconductor junctions

Lecture 9: Metal-semiconductor junctions Lecture 9: Metal-semiconductor junctions Contents 1 Introduction 1 2 Metal-metal junction 1 2.1 Thermocouples.......................... 2 3 Schottky junctions 4 3.1 Forward bias............................

More information

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition 1 Supporting Information Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition Jaechul Ryu, 1,2, Youngsoo Kim, 4, Dongkwan Won, 1 Nayoung Kim, 1 Jin Sung Park, 1 Eun-Kyu

More information

Orientation dependence of the Schottky barrier height for

Orientation dependence of the Schottky barrier height for Orientation dependence of the Schottky barrier height for La 0.6 Sr 0.4 MnO 3 /SrTiO 3 heterojunctions M. Minohara 1, Y. Furukawa 2, R. Yasuhara 2, H. Kumigashira 2,3,4,a), and M. Oshima 1,2,3,4 1 Graduate

More information

Atomic Level Analysis of SiC Devices Using Numerical Simulation

Atomic Level Analysis of SiC Devices Using Numerical Simulation Atomic Level Analysis of Devices Using Numerical mulation HIRSE, Takayuki MRI, Daisuke TERA, Yutaka ABSTRAT Research and development of power semiconductor devices with (silicon carbide) has been very

More information

Controlling the Composition of Plasmonic Nanoparticle Arrays via Galvanic Displacement Reactions on Block Copolymer Nanotemplates

Controlling the Composition of Plasmonic Nanoparticle Arrays via Galvanic Displacement Reactions on Block Copolymer Nanotemplates Supporting Information Controlling the Composition of Plasmonic Nanoparticle Arrays via Galvanic Displacement Reactions on Block Copolymer Nanotemplates Ji Yong Lee, a Jieun Lee, a Yu Jin Jang, a Juyon

More information

High-quality all-oxide Schottky junctions fabricated on heavily Nb-doped SrTiO 3 substrates

High-quality all-oxide Schottky junctions fabricated on heavily Nb-doped SrTiO 3 substrates High-quality all-oxide Schottky junctions fabricated on heavily Nb-doped SrTiO 3 substrates A. Ruotolo *, C.Y. Lam, W.F. Cheng, K.H. Wong and C.W. Leung Department of Applied Physics and Materials Research

More information

Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching

Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching Nanometallic RRAM I-Wei Chen Department of Materials Science and Engineering University of Pennsylvania Philadelphia, PA 19104 Nature Nano, 6, 237 (2011) Adv Mater,, 23, 3847 (2011) Adv Func Mater,, 22,

More information

Stabilizing the forming process in unipolar resistance switching

Stabilizing the forming process in unipolar resistance switching Stabilizing the forming process in unipolar resistance switching using an improved compliance current limiter S. B. Lee, 1 S. H. Chang, 1 H. K. Yoo, 1 and B. S. Kang 2,a) 1 ReCFI, Department of Physics

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination The Metal-Semiconductor Junction: Review Energy band diagram of the metal and the semiconductor before (a)

More information

Colossal Magnetoresistance Manganites and Related Prototype Devices

Colossal Magnetoresistance Manganites and Related Prototype Devices Colossal Magnetoresistance Manganites and Related Prototype Devices Liu Yukuai( 刘愉快 ), Yin Yuewei( 殷月伟 ) *, and Li Xiaoguang( 李晓光 ) * Hefei National Laboratory for Physical Sciences at Microscale, Department

More information

Time resolved ultrafast ARPES for the study of topological insulators: The case of Bi 2 Te 3

Time resolved ultrafast ARPES for the study of topological insulators: The case of Bi 2 Te 3 Eur. Phys. J. Special Topics 222, 1271 1275 (2013) EDP Sciences, Springer-Verlag 2013 DOI: 10.1140/epjst/e2013-01921-1 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Regular Article Time resolved ultrafast

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supporting Information Efficient Photoelectrochemical Water Splitting of

More information

Surface Plasmon-Induced Hot Carrier Effect on Catalytic Activity of CO oxidation on Cu 2 O/Hexoctahedral Au Inverse Catalyst

Surface Plasmon-Induced Hot Carrier Effect on Catalytic Activity of CO oxidation on Cu 2 O/Hexoctahedral Au Inverse Catalyst Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Surface Plasmon-Induced Hot Carrier Effect on Catalytic Activity

More information

Sm doping:

Sm doping: Supplementary Figures a J (A cm - ) 1-1 1-1 -3 1-4 1-5 1-6 1-7 Sm doping:.1. -18-1 -6 6 1 18 P (µc cm - ) 8 4 5k Hz -4.1-8. -18-1 -6 6 1 18 Supplementary Figure 1 Electric properties of nm Sm x Bi 1-x

More information

Supplementary Information

Supplementary Information Supplementary Information Ambient effects on electrical characteristics of CVD-grown monolayer MoS 2 field-effect transistors Jae-Hyuk Ahn, 1,2 William M. Parkin, 1 Carl H. Naylor, 1 A. T. Charlie Johnson,

More information

Nanochannel-Assisted Perovskite Nanowires: Growth Mechanisms. to Photodetector Applications

Nanochannel-Assisted Perovskite Nanowires: Growth Mechanisms. to Photodetector Applications Supplementary Information: Nanochannel-Assisted Perovskite Nanowires: Growth Mechanisms to Photodetector Applications Qitao Zhou, Jun Gyu Park, Riming Nie, Ashish Kumar Thokchom, Dogyeong Ha, Jing Pan,

More information

Surface Transfer Doping of Diamond by Organic Molecules

Surface Transfer Doping of Diamond by Organic Molecules Surface Transfer Doping of Diamond by Organic Molecules Qi Dongchen Department of Physics National University of Singapore Supervisor: Prof. Andrew T. S. Wee Dr. Gao Xingyu Scope of presentation Overview

More information

A New Method of Scanning Tunneling Spectroscopy for Study of the Energy Structure of Semiconductors and Free Electron Gas in Metals

A New Method of Scanning Tunneling Spectroscopy for Study of the Energy Structure of Semiconductors and Free Electron Gas in Metals SCANNING Vol. 19, 59 5 (1997) Received April 1, 1997 FAMS, Inc. Accepted May, 1997 A New Method of Scanning Tunneling Spectroscopy for Study of the Energy Structure of Semiconductors and Free Electron

More information

Electrical and Reliability Characteristics of RRAM for Cross-point Memory Applications. Hyunsang Hwang

Electrical and Reliability Characteristics of RRAM for Cross-point Memory Applications. Hyunsang Hwang Electrical and Reliability Characteristics of RRAM for Cross-point Memory Applications Hyunsang Hwang Dept. of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST), KOREA

More information

Fabrication and Characteristic Investigation of Multifunctional Oxide p-n Heterojunctions

Fabrication and Characteristic Investigation of Multifunctional Oxide p-n Heterojunctions Advances in Science and Technology Vol. 45 (2006) pp. 2582-2587 online at http://www.scientific.net (2006) Trans Tech Publications, Switzerland Fabrication and Characteristic Investigation of Multifunctional

More information

Assessment of Variation in Zero Field Hall Constant of Colossal Magnetoresistive Manganites (Re1-x AxMnO3)

Assessment of Variation in Zero Field Hall Constant of Colossal Magnetoresistive Manganites (Re1-x AxMnO3) ESSENCE - International Journal for Environmental Rehabilitation and Conservation Panwar & Kumar/VIII [2] 2017/103 107 Volume VIII [2] 2017 [103 107] [ISSN 0975-6272] [www.essence-journal.com] Assessment

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Titanium d xy ferromagnetism at the LaAlO 3 /SrTiO 3 interface J.-S. Lee 1,*, Y. W. Xie 2, H. K. Sato 3, C. Bell 3, Y. Hikita 3, H. Y. Hwang 2,3, C.-C. Kao 1 1 Stanford Synchrotron Radiation Lightsource,

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

5. Building Blocks I: Ferroelectric inorganic micro- and nano(shell) tubes

5. Building Blocks I: Ferroelectric inorganic micro- and nano(shell) tubes 5. Building Blocks I: Ferroelectric inorganic micro- and nano(shell) tubes 5.1 New candidates for nanoelectronics: ferroelectric nanotubes In this chapter, one of the core elements for a complex building

More information

Fabrication of a One-dimensional Tube-in-tube Polypyrrole/Tin oxide Structure for Highly Sensitive DMMP Sensor Applications

Fabrication of a One-dimensional Tube-in-tube Polypyrrole/Tin oxide Structure for Highly Sensitive DMMP Sensor Applications Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information (ESI) for Fabrication of a One-dimensional

More information

Colloidal Single-Layer Quantum Dots with Lateral Confinement Effects on 2D Exciton

Colloidal Single-Layer Quantum Dots with Lateral Confinement Effects on 2D Exciton Supporting Information Colloidal Single-Layer Quantum Dots with Lateral Confinement Effects on 2D Exciton Ho Jin,, Minji Ahn,,,, Sohee Jeong,,, Jae Hyo Han,,, Dongwon Yoo,, Dong Hee Son, *, and Jinwoo

More information

Characteristics and parameter extraction for NiGe/n-type Ge Schottky diode with variable annealing temperatures

Characteristics and parameter extraction for NiGe/n-type Ge Schottky diode with variable annealing temperatures 034 Chin. Phys. B Vol. 19, No. 5 2010) 057303 Characteristics and parameter extraction for NiGe/n-type Ge Schottky diode with variable annealing temperatures Liu Hong-Xia ), Wu Xiao-Feng ), Hu Shi-Gang

More information

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling Scaling laws: Generalized scaling (GS) p. 610 Design steps p.613 Nanotransistor issues (page 626) Degradation

More information

Supporting Information

Supporting Information Supporting Information Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits Yuanda Liu, and Kah-Wee Ang* Department of Electrical and Computer Engineering National University

More information

Newcastle University eprints

Newcastle University eprints Newcastle University eprints Ponon NK, Appleby DJR, Arac E, Kwa KSK, Goss JP, Hannemann U, Petrov PK, Alford NM, O'Neill A. Impact of Crystalline Orientation on the Switching Field in Barium Titanate Using

More information

Photocarrier Injection and Current Voltage Characteristics of La 0:8 Sr 0:2 MnO 3 /SrTiO 3 :Nb Heterojunction at Low Temperature

Photocarrier Injection and Current Voltage Characteristics of La 0:8 Sr 0:2 MnO 3 /SrTiO 3 :Nb Heterojunction at Low Temperature Japanese Journal of Applied Physics Vol. 44, No. 1, 25, pp. 7367 7371 #25 The Japan Society of Applied Physics Photocarrier Injection and Current Voltage Characteristics of La :8 Sr :2 MnO 3 /SrTiO 3 :Nb

More information

High Light Absorption and Charge Separation Efficiency at Low Applied Voltage from Sb-doped SnO 2 /BiVO 4 Core/Shell Nanorod-Array Photoanodes

High Light Absorption and Charge Separation Efficiency at Low Applied Voltage from Sb-doped SnO 2 /BiVO 4 Core/Shell Nanorod-Array Photoanodes Supporting Information for: High Light Absorption and Charge Separation Efficiency at Low Applied Voltage from Sb-doped SnO 2 /BiVO 4 Core/Shell Nanorod-Array Photoanodes Lite Zhou 1,2, Chenqi Zhao 1,2,

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/4/e1602726/dc1 Supplementary Materials for Selective control of electron and hole tunneling in 2D assembly This PDF file includes: Dongil Chu, Young Hee Lee,

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Authors: Yang Xu 1,2, Ireneusz Miotkowski 1, Chang Liu 3,4, Jifa Tian 1,2, Hyoungdo

More information

Part 1: MetalMetal Contacts Workfunction Differences Flat band (a) (Pt) = 5.36 ev Pt Vacuum Fermi level Electrons Mo Vacuum Fermi level Electrons (Mo)

Part 1: MetalMetal Contacts Workfunction Differences Flat band (a) (Pt) = 5.36 ev Pt Vacuum Fermi level Electrons Mo Vacuum Fermi level Electrons (Mo) Applications Using Band Diagrams and Fermi Energy Level Applications to Devices Physics Physics Homojunctions Heterojunctions pn junction metals/c junctions diodes pnp junction pnp Bipolar transistors

More information

MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES. J. M. De Teresa

MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES. J. M. De Teresa MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES J. M. De Teresa Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, Facultad de Ciencias, 50009 Zaragoza, Spain. E-mail:

More information

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2 Properties of CNT d = 2.46 n 2 2 1 + n1n2 + n2 2π Metallic: 2n 1 +n 2 =3q Armchair structure always metallic a) Graphite Valence(π) and Conduction(π*) states touch at six points(fermi points) Carbon Nanotube:

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.16 Electrical detection of charge current-induced spin polarization due to spin-momentum locking in Bi 2 Se 3 by C.H. Li, O.M.J. van t Erve, J.T. Robinson,

More information

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes Multicolor Graphene Nanoribbon/Semiconductor Nanowire Heterojunction Light-Emitting Diodes Yu Ye, a Lin Gan, b Lun Dai, *a Hu Meng, a Feng Wei, a Yu Dai, a Zujin Shi, b Bin Yu, a Xuefeng Guo, b and Guogang

More information

Modified Mott-Schottky Analysis of Nanocrystal Solar Cells

Modified Mott-Schottky Analysis of Nanocrystal Solar Cells Modified Mott-Schottky Analysis of Nanocrystal Solar Cells S. M. Willis, C. Cheng, H. E. Assender and A. A. R. Watt Department of Materials, University of Oxford, Parks Road, Oxford. OX1 3PH. United Kingdom

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL SUPPLEMENTARY MATERIAL Multiphase Nanodomains in a Strained BaTiO3 Film on a GdScO3 Substrate Shunsuke Kobayashi 1*, Kazutoshi Inoue 2, Takeharu Kato 1, Yuichi Ikuhara 1,2,3 and Takahisa Yamamoto 1, 4

More information

Leakage Mechanisms. Thin films, fully depleted. Thicker films of interest for higher voltage applications. NC State

Leakage Mechanisms. Thin films, fully depleted. Thicker films of interest for higher voltage applications. NC State Leakage Mechanisms Thin films, fully depleted Leakage controlled by combined thermionic / field emission across the Schottky barrier at the film-electrode interfaces. Film quality effects barrier height,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Engineered doping of organic semiconductors for enhanced thermoelectric efficiency G.-H. Kim, 1 L. Shao, 1 K. Zhang, 1 and K. P. Pipe 1,2,* 1 Department of Mechanical Engineering, University of Michigan,

More information

Scaling behaviors of RESET voltages and currents in unipolar

Scaling behaviors of RESET voltages and currents in unipolar Scaling behaviors of RESET voltages and currents in unipolar resistance switching S. B. Lee, 1 S. C. Chae, 1 S. H. Chang, 1 J. S. Lee, 2 S. Seo, 3 B. Kahng, 2 and T. W. Noh 1,a) 1 ReCOE & FPRD, Department

More information

Molecules in Circuits, a New Type of Microelectronics?

Molecules in Circuits, a New Type of Microelectronics? 1 Molecules in Circuits, a New Type of Microelectronics? Richard L. McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta, Canada Organic Electronics : ony organic LED

More information

* motif: a single or repeated design or color

* motif: a single or repeated design or color Chapter 2. Structure A. Electronic structure vs. Geometric structure B. Clean surface vs. Adsorbate covered surface (substrate + overlayer) C. Adsorbate structure - how are the adsorbed molecules bound

More information

Analysis of flip flop design using nanoelectronic single electron transistor

Analysis of flip flop design using nanoelectronic single electron transistor Int. J. Nanoelectronics and Materials 10 (2017) 21-28 Analysis of flip flop design using nanoelectronic single electron transistor S.Rajasekaran*, G.Sundari Faculty of Electronics Engineering, Sathyabama

More information

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM Chapter 9 Electron mean free path Microscopy principles of SEM, TEM, LEEM 9.1 Electron Mean Free Path 9. Scanning Electron Microscopy (SEM) -SEM design; Secondary electron imaging; Backscattered electron

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

RESISTIVE-SWITCHING (RS) random access memory

RESISTIVE-SWITCHING (RS) random access memory 420 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 60, NO. 1, JANUARY 2013 Dependence of Read Margin on Pull-Up Schemes in High-Density One Selector One Resistor Crossbar Array Chun-Li Lo, Tuo-Hung Hou, Mei-Chin

More information

Spectro-microscopic photoemission evidence of surface dissociation and charge uncompensated areas in Pb(Zr,Ti)O 3 (001) layers

Spectro-microscopic photoemission evidence of surface dissociation and charge uncompensated areas in Pb(Zr,Ti)O 3 (001) layers Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Electronic Supplementary Information - Phys. Chem. Chem. Phys. Spectro-microscopic

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Insulating Interlocked Ferroelectric and Structural Antiphase Domain Walls in Multiferroic YMnO 3 T. Choi 1, Y. Horibe 1, H. T. Yi 1,2, Y. J. Choi 1, Weida. Wu 1, and S.-W. Cheong

More information

Schottky Rectifiers Zheng Yang (ERF 3017,

Schottky Rectifiers Zheng Yang (ERF 3017, ECE442 Power Semiconductor Devices and Integrated Circuits Schottky Rectifiers Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Schottky Rectifier Structure 2 Metal-Semiconductor Contact The work function

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

More information

Supporting Information: Poly(dimethylsiloxane) Stamp Coated with a. Low-Surface-Energy, Diffusion-Blocking,

Supporting Information: Poly(dimethylsiloxane) Stamp Coated with a. Low-Surface-Energy, Diffusion-Blocking, Supporting Information: Poly(dimethylsiloxane) Stamp Coated with a Low-Surface-Energy, Diffusion-Blocking, Covalently Bonded Perfluoropolyether Layer and Its Application to the Fabrication of Organic Electronic

More information

Transparent Stretchable Self-Powered Patchable. Sensor Platform with Ultrasensitive Recognition

Transparent Stretchable Self-Powered Patchable. Sensor Platform with Ultrasensitive Recognition Supporting Information Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities Byeong-Ung Hwang,, Ju-Hyuck Lee,, Tran Quang Trung,, Eun Roh, Do-Il

More information

Single ion implantation for nanoelectronics and the application to biological systems. Iwao Ohdomari Waseda University Tokyo, Japan

Single ion implantation for nanoelectronics and the application to biological systems. Iwao Ohdomari Waseda University Tokyo, Japan Single ion implantation for nanoelectronics and the application to biological systems Iwao Ohdomari Waseda University Tokyo, Japan Contents 1.History of single ion implantation (SII) 2.Novel applications

More information

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

2) Atom manipulation. Xe / Ni(110) Model: Experiment: 2) Atom manipulation D. Eigler & E. Schweizer, Nature 344, 524 (1990) Xe / Ni(110) Model: Experiment: G.Meyer, et al. Applied Physics A 68, 125 (1999) First the tip is approached close to the adsorbate

More information

Nanotechnology and Solar Energy. Solar Electricity Photovoltaics. Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells

Nanotechnology and Solar Energy. Solar Electricity Photovoltaics. Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells Nanotechnology and Solar Energy Solar Electricity Photovoltaics Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells Solar cell A photon from the Sun generates an electron-hole pair in a semiconductor.

More information

Flexible nonvolatile polymer memory array on

Flexible nonvolatile polymer memory array on Supporting Information for Flexible nonvolatile polymer memory array on plastic substrate via initiated chemical vapor deposition Byung Chul Jang, #a Hyejeong Seong, #b Sung Kyu Kim, c Jong Yun Kim, a

More information

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author. ciac - Shanghai P. R.

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author.   ciac - Shanghai P. R. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Supplementary Information For Journal of Materials Chemistry A Perovskite- @BiVO

More information

PLS-II s STXM and its application activities

PLS-II s STXM and its application activities 1 PLS-II s STXM and its application activities Hyun-Joon Shin Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Korea shj001@postech.ac.kr Two accelerators for x-rays...

More information

Supplementary Information for Dimensionality-Driven. Insulator-Metal Transition in A-site Excess. Nonstoichiometric Perovskites

Supplementary Information for Dimensionality-Driven. Insulator-Metal Transition in A-site Excess. Nonstoichiometric Perovskites Supplementary Information for Dimensionality-Driven Insulator-Metal Transition in A-site Excess Nonstoichiometric Perovskites Z. Wang, M. Okude, M. Saito, S. Tsukimoto, A. Ohtomo, M. Tsukada, M. Kawasaki,

More information

Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems

Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems Anjan K. Gupta Physics Department, I. I. T Kanpur ICTS-GJ, IITK, Feb 2010 Acknowledgements

More information

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction D. Chiba 1, 2*, Y. Sato 1, T. Kita 2, 1, F. Matsukura 1, 2, and H. Ohno 1, 2 1 Laboratory

More information

The interfacial study on the Cu 2 O/Ga 2 O 3 /AZO/TiO 2 photocathode for water splitting fabricated by pulsed laser deposition

The interfacial study on the Cu 2 O/Ga 2 O 3 /AZO/TiO 2 photocathode for water splitting fabricated by pulsed laser deposition Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2017 The interfacial study on the Cu 2 O/Ga 2 O 3 /AZO/TiO 2 photocathode for

More information

Electronic Noise Due to Thermal Stripe Switching

Electronic Noise Due to Thermal Stripe Switching Electronic Noise Due to Thermal Stripe Switching E. W. Carlson B. Phillabaum Y. L. Loh D. X. Yao Research Corporation Solid Liquid Gas www.stonecropgallery.com/artists/caleb/01-solidliquidgas.jpg Crystals

More information

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee 1. Depleted heterojunction solar cells 2. Deposition of semiconductor layers with solution process June 7, 2016 Yonghui Lee Outline 1. Solar cells - P-N junction solar cell - Schottky barrier solar cell

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

CMOS compatible integrated ferroelectric tunnel junctions (FTJ)

CMOS compatible integrated ferroelectric tunnel junctions (FTJ) CMOS compatible integrated ferroelectric tunnel junctions (FTJ) Mohammad Abuwasib 1*, Hyungwoo Lee 2, Chang-Beom Eom 2, Alexei Gruverman 3, Jonathan Bird 1 and Uttam Singisetti 1 1 Electrical Engineering,

More information

Simulation of Schottky Barrier MOSFET s with a Coupled Quantum Injection/Monte Carlo Technique

Simulation of Schottky Barrier MOSFET s with a Coupled Quantum Injection/Monte Carlo Technique IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 6, JUNE 2000 1241 Simulation of Schottky Barrier MOSFET s with a Coupled Quantum Injection/Monte Carlo Technique Brian Winstead and Umberto Ravaioli,

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Electronic (Semiconductor) Devices P-N Junctions (Diodes): Physical

More information

Surfaces, Interfaces, and Layered Devices

Surfaces, Interfaces, and Layered Devices Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1 Interface between a crystal and vacuum

More information

MI 48824, USA ABSTRACT

MI 48824, USA ABSTRACT Mater. Res. Soc. Symp. Proc. Vol. 1785 2015 Materials Research Society DOI: 10.1557/opl.2015. 605 Thermionic Field Emission Transport at Nanowire Schottky Barrier Contacts Kan Xie 1, Steven Allen Hartz

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INORMATION Supplementary Information Extremely Efficient lexible Organic Light-emitting Diodes with Modified Graphene Anode Tae-Hee Han 1, Youngbin Lee 2, Mi-Ri Choi 1, Seong-Hoon Woo 1,

More information

Nanoelectronics. Topics

Nanoelectronics. Topics Nanoelectronics Topics Moore s Law Inorganic nanoelectronic devices Resonant tunneling Quantum dots Single electron transistors Motivation for molecular electronics The review article Overview of Nanoelectronic

More information

Center for Integrated Nanostructure Physics (CINAP)

Center for Integrated Nanostructure Physics (CINAP) Center for Integrated Nanostructure Physics (CINAP) - Institute for Basic Science (IBS) was launched in 2012 by the Korean government to promote basic science in Korea - Our Center was established in 2012

More information